

Programming the Finite
Element Method

FOURTH EDITION

I. M. Smith
University of Manchester, UK

D. V. Griffiths
Colorado School of Mines, USA

Programming the Finite
Element Method

FOURTH EDITION

Programming the Finite
Element Method

FOURTH EDITION

I. M. Smith
University of Manchester, UK

D. V. Griffiths
Colorado School of Mines, USA

Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Smith, I. M. (Ian Moffat), 1940-
Programming the finite element method / I.M. Smith, D.V. Griffiths.–4th ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-470-84969-X (alk. paper)—ISBN 0-470-84970-3 (pbk. : alk. paper)
1. Finite element method–Data processing. 2. Engineering–Data Processing. I.

Griffiths, D. V. II. Title.

TA347.F5S64 2004
620′.001′51825–dc22

2004048076

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84969-X (Cloth)
ISBN 0-470-84970-3 (Paper)

Produced from LaTeX files supplied by the authors, typeset by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by TJ International, Padstow, Cornwall
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

Preface xv

Acknowledgement xvii

1 Preliminaries: Computer Strategies 1
1.1 Introduction . 1
1.2 Hardware . 2
1.3 Memory management . 2
1.4 Vector processors . 3
1.5 Parallel processors . 4
1.6 BLAS libraries . 4
1.7 MPI libraries . 5
1.8 Applications software . 5

1.8.1 Arithmetic . 7
1.8.2 Conditions . 7
1.8.3 Loops . 8

1.9 Array features . 9
1.9.1 Dynamic arrays . 9
1.9.2 Broadcasting . 10
1.9.3 Constructors . 10
1.9.4 Vector subscripts . 10
1.9.5 Array sections . 11
1.9.6 Whole-array manipulations . 11
1.9.7 Intrinsic procedures for arrays . 12
1.9.8 Additional Fortran 95 features . 13
1.9.9 Subprogram libraries . 14
1.9.10 Structured programming . 16

1.10 Conclusions . 17
References . 18

2 Spatial Discretisation by Finite Elements 21
2.1 Introduction . 21
2.2 Rod element . 21

2.2.1 Rod stiffness matrix . 21
2.2.2 Rod mass element . 24

2.3 The eigenvalue equation . 25

vi CONTENTS

2.4 Beam element . 25
2.4.1 Beam element stiffness matrix . 25
2.4.2 Beam element mass matrix . 27

2.5 Beam with an axial force . 28
2.6 Beam on an elastic foundation . 29
2.7 General remarks on the discretisation process 29
2.8 Alternative derivation of element stiffness 30
2.9 Two-dimensional elements: plane strain

and plane stress . 32
2.10 Energy approach . 35
2.11 Plane element mass matrix . 36
2.12 Axisymmetric stress and strain . 36
2.13 Three-dimensional stress and strain . 38
2.14 Plate-bending element . 40
2.15 Summary of element equations for solids 43
2.16 Flow of fluids: Navier–Stokes equations . 43
2.17 Simplified flow equations . 46

2.17.1 Steady state . 47
2.17.2 Transient state . 49
2.17.3 Advection . 49

2.18 Further coupled equations: Biot consolidation 50
2.19 Conclusions . 52
References . 52

3 Programming Finite Element Computations 55
3.1 Introduction . 55
3.2 Local coordinates for quadrilateral elements 55

3.2.1 Numerical integration for quadrilaterals 58
3.2.2 Analytical integration for quadrilaterals 58

3.3 Local coordinates for triangular elements 60
3.3.1 Numerical integration for triangles 61

3.4 Multi-element assemblies . 62
3.5 “Element-by-element” or “Mesh-free” techniques 64

3.5.1 Conjugate gradient method . 64
3.5.2 Preconditioning . 65
3.5.3 Unsymmetric systems . 66
3.5.4 Symmetric non-positive definite equations 67
3.5.5 Symmetric eigenvalue systems . 67

3.6 Incorporation of boundary conditions . 68
3.7 Programming using building blocks . 70

3.7.1 Black box routines . 71
3.7.2 Special purpose routines . 72
3.7.3 Plane elastic analysis using quadrilateral elements 73
3.7.4 Plane elastic analysis using triangular elements 76
3.7.5 Axisymmetric strain of elastic solids 77
3.7.6 Plane steady laminar fluid flow . 78

CONTENTS vii

3.7.7 Mass matrix formation . 78
3.7.8 Higher-order 2D elements . 79
3.7.9 Three-dimensional elements . 81
3.7.10 Assembly of elements . 86

3.8 Solution of equilibrium equations . 91
3.9 Evaluation of eigenvalues and eigenvectors 91

3.9.1 Jacobi algorithm . 92
3.9.2 Lanczos algorithm . 92

3.10 Solution of first order time dependent problems 93
3.11 Solution of coupled Navier–Stokes problems 96
3.12 Solution of coupled transient problems . 98

3.12.1 Absolute load version . 99
3.12.2 Incremental load version . 100

3.13 Solution of second order time dependent problems 100
3.13.1 Modal superposition . 101
3.13.2 Newmark or Crank–Nicolson method 104
3.13.3 Wilson’s method . 105
3.13.4 Explicit methods and other storage-saving strategies 106

References . 106

4 Static Equilibrium of Structures 109
4.1 Introduction . 109
Program 4.1 One-dimensional analysis of axially loaded elastic rods using

2-node rod elements . 110
Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod elements

in two or three dimensions . 116
Program 4.3 Analysis of elastic beams using 2-node beam elements (elastic

foundation optional) . 122
Program 4.4 Analysis of elastic rigid-jointed frames using 2-node beam/rod

elements in two or three dimensions . 128
Program 4.5 Analysis of elastic–plastic beams or rigid-jointed frames using

2-node beam or beam/rod elements in one, two or three dimensions 136
Program 4.6 Stability (buckling) analysis of elastic beams using 2-node beam

elements (elastic foundation optional) . 145
Program 4.7 Analysis of plates using 4-node rectangular plate elements. Homo-

geneous material with identical elements. Mesh numbered in x- or
y-direction . 148

4.2 Concluding remarks . 153
4.3 Exercises . 155
References . 164

5 Static Equilibrium of Linear Elastic Solids 165
5.1 Introduction . 165
Program 5.1 Plane or axisymmetric strain analysis of an elastic solid using 3-,

6-, 10-, or 15-node right-angled triangles or 4-, 8-, or 9-node rectangular
quadrilaterals. Mesh numbered in x(r)- or y(z)-direction 166

viii CONTENTS

Program 5.2 Non-axisymmetric analysis of an axisymmetric elastic solid using
8-node rectangular quadrilaterals. Mesh numbered in r- or z-direction . . . 184

Program 5.3 Three-dimensional analysis of an elastic solid using 8-, 14-, or
20-node brick hexahedra. Mesh numbered in x-z planes then in the
y-direction . 190

Program 5.4 General two- (plane strain) or three-dimensional analysis of elastic
solids . 195

Program 5.5 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-
node brick hexahedra. Mesh numbered in x-z planes then in the y-direction.
No global stiffness matrix assembly. Diagonally preconditioned conjugate
gradient solver . 204

Program 5.6 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-
node brick hexahedra. Mesh numbered in x-z planes then in the y-direction.
No global stiffness matrix assembly. Diagonally preconditioned conjugate
gradient solver. Vectorised version . 209

5.2 Exercises . 214
References . 222

6 Material Non-linearity 223
6.1 Introduction . 223
6.2 Stress–strain behaviour . 225
6.3 Stress invariants . 226
6.4 Failure criteria . 228

6.4.1 Von Mises . 228
6.4.2 Mohr–Coulomb and Tresca . 229

6.5 Generation of body loads . 230
6.6 Viscoplasticity . 231
6.7 Initial stress . 233
6.8 Corners on the failure and potential surfaces 234
Program 6.1 Plane strain bearing capacity analysis of an elastic–plastic (von

Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain
method . 235

Program 6.2 Plane strain bearing capacity analysis of an elastic–plastic (von
Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain
method. No global stiffness matrix assembly. Diagonally preconditioned
conjugate gradient solver . 243

Program 6.3 Plane strain slope stability analysis of an elastic–plastic (Mohr–
Coulomb) material using 8-node rectangular quadrilaterals. Viscoplastic
strain method . 248

Program 6.4 Plane strain earth pressure analysis of an elastic–plastic (Mohr–
Coulomb) material using 8-node rectangular quadrilaterals. Initial stress
method . 253

6.9 Elasto-plastic rate integration . 260
6.9.1 Forward Euler method . 262
6.9.2 Backward Euler method . 263

CONTENTS ix

6.10 Tangent stiffness approaches . 264
6.10.1 Inconsistent tangent matrix . 265
6.10.2 Consistent tangent matrix . 265
6.10.3 Convergence criterion . 266

Program 6.5 Plane strain bearing capacity analysis of an elastic–plastic (von
Mises) material using 8-node rectangular quadrilaterals. Initial stress
method. Tangent stiffness. Consistent return algorithm 266

Program 6.6 Plane strain bearing capacity analysis of an elastic–plastic (von
Mises) material using 8-node rectangular quadrilaterals. Initial stress
method. Tangent stiffness. Consistent return algorithm. No global stiffness
matrix assembly. Diagonally preconditioned conjugate gradient solver . . . 271

6.11 The geotechnical processes of embanking
and excavation . 276
6.11.1 Embanking . 276

Program 6.7 Plane strain construction of an elastic–plastic (Mohr–Coulomb)
embankment in layers on a foundation using 8-node quadrilaterals. Vis-
coplastic strain method . 276
6.11.2 Excavation . 283

Program 6.8 Plane strain construction of an elastic–plastic (Mohr–Coulomb)
excavation in layers using 8-node quadrilaterals. Viscoplastic strain method 286

6.12 Undrained analysis . 293
Program 6.9 Axisymmetric “undrained” strain of an elastic–plastic (Mohr–

Coulomb) solid using 8-node rectangular quadrilaterals. Viscoplastic strain
method . 295

Program 6.10 Three-dimensional strain analysis of an elastic–plastic (Mohr–
Coulomb) slope using 20-node hexahedra. Viscoplastic strain method 300

Program 6.11 Three-dimensional strain analysis of an elastic–plastic (Mohr–
Coulomb) slope using 20-node hexahedra. Viscoplastic strain method. No
global stiffness matrix assembly. Diagonally preconditioned conjugate gra-
dient solver . 305

6.13 Exercises . 314
References . 316

7 Steady State Flow 319
7.1 Introduction . 319
Program 7.1 One-dimensional analysis of steady seepage using 2-node line

elements . 320
Program 7.2 Plane or axisymmetric analysis of steady seepage using 4-node

rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)- direction 324
Program 7.3 Analysis of plane free-surface flow using 4-node quadrilaterals.

“Analytical” form of element conductivity matrix 332
Program 7.4 General two- (plane) or three-dimensional analysis of steady

seepage. 340
Program 7.5 General two- (plane) or three-dimensional analysis of steady seep-

age. No global conductivity matrix assembly. Diagonally preconditioned
conjugate gradient solver . 344

x CONTENTS

7.2 Exercises . 350
References . 356

8 Transient Problems: First Order (Uncoupled) 357
8.1 Introduction . 357
Program 8.1 One-dimensional consolidation analysis using 2-node line

elements. Implicit time integration using the “theta” method 358
Program 8.2 Plane or axisymmetric consolidation analysis using 4-node rect-

angular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit
time integration using the “theta” method 363

8.2 Mesh-free Strategies in Transient Analysis 371
Program 8.3 Plane or axisymmetric consolidation analysis using 4-node rectan-

gular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time
integration using the “theta” method. No global stiffness matrix assembly.
Diagonal preconditioner conjugate gradient solver 371

Program 8.4 Plane or axisymmetric analysis of the consolidation equation using
4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction.
Explicit time integration using the “theta = 0” method 375

Program 8.5 Plane or axisymmetric analysis of the consolidation equation using
4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction.
“theta” method using an element-by-element product algorithm 378

8.3 Comparison of Programs 8.2, 8.3, 8.4, and 8.5 380
Program 8.6 General two- (plane) or three-dimensional analysis of the consol-

idation equation. Implicit time integration using the “theta” method 382
Program 8.7 Plane analysis of the diffusion–convection equation using 4-node

rectangular quadrilaterals. Implicit time integration using the “theta”
method. Self-adjoint transformation . 386

Program 8.8 Plane analysis of the diffusion–convection equation using 4-node
rectangular quadrilaterals. Implicit time integration using the “theta”
method. Untransformed solution . 391

8.4 Exercises . 398
References . 402

9 Coupled Problems 403
9.1 Introduction . 403
Program 9.1 Analysis of the plane steady state Navier–Stokes equation using

8-node rectangular quadrilaterals for velocities coupled to 4-node rectan-
gular quadrilaterals for pressures. Mesh numbered in x- or y-direction.
Freedoms numbered in the order u-p-v . 404

Program 9.2 Analysis of the plane steady state Navier–Stokes equation using
8-node rectangular quadrilaterals for velocities coupled to 4-node rectan-
gular quadrilaterals for pressures. Mesh numbered in x- or y-direction.
Freedoms numbered in the order u-p-v. Element-by-element solution using
BiCGStab(l) with no preconditioning. No global matrix assembly 411

CONTENTS xi

Program 9.3 Plane strain consolidation analysis of a Biot poro-elastic solid
using 8-node rectangular quadrilaterals for displacements coupled to 4-node
rectangular quadrilaterals for pressures. Freedoms numbered in the order
u-v-uw. Incremental version . 416

Program 9.4 Plane strain consolidation analysis of a Biot poro-elastic-plastic
(Mohr–Coulomb) material using 8-node rectangular quadrilaterals for dis-
placements coupled to 4-node rectangular quadrilaterals for pressures. Free-
doms numbered in the order u-v-uw. Incremental version. Viscoplastic strain
method . 424

Program 9.5 Plane strain consolidation analysis of a Biot poro-elastic solid
using 8-node rectangular quadrilaterals for displacements coupled to 4-node
rectangular quadrilaterals for pressures. Freedoms numbered in the order
u-v-uw. Absolute load version. No global stiffness matrix assembly. Diag-
onally preconditioned conjugate gradient solver 430

9.2 Exercises . 439
References . 440

10 Eigenvalue Problems 441
10.1 Introduction . 441
Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam ele-

ments. Lumped mass . 442
Program 10.2 Eigenvalue analysis of an elastic solid in plane strain using 4- or

8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in x- or
y-direction . 446

Program 10.3 Eigenvalue analysis of an elastic solid in plane strain using 4-node
rectangular quadrilaterals. Lanczos Method. Consistent mass. Mesh num-
bered in x- or y-direction . 452

Program 10.4 Eigenvalue analysis of an elastic solid in plane strain using 4-node
rectangular quadrilaterals. Lanczos Method. Lumped mass. Element-by-
element formulation. Mesh numbered in x- or y-direction 457

10.2 Exercises . 462
References . 464

11 Forced Vibrations 465
11.1 Introduction . 465
Program 11.1 Forced vibration analysis of elastic beams using 2-node beam

elements. Consistent mass. Newmark time stepping 466
Program 11.2 Forced vibration analysis of an elastic solid in plane strain using

4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in
x- or y-direction. Modal superposition . 472

Program 11.3 Forced vibration analysis of an elastic solid in plane strain using
rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh num-
bered in x- or y-direction. Implicit time integration using the “theta”
method . 478

Program 11.4 Forced vibration analysis of an elastic solid in plane strain using
rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh num-
bered in x- or y-direction. Implicit time integration using Wilson’s method 483

xii CONTENTS

Program 11.5 Forced vibration analysis of an elastic solid in plane strain using
rectangular uniform size 4-node quadrilaterals. Mesh numbered in the x-
or y-direction. Lumped or consistent mass. Mixed explicit/implicit time
integration . 487

Program 11.6 Forced vibration analysis of an elastic solid in plane strain using
rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh num-
bered in x- or y-direction. Implicit time integration using the “theta”
method. No global matrix assembly. Diagonally preconditioned conjugate
gradient solver . 492

Program 11.7 Forced vibration analysis of an elastic–plastic (von Mises) solid
in plane strain using rectangular 8-node quadrilateral elements. Lumped
mass. Mesh numbered in x- or y-direction. Explicit time integration 496

11.2 Exercises . 506
References . 507

12 Parallel Processing of Finite Element Analyses 509
12.1 Introduction . 509
12.2 Differences between parallel and serial programs 511

12.2.1 Parallel libraries . 511
12.2.2 Global variables . 511
12.2.3 MPI library routines . 512
12.2.4 The pp appendage . 512
12.2.5 Reading and writing . 512
12.2.6 Problem-specific boundary condition routines 513
12.2.7 rest instead of nf . 516
12.2.8 Gathering and scattering . 517
12.2.9 Reindexing . 517
12.2.10 Domain composition . 517
12.2.11 Load balancing . 519

Program 12.1 Three dimensional analysis of an elastic solid. Compare
Program 5.5 . 519

Program 12.2 Three dimensional analysis of an elasto-plastic (Mohr–Coulomb)
solid. Compare Program 6.11 . 526

Program 12.3 Three dimensional Laplacian flow. Compare Program 7.5 533
Program 12.4 Three dimensional transient flow- implicit analysis in time. Com-

pare Program 8.3 . 537
Program 12.5 Three dimensional transient flow-explicit analysis in time. Com-

pare Program 8.4 . 541
Program 12.6 Three dimensional steady state Navier–Stokes analysis. Compare

Program 9.2 . 543
Program 12.7 Three-dimensional analysis of Biot poro-elastic solid. Compare

Program 9.2 . 551
Program 12.8 Eigenvalue analysis of three-dimensional elastic solid. Compare

Program 10.4 . 556
Program 12.9 Forced vibration analysis of a three-dimensional elastic solid.

Implicit integration in time. Compare Program 11.4 561

CONTENTS xiii

Program 12.10 Forced vibration analysis of three-dimensional elasto-plastic
solid. Explicit integration in time. Compare Program 11.5 565

12.3 Performance data for a “Beowulf” PC cluster 569
12.4 Conclusions . 570
References . 576

A Equivalent Nodal Loads 577

B Shape Functions and Element Node Numbering 583

C Plastic Stress–strain Matrices and Plastic Potential Derivatives 591

D main Library Subroutines 595

E geom Library Subroutines 605

F Parallel Library Subroutines 609

Author Index 613

Subject Index 615

Preface to Fourth Edition

The theme of the successful earlier editions has been maintained. A modular program-
ming style, now expressed in Fortran95, facilitates both the consolidation of previous
programs into easier-to-use units, and the very important advance into parallel computing
environments.

Chapter 1 has been extended by a description of the parallelisation strategy adopted.
This involves message passing using the de facto standard, MPI, although other possibilities
such as OpenMP are addressed.

In Chapter 3, iterative equation solution methods have been extended to cover non-
symmetric systems by the use of bi-conjugate gradient (BiCG) methods. An element-
by-element strategy therefore allows the solution of all large finite element problems on
modestly sized computers.

From Chapter 4 onwards, programs that were distinct in earlier editions have been
consolidated into easier-to-use units within which, for example, problem dimensionality,
element type, and so on are selected by the user from inside the same program. Output has
been made more concise and readable.

Although mesh generation, a topic in itself, has been avoided, programs that interface
readily with mesh generation packages have been provided. For the first time results display
using PostScript files has been included in most chapters.

Exercises for students to attempt on their own have been extended.
The major new feature occupies Chapter 12. Therein example programs from

Chapters 5 to 11 have been parallelised using element-by-element strategies and MPI. The
parallelisation process is largely hidden from the user and the central theme of program
conciseness and readability has been maintained. Performance statistics show that efficient
use has been made of parallel hardwares ranging from supercomputers to clusters of PCs.

Acknowledgement

Many present and former colleagues have contributed to the present volume but particular
thanks are due to D Kidger, L Margetts, F Molenkamp, S Muelas and M Pettipher.

1

Preliminaries: Computer
Strategies

1.1 Introduction

Many textbooks exist which describe the principles of the finite element method of analysis
and the wide scope of its applications to the solution of practical engineering problems.
Usually, little attention is devoted to the construction of the computer programs by which
the numerical results are actually produced. It is presumed that readers have access to
pre-written programs (perhaps to rather complicated “packages”) or can write their own.
However, the gulf between understanding in principle what to do, and actually doing it,
can still be large for those without years of experience in this field.

The present book bridges this gulf. Its intention is to help readers assemble their own
computer programs to solve particular engineering problems by using a “building block”
strategy specifically designed for computations via the finite element technique. At the
heart of what will be described is not a “program” or a set of programs but rather a
collection (library) of procedures or subroutines which perform certain functions analo-
gous to the standard functions (SIN, SQRT, ABS, etc.) provided in permanent library form
in all useful scientific computer languages. Because of the matrix structure of finite ele-
ment formulations, most of the building block routines are concerned with manipulation of
matrices.

The building blocks are then assembled in different patterns to make test programs
for solving a variety of problems in engineering and science. The intention is that one of
these test programs then serves as a platform from which new applications programs are
developed by interested users.

The aim of the present book is to teach the reader to write intelligible programs and to
use them. Both serial and parallel computing environments are addressed and the building
block routines (numbering over 70) and all test programs (numbering over 50) have been
verified on a wide range of computers. Efficiency is considered.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

2 PRELIMINARIES: COMPUTER STRATEGIES

The chosen programming language is the latest dialect of FORTRAN, called Fortran
95. Later in this Chapter, a fairly full description of the features of Fortran 95 which
influence the programming of the finite element method will be given. At present, all
that need be said is that Fortran 95 represents a very radical improvement compared with
the previous standard, FORTRAN 77 (which was used in earlier editions of this book),
and that Fortran remains, overwhelmingly, the most popular language for writing large
engineering and scientific programs. For parallel environments MPI has been used, although
the programming strategy has been tested successfully in OpenMP as well.

1.2 Hardware

In principle, any computing machine capable of compiling and running Fortran programs
can execute the finite element analyses described in this book. In practice, hardware will
range from personal computers for more modest analyses and teaching purposes to “super”
computers, usually with parallel processing capabilities, for very large (especially non-
linear 3D) analyses. It is a powerful feature of the programming strategy proposed that the
same software will run on all machine ranges. The special features of vector and parallel
processors are described later (see Sections 1.4 and 1.5).

The user’s choice of hardware is a matter of accessibility and of cost. Thus a job taking
five minutes on one computer may take one hour on another. Which hardware is “better”
clearly depends on individual circumstances. The main advice that can be tendered is against
using hardware that is too weak for the task; that is the user is advised not to operate at
the extremes of the hardware’s capability. If this is done turn round times become too long
to be of value in any design cycle. For example, in “virtual prototyping” implementations,
execution time has currently to be of the order of 0.1 s to enable refresh graphics to be
carried out.

1.3 Memory management

In the programs in this book it will be assumed that sufficient main random access mem-
ory (RAM) is available for the storage of data and the execution of programs. However, the
arrays processed in finite element calculations might be of size, say, 100,000 by 1000. Thus
a computer would need to have a main memory of 108 words to hold this information, and
while some such computers exist, they are still comparatively rare. A more typical memory
size is still of the order of 107 words.

One strategy to get round this problem is for the programmer to write “out-of-memory”
routines which arrange for the processing of chunks of arrays in memory and the transfer
of the appropriate chunks to and from back-up storage.

Alternatively store management is removed from the user’s control and given to the
system hardware and software. The programmer sees only a single level of memory of very
large capacity and information is moved from secondary memory to main memory and out
again by the supervisor or executive program which schedules the flow of work through
the machine. This concept, namely of a very large “virtual” memory, was first introduced
on the ICL ATLAS in 1961, and is now almost universal.

PRELIMINARIES: COMPUTER STRATEGIES 3

Clearly it is necessary for the system to be able to translate the virtual address of
variables into a real address in memory. This translation usually involves a complicated
bit-pattern matching called paging. The virtual store is split into segments or pages of fixed
or variable size referenced by page tables, and the supervisor program tries to “learn” from
the way in which the user accesses data in order to manage the store in a predictive way.
However, memory management can never be totally removed from the user’s control. It
must always be assumed that the programmer is acting in a reasonably logical manner,
accessing array elements in sequence (by rows or columns as organised by the compiler
and the language). If the user accesses a virtual memory of 108 words in a random fashion
the paging requests will ensure that very little execution of the program can take place (see
e.g. Willé, 1995).

In the immediate future, “large” finite element analyses, say involving more than 1 mil-
lion unknowns, are likely to be processed by the vector and parallel processing hardware
described in the next sections. When using such hardware there is usually a considerable
time penalty if the programmer interrupts the flow of the computation to perform out-
of-memory transfers or if automatic paging occurs. Therefore, in Chapter 3 of this book,
special strategies are described whereby large analyses can still be processed “in-memory”.
However, as problem sizes increase, there is always the risk that main memory, or fast sub-
sidiary memory (“cache”) will be exceeded with consequent deterioration of performance
on most machine architectures.

1.4 Vector processors

Early digital computers performed calculations “serially”, that is, if a thousand operations
were to be carried out, the second could not be initiated until the first had been completed,
and so on. When operations are being carried out on arrays of numbers, however, it is
perfectly possible to imagine that computations in which the result of an operation on two
array elements has no effect on an operation on another two array elements, can be carried
out simultaneously. The hardware feature by means of which this is realised in a computer
is called a pipeline, and in general, all modern computers use this feature to a greater or
lesser degree. Computers which consist of specialised hardware for pipelining are called
vector computers. The “pipelines” are of limited length and so for operations to be carried
out simultaneously it must be arranged that the relevant operands are actually in the pipeline
at the right time. Furthermore, the condition that one operation does not depend on another
must be respected. These two requirements (amongst others) mean that some care must be
taken in writing programs so that best use is made of the vector processing capacity of
many machines. It is moreover an interesting side effect that programs well structured for
vector machines will tend to run better on any machine because information tends to be
in the right place at the right time (e.g. in a special cache memory) and modern so-called
scalar computers tend to contain some vector-type hardware. In this book, beginning at
Chapter 5, programs which “vectorise” well will be illustrated.

True vector hardware tends to be expensive and at the time of writing a much more
common way of increasing processing speed is to execute programs in parallel on many
processors. The motivation here is that the individual processors are then “standard” and

4 PRELIMINARIES: COMPUTER STRATEGIES

therefore cheap. However for really intensive computations, it is likely that an amalgamation
of vector and parallel hardware is ideal.

1.5 Parallel processors

In this concept (of which there are many variants) there are several physically distinct
processors (e.g. a few expensive ones or a lot of cheaper ones). Programs and/or data can
reside on different processors which have to communicate with one another.

There are two foreseeable ways in which this communication can be organised (rather
like memory management which was described earlier). Either the programmer takes control
of the communication process, using a programming feature called message passing, or it is
done automatically, without user control. The second strategy is of course appealing and has
led to the development of “High Performance Fortran” or HPF (e.g. see Koelbel et al., 1995)
which has been designed as an extension to Fortran 95. “Directives”, which are treated as
comments by non-HPF compilers, are inserted into the Fortran 95 programs and allow data
to be mapped onto parallel processors together with the specification of the operations on
such data which can be carried out in parallel. The attractive feature of this strategy is that
programs are “portable”, that is they can be easily transferred from computer to computer.
One would also anticipate that manufacturers could produce compilers which made best
use of their specific type of hardware. At the time of writing, the first implementations of
HPF are just being reported.

An alternative to HPF, involving roughly the same level of user intervention, can be used
on specific hardware. Manufacturers provide “directives” which can be inserted by users
in programs and implemented by the compiler to parallelise sections of the code (usually
associated with DO-loops). Smith (2000) shows that this approach can be quite effective
for up to a modest number of parallel processors (say 10). However such programs are not
portable to other machines.

A further alternative is to use OpenMP, a portable set of directives but limited to a
class of parallel machines with so-called “shared memory”. Although the codes in this book
have been rather successfully adapted for parallel processing using OpenMP (Pettipher and
Smith, 1997) the most popular strategy applicable equally to “shared memory” and “dis-
tributed memory” systems is described in Chapter 12. The programs therein have been
run successfully on clusters of PCs communicating via Ethernet and on shared and dis-
tributed memory supercomputers with their much more expensive communication systems.
This strategy of message passing under programmer control is realised by MPI (“message
passing interface”) which is a de facto standard thereby ensuring portability (MPI Web
reference, 2003).

1.6 BLAS libraries

As was mentioned earlier, programs implementing the Finite Element Method make inten-
sive use of matrix or array structures. For example a study of any of the programs in
the succeeding chapters will reveal repeated use of the subroutine MATMUL described in

PRELIMINARIES: COMPUTER STRATEGIES 5

Section 1.9. While one might hope that the writers of compilers would implement calls to
MATMUL efficiently, this turns out in practice not always to be so.

Particularly on supercomputers, an alternative is to use “BLAS” or Basic Linear Alge-
bra Subroutine Libraries (e.g. Dongarra and Walker, 1995). There are three “levels” of
BLAS subroutines involving vector—vector, matrix—vector and matrix—matrix operations
respectively. To improve efficiency in large calculations, it is always worth experimenting
with BLAS routines if available. The calling sequence is rather cumbersome, for example
the Fortran:

utemp=MATMUL(km,pmul)

has to be replaced by:

CALL DGEMV(’n’,ntot,ntot,1.0,km,ntot,pmul,1,0.0,utemp,1)

in a typical example in Chapter 12. However, very significant gains in processing speed
can be achieved; a factor of 3 times speedup is not uncommon.

1.7 MPI libraries

MPI (MPI Web reference, 2003) is itself essentially a library of routines for communication
callable from Fortran. For example,

CALL MPI_BCAST(no_f,fixed_freedoms,MPI_INTEGER,npes-1,MPI_COMM_WORLD,ier)

“broadcasts” the array no_f of size fixed_freedoms to the remaining npes-1 pro-
cessors on a parallel system. In the parallel programs in this book (Chapter 12) these MPI
routines are mainly hidden from the user and contained within routines collected in library
modules such as gather_scatter. In this way, the parallel programs can be seen to be
readily derived from their serial counterparts. The detail of the new MPI library is left to
Chapter 12.

1.8 Applications software

Since all computers have different hardware (instruction formats, vector capability, etc.)
and different store management strategies, programs which would make the most effective
use of these varying facilities would of course differ in structure from machine to machine.
However, for excellent reasons of program portability and programmer training, engineering
computations on all machines are usually programmed in “high level” languages which are
intended to be machine-independent. The high level language is translated into the machine
order code by a program called a compiler. Fortran is by far the most widely used language
for programming engineering and scientific calculations and in this section the principal
features of the latest standard, called Fortran 95, will be described with particular reference
to features of the language which are useful in finite element computations.

Figure 1.1 shows a typical simple program written in Fortran 95 (Smith, 1995). It
concerns an opinion poll survey and serves to illustrate the basic structure of the language
for those used to its predecessor, FORTRAN 77, or to other languages.

6 PRELIMINARIES: COMPUTER STRATEGIES

PROGRAM gallup_poll
! TO CONDUCT A GALLUP POLL SURVEY
 IMPLICIT NONE
 INTEGER::sample,i,count,this_time,last_time,tot_rep,tot_mav,tot_dem, &
 tot_other,rep_to_mav,dem_to_mav,changed_mind
 READ*,sample
 count=0; tot_rep=0; tot_mav=0; tot_dem=0; tot_other=0; rep_to_mav=0
 dem_to_mav=0; changed_mind=0
 OPEN(10,FILE=’gallup.dat’)
 DO I=1,sample
 count=count+1
 READ(10,’(I3,I2)’,ADVANCE=’NO’)this_time,last_time
 votes: SELECT CASE(this_time)
 CASE(1); tot_rep=tot_rep+1
 CASE(3); tot_mav=tot_mav+1
 IF(last_time/=3)THEN
 changed_mind=changed_mind+1
 IF(last_time==1)rep_to_mav=rep_to_mav+1
 IF(last_time==2)dem_to_mav=dem_to_mav+1
 END IF
 CASE(2); tot_dem=tot_dem+1
 CASE DEFAULT; tot_other=tot_other+1
 END SELECT votes
 END DO
 PRINT*,’PERCENT REPUBLICAN IS’, REAL (tot_rep)/REAL (count)*100.0
 PRINT*,’PERCENT MAVERICK IS’, REAL (tot_mav)/REAL(count)*100.0
 PRINT*,’PERCENT DEMOCRAT IS’, REAL (tot_mav)/REAL(count)*100.0
 PRINT*,’PERCENT OTHERS IS’, REAL (tot_other)/REAL(count)*100.0
 PRINT*,’PERCENT CHANGING REP TO MAVIS’, &
 REAL (rep_to_mav)/REAL(changed_mind)*100.0
 PRINT*,’PERCENT CHANGING DEM TO MAV IS’, &
 REAL (dem_to_mav)/REAL(changed_mind)*100.0
STOP
END PROGRAM gallup_poll

Figure 1.1 A typical program written in Fortran 95

It can be seen that programs are written in “free source” form. That is, statements can
be arranged on the page or screen at the user’s discretion. Other features to note are:

• Upper and lower case characters may be mixed at will. In the present book, upper
case is used to signify intrinsic routines and “key words” of Fortran 95.

• Multiple statements can be placed on one line, separated by ;.

• Long lines can be extended by & at the end of the line, and optionally another & at
the start of the continuation line(s).

• Comments placed after ! are ignored.

• Long names (up to 31 characters, including the underscore) allow meaningful iden-
tifiers.

• The IMPLICIT NONE statement forces the declaration of all variable and constant
names. This is of great help in debugging programs.

• Declarations involve the :: double colon convention.

• There are no labelled statements.

PRELIMINARIES: COMPUTER STRATEGIES 7

1.8.1 Arithmetic

Finite element processing is computationally intensive (see e.g. Chapters 6 and 10) and a
reasonably safe numerical precision to aim for is that provided by a 64-bit machine word
length. Fortran 95 contains some useful intrinsic procedures for determining, and changing,
processor precision. For example the statement

iwp = SELECTED_REAL_KIND(15)

would return an integer iwp, which is the KIND of variable on a particular processor which
is necessary to achieve 15 decimal places of precision. If the processor cannot achieve this
order of accuracy, iwp would be returned as negative.

Having established the necessary value of iwp, Fortran 95 declarations of REAL quan-
tities then take the form

REAL(iwp)::a,b,c

and assignments the form

a=1.0_iwp; b=2.0_iwp; c=3.0_iwp

and so on.
In most of the programs in this book, constants are assigned at the time of declaration,

for example,

REAL(iwp)::zero=0.0_iwp,one=1.0_iwp,d4=4.0_iwp,penalty=1.0e20_iwp

so that the rather cumbersome _iwp extension does not appear in the main program assign-
ment statements.

1.8.2 Conditions

There are two basic structures for conditional statements in Fortran 95 which are both
shown in Figure 1.1. The first corresponds to the classical IF ... THEN ... ELSE
structure found in most high level languages. It can take the form:

name_of_clause: IF(logical expression 1)THEN
. first block
. of statements
.
ELSE IF(logical expression 2)THEN
. second block
. of statements
.
ELSE
. third block
. of statements
.

END IF name_of_clause

8 PRELIMINARIES: COMPUTER STRATEGIES

For example,

change_sign: IF(a/=b)THEN
a=-a

ELSE
b=-b

END IF change_sign

The name of the conditional statement, name_of_clause or change_sign in the above
examples, is optional and can be left out.

The second conditional structure involves the SELECT CASE construct. If choices are
to be made in particularly simple circumstances, for example, an INTEGER, LOGICAL or
CHARACTER scalar has a given value then the form:

select_case_name: SELECT CASE(variable or expression)
CASE(selector)
. first block
. of statements
.

CASE(selector)
. second block
. of statements
.

CASE DEFAULT
. default block
. of statements
.

END select_case_name

can be used. This replaces the ugly “computed go to” construct in FORTRAN 77.

1.8.3 Loops

There are two constructs in Fortran 95 for repeating blocks of instructions. In the first, the
block is repeated a fixed number of times, for example

fixed_iterations: DO i=1,n
. block
. of statements
.

END DO fixed_iterations

In the second, the loop is left or continued depending on the result of some condition.
For example

exit_type: DO
. block
. of statements
.
IF(conditional statement)EXIT
. block

PRELIMINARIES: COMPUTER STRATEGIES 9

. of statements

.
END DO exit_type

or

cycle_type: DO
. block
. of statements
.
IF(conditional statement)CYCLE
. block
. of statements
.

END DO cycle_type

The first variant transfers control out of the loop to the first statement after END DO.
The second variant transfers control to the beginning of the loop, skipping the remaining
statements between CYCLE and END DO.

In the above examples, as was the case for conditions, the naming of the loops is
optional. In the programs in this book, loops and conditions of major significance tend to
be named and simpler ones not.

1.9 Array features

1.9.1 Dynamic arrays

Fortran 95 has remedied perhaps the greatest deficiency of earlier FORTRANs for large
scale array computations such as occur in finite element analysis, in that it allows “dynamic”
declaration of arrays. That is, array sizes do not have to be specified at program compilation
time but can be ALLOCATEd after some data has been read into the program, or some
intermediate results computed. A simple illustration is given below:

PROGRAM dynamic
! just to illustrate dynamic array allocation
IMPLICIT NONE
iwp=SELECTED_REAL_KIND(15)

! declare variable space for two-dimensional array a
REAL,ALLOCATABLE(iwp)::a(:,:)
REAL::two=2.0_iwp,d3=3.0_iwp
INTEGER::m,n

! now read in the bounds for a
READ*,m,n

! allocate actual space for a
ALLOCATE(a(m,n))
READ*,a
PRINT*,two*SQRT(a)+d3
DEALLOCATE(a)! a no longer needed

STOP
END PROGRAM dynamic

10 PRELIMINARIES: COMPUTER STRATEGIES

This simple program also illustrates some other very useful features of the standard.
“Whole array” operations are permissible, so that the whole of an array is read in, or the
square root of all its elements computed, by a single statement. The efficiency with which
these features are implemented by practical compilers is variable.

1.9.2 Broadcasting

A feature called broadcasting enables operations on whole arrays by scalars such as two
or d3 in the above example. These scalars are said to be “broadcast” to all the elements
of the array so that what will be printed out are the square roots of all the elements of the
array having been multiplied by 2.0 and added to 3.0.

1.9.3 Constructors

Array elements can be assigned values in the normal way but Fortran 95 also permits the
“construction” of one-dimensional arrays, or vectors, such as the following:

v = (/1.0,2.0,3.0,4.0,5.0/)

which is equivalent to

v(1)=1.0; v(2)=2.0; v(3)=3.0; v(4)=4.0; v(5)=5.0

Array constructors can themselves be arrays, for example

w = (/v, v/)

would have the obvious result for the 10 numbers in w.

1.9.4 Vector subscripts

Integer vectors can be used to define subscripts of arrays, and this is very useful in the
“gather” and “scatter” operations involved in finite element (and other numerical) methods.
Figure 1.2 shows a portion of a finite element mesh of 8-node quadrilaterals with its nodes
numbered “globally” at least up to 106 in the example shown. When “local” calculations
have to be done involving individual elements, for example to determine element strains
or fluxes, a local index vector could hold the node numbers of each element, that is:

82 76 71 72 73 77 84 83 for element 65
93 87 82 83 84 88 95 94 for element 73

and so on. This index or “steering” vector could be called g. When a local vector has to
be gathered from a global one,

local = global(g)

is valid, and for scattering,

global(g) = local

PRELIMINARIES: COMPUTER STRATEGIES 11

56

62

69

70

74

75

76 77

78 81

82

84

85 86
87

89

90

91

92
93

94
95

96 97

 99

100 104

105 106

Element
65

Element
73

102

73
67

57 58 59 60

65

61

66

71

64

63

68

80

79

83

88

98

103101

72

Figure 1.2 Portion of a finite element mesh with node and element numbers

In this example local and g would be 8-long vectors, whereas global could have
a length of thousands or millions.

1.9.5 Array sections

Parts of arrays or “subarrays” can be referenced by giving an integer range for one or
more of their subscripts. If the range is missing for any subscript, the whole extent of
that dimension is implied. Thus if a and b are two-dimensional arrays, a(:,1:3) and
b(11:13,:) refer to all the terms in the first three columns of a, and all the terms in
rows 11 through 13 of b respectively. If array sections “conform”, that is, have the right
number of rows and columns, they can be manipulated just like “whole” arrays.

1.9.6 Whole-array manipulations

It is worth emphasising that the array-computation features in Fortran 95 remove the need
for several subroutines which were essential in FORTRAN 77 and used in earlier editions

12 PRELIMINARIES: COMPUTER STRATEGIES

of this book. For example, if a, b, and c conform and s is a scalar, the following are
valid:

a = b+c ! no need for a matrix add, involving DO loops
a = b-c ! no need for a matrix subtract
a = s*b ! no need for a matrix-scalar multiply by s
a = b/s ! no need for a matrix-scalar divide by s
a = 0.0 ! no need for a matrix null

However, although a = b*c has a meaning for conforming arrays a, b, and c, its
consequence is the computation of the element-by-element products of b and c and is not
to be confused with the matrix multiply described in the next sub-section.

1.9.7 Intrinsic procedures for arrays

To supplement whole-array arithmetic operations, Fortran 95 provides a few intrinsic pro-
cedures (functions) which are very useful in finite element work. These can be grouped
conveniently into those involving array computations, and those involving array inspection.
The array computation functions are

FUNCTION MATMUL(a,b) ! returns matrix product of a and b
FUNCTION DOT_PRODUCT(v1,v2) ! returns dot product of v1 and v2
FUNCTION TRANSPOSE(a) ! returns transpose of a.

All three are heavily used in the programs in this book and replace the user-written
subroutines which had to be provided in previous FORTRAN 77 editions.

The array inspection functions include:

FUNCTION MAXVAL(a) ! returns the element of an array a of
! maximum value (not absolute maximum)

FUNCTION MINVAL(a) ! returns the element of an array a of
! minimum value (not absolute minimum)

FUNCTION MAXLOC(a) ! returns the location of the maximum element
! of array a

FUNCTION MINLOC(a) ! returns the location of the minimum element
! of array a

FUNCTION PRODUCT(a) ! returns the product of all the elements of a
FUNCTION SUM(a) ! returns the sum of all the elements of a
FUNCTION LBOUND(a,1) ! returns the first lower bound of a, etc.
FUNCTION UBOUND(a,1) ! returns the first upper bound of a, etc.

The first six of these procedures allow an optional argument called a masking argument.
For example the statement

asum=SUM(column,MASK=column>=0.0)

will result in asum containing the sum of the positive elements of array column.
Useful procedures whose only argument is a MASK are:

ALL(MASK=column>=0.0) ! true if all elements of column are positive
ANY(MASK=column>=0.0) ! true if any elements of column are positive
COUNT(MASK=column<=0.0)! number of elements of column which are

! negative.

For multidimensional arrays, operations such as SUM can be carried out on a particular
dimension of the array. When a mask is used, the dimension argument must be specified

PRELIMINARIES: COMPUTER STRATEGIES 13

even if the array is one-dimensional. Referring to Figure 1.2, the “half-bandwidth” of a
particular element could be found from the element freedom steering vectors, g, by the
statement

nband = MAXVAL(g,1,g>0) - MINVAL(g,1,g>0)

allowing for the possibility of zero entries in g. Note that the argument MASK= is
optional.

The global “half-bandwidth” of an assembled system of equation coefficients would
then be the maximum value of nband after scanning all the elements in the mesh.

1.9.8 Additional Fortran 95 features

The programs in this book are written in a style of Fortran 95 not too far removed
from that of FORTRAN 77. The examples of FORTRAN 77 and Fortran 95 shown in
Figure 1.3, illustrate gains in conciseness from whole array operations, array intrinsic func-
tions, and dynamic arrays, but no complete revolution in programming style has been
implemented.

Fortran 95 contains features such as derived data types, pointers, operator overloading,
and user-defined operators which programmers used to another style might implement to
bring about a more radical revision of FORTRAN 77. This is a matter of taste. One feature
of Fortran 95 which has been implemented in the programs which follow is the idea of a
“module”.

A module is a program unit separate from the main program unit in the way that
subroutines and functions are. However, in its simplest form, it may contain no executable

Fortran 95

 km=zero
 int_pts_1: DO i=1,nip
 CALL shape_der(der,points,i); jac=MATMUL(der,coord)
 det=determinant(jac); CALL invert(jac)
 deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
 km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
 END DO int_pts_1

FORTRAN 77

 CALL NULL(KM,IKM,IDOF,IDOF)
 DO 20 I=1,NIP
 CALL FORMLN(DER,IDER,FUN,SAMP,ISAMP,I)
 CALL MATMUL(DER,IDER,COORD,ICOORD,JAC,IJAC,IT,NOD,IT)
 CALL TWOBYTWO (JAC,IJAC,JAC1,IJAC1,DET)
 CALL MATMUL(JAC1,IJAC1,DER,IDER,DERIV,IDERIV,IT,IT,NOD)
 CALL FORMB(BEE,IBEE,DERIV,IDERIV,NOD)
 CALL MATMUL(DEE,IDEE,BEE,IBEE,DBEE,IDBEE,IH,IH,IDOF)
 CALL MATRAN(BT,IBT,BEE,IBEE,IH,IDOF)
 CALL MATMUL(BT,IBT,DBEE,IDBEE,BTDB,IBTDB,IDOF,IH,IDOF)
 QUOT=DET*WEIGHTS(I)
 CALL MSMULT(BTDB,IBTDB,QUOT,IDOF,IDOF)
 20 CALL MATADD(KM,IKM,BTDB,IBTDB,IDOF,IDOF)

Figure 1.3 Comparison of a portion of a finite element program in Fortran 95 with FOR-
TRAN 77

14 PRELIMINARIES: COMPUTER STRATEGIES

statements at all and just be a list or collection of declarations or data which is globally
accessible to the program unit which invokes it by a USE statement. Its main employment
later in the book will be to contain either a collection of subroutines and functions which
constitute a “library” or to contain the “interfaces” between such a library and a program
which uses it.

1.9.9 Subprogram libraries

It was stated in the Introduction to this Chapter that what will be presented in Chapter
4 onwards is not a monolithic program but rather a collection of test programs which all
access a common subroutine library which contains about 70 subroutines and functions. In
the simplest implementation of Fortran 95 the library routines could simply be appended
to the main program after a CONTAINS statement as follows:

PROGRAM test_one
.
.
.
.

CONTAINS
SUBROUTINE one(p1,p2,p3)

.

.

.
END SUBROUTINE one
SUBROUTINE two(p4,p5,p6)

.

.

.
END SUBROUTINE two

.
etc.

END PROGRAM test_one

This would be tedious because a sub-library would really be required for each test
program, containing only the needed subroutines. Secondly, compilation of the library
routines with each test program compilation is wasteful.

What is required, therefore, is for the whole subroutine library to be precompiled and
for the test programs to link only to the parts of the library which are needed.

The designers of Fortran 95 seem to have intended this to be done in the following
way. The subroutines would be placed in a file:

SUBROUTINE one(args1)
.
.
.

END SUBROUTINE one
SUBROUTINE two(args2)

.

.
etc.

SUBROUTINE ninety_nine(args99)
.

PRELIMINARIES: COMPUTER STRATEGIES 15
.
.

END SUBROUTINE ninety_nine

and compiled.
A “module” would constitute the interface between library and calling program. It

would take the form

MODULE main
INTERFACE

SUBROUTINE one(args1)
(Parameter declarations)

END SUBROUTINE one
SUBROUTINE two(args2)

(Parameter declarations)
.
.

etc.
SUBROUTINE ninety_nine(args99)

(Parameter declarations)
END SUBROUTINE ninety_nine

END INTERFACE
END MODULE main

Thus the interface module would contain only the subroutine “headers”, that is the
subroutine’s name, argument list, and declaration of argument types. This is deemed to be
safe because the compiler can check the number and type of arguments in each call (one
of the greatest sources of error in FORTRAN 77).

The libraries would be interfaced by a statement USE main at the beginning of each
test program. For example

PROGRAM test_program1
USE main

.

.

.
END PROGRAM test_program1

However, it is still quite tedious to keep updating two files when making changes to a
library (the library and the interface module). Users with straightforward Fortran 95 libraries
may well prefer to omit the interface stage altogether and just create a module containing
the subroutines themselves. These would then be accessed by USE library_routines
in the example shown below. This still allows the compiler to check the numbers and types
of subroutine arguments when the test programs are compiled. For example

MODULE library_routines
CONTAINS
SUBROUTINE one(args1)

.

.

.
END SUBROUTINE one
SUBROUTINE two(args2)

.

.
etc.

16 PRELIMINARIES: COMPUTER STRATEGIES

SUBROUTINE ninety_nine(args99)
.
.
.

END SUBROUTINE ninety_nine
END MODULE library_routines

and then

PROGRAM test_program_2
USE library_routines

.

.

.
END PROGRAM test_program_2

1.9.10 Structured programming

The finite element programs which will be described are strongly “structured” in the sense
of Dijkstra (1976). The main feature exhibited by our programs will be seen to be a nested
structure and we will use representations called “structure charts” (Lindsey, 1977) rather
than flow charts to describe their actions.

The main features of these charts are:

(i) The block

Do this

Do that

Do the other

This will be used for the outermost level of each structure chart. Within a block, the
indicated actions are to be performed sequentially.

(ii) The choice

QUESTION?

Answer 1

ACTION 1

Answer 2

ACTION 2

Answer 3

ACTION 3

This corresponds to the IF...THEN...ELSE IF...THEN....END IF or
SELECT CASE type of construct.

PRELIMINARIES: COMPUTER STRATEGIES 17

(iii) The loop

Until some
condition is satisfied

ACTION
TO BE

REPEATED

or

FOR i TO n

ACTION
TO BE

REPEATED
n TIMES

This comes in various forms, but we shall usually be concerned with DO-loops, either
for a fixed number of repetitions or “forever” (so called because of the danger of the loop
never being completed).

In particular, the structure chart notation discourages the use of GOTO statements. Using
this notation, a matrix multiplication program would be represented as shown in Figure 1.4.
The nested nature of a typical program can be seen quite clearly.

Initialise variables and
arrays a(l,m), b(m,n) and c(l,n)

FOR i TO l

FOR k TO n

sum = 0.0

FOR j TO m

sum = sum + a(i,j)*b(j,k)

Set c(i,k) = sum

Do something with c

Figure 1.4 Structure chart for matrix multiplication

1.10 Conclusions

Computers on which finite element computations can be done vary widely in their capa-
bilities and architecture. Because of its entrenched position FORTRAN is the language
in which computer programs for engineering applications had best be written in order to
assure maximum readership and portability. Using Fortran 95, a library of subroutines can
be created which is held in compiled form and accessed by programs in just the way that

18 PRELIMINARIES: COMPUTER STRATEGIES

a manufacturer’s permanent library is. For parallel implementations a similar strategy is
adopted using MPI. Further information on parallel implementations is at www.parafem.
org.uk.

Using this philosophy, a library of over 70 subroutines has been assembled, together
with some 50 example programs which access the library. These programs and subroutines
are written in a reasonably “structured” style, and can be downloaded from the Internet at
www.mines.edu/fs_home/vgriffit/4th_ed. Versions are at present available for
all the common machine ranges and Fortran 95 compilers. The downloadable programs
include the MPI library, which consists of only some 12 subroutines, and the 10 example
programs from Chapter 12 which use them.

The structure of the remainder of the book is as follows. Chapter 2 shows how the
differential equations governing the behaviour of solids and fluids are semi-discretised in
space using finite elements.

Chapter 3 describes the subprogram library and the basic techniques by which main
programs are constructed to solve the equations listed in Chapter 2. Two basic solution
strategies are described, one involving element matrix assembly to form global matrices,
which can be used for small to medium-sized problems and the other using “element-by-
element” matrix techniques to avoid assembly and therefore permit the solution of very
large problems.

The remaining Chapters 4 to 12 are concerned with applications, partly in the authors’
field of geomechanics. However, the methods and programs described are equally applicable
in many other fields of engineering and science such as structural mechanics, fluid dynamics,
electromagnetics and so on. Chapter 4 leads off with static analysis of skeletal structures.
Chapter 5 deals with static analysis of linear solids, while Chapter 6 discusses extensions to
deal with material non-linearity. Programs dealing with the common geotechnical process of
construction (element addition during the analysis) and excavation (element removal during
the analysis) are given. Chapter 7 is concerned with steady state problems (e.g. fluid or
heat flow) while transient states with inclusion of transport phenomena (diffusion with
advection) are treated in Chapter 8. In Chapter 9, coupling between solid and fluid phases
is treated, with applications to “consolidation” processes in geomechanics. A second type
of “coupling” which is treated involves the Navier–Stokes equations. Chapter 10 contains
programs for the solution of eigenvalue problems (e.g. steady state vibration), involving
the determination of natural modes by various methods. Integration of the equations of
motion in time is described in Chapter 11. Chapter 12 takes 10 example programs from
earlier chapters and shows how these may be parallelised using the MPI library. Since
only “large” problems benefit from parallelisation, all of these examples employ three-
dimensional geometries.

In every applications chapter, test programs are listed and described, together with
specimen input and output. At the conclusion of most chapters, exercise questions are
included, with solutions.

References
Dijkstra EW 1976 A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.

Dongarra JJ and Walker DW 1995 Software libraries for linear algebra computations on
high-performance computers. SIAM Rev 37(2), 151–180.

PRELIMINARIES: COMPUTER STRATEGIES 19

Koelbel CH, Loveman DB, Schreiber RS, Steele GL and Zosel ME 1995 The High Performance
Fortran Handbook. MIT Press, Cambridge, Mass.

Lindsey CH 1977 Structure charts: a structured alternative to flow charts. SIGPLAN Notices 12(11),
36–49.

MPI Web Reference 2003 http://www-unix.mcs.anl.gov/mpi/.
Pettipher MA and Smith IM 1997 The development of an MPP implementation of a suite of finite

element codes. High-Performance Computing and Networking: Lecture Notes in Computer Science.
Springer-Verlag, Berlin, pp. 1225:400–409.

Smith IM 1995 Programming in Fortran 90. John Wiley & Sons, Chichester, New York.
Smith IM 2000 A general-purpose system for finite element analyses in parallel. Eng Comput 17(1),

75–91.
Willé DR 1995 Advanced Scientific Fortran. John Wiley & Sons, Chichester, New York.

2

Spatial Discretisation
by Finite Elements

2.1 Introduction

The finite element method is a technique for solving partial differential equations by first
discretising these equations in their space dimensions. The discretisation is carried out
locally over small regions of simple but arbitrary shape (the finite elements). This results
in matrix equations relating the input at specified points in the elements (the nodes) to
the output at these same points. In order to solve equations over large regions, the matrix
equations for the smaller sub-regions can be summed node by node, resulting in global
matrix equations, or “element-by-element” techniques can be employed to avoid creat-
ing (large) global matrices. The method is already described in many texts, for example,
Zienkiewicz and Taylor (1989), Strang and Fix (1973), Cook et al. (1989), and Rao (1989),
but the principles will briefly be described in this chapter in order to establish a notation
and to set the scene for the later descriptions of programming techniques.

2.2 Rod element

2.2.1 Rod stiffness matrix

Figure 2.1(a) shows the simplest solid element, namely an elastic rod, with end nodes 1
and 2. The element has length L while u denotes the longitudinal displacements of points
on the rod which is subjected to axial loading only.

If P is the axial force in the rod at a particular section and F is an applied body force
(units of force/length) then,

P = σA = EAε = EA
du

dx
(2.1)

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

22 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

fx1 fx2
dxx

F

a)

L

A P+dPdx
 dx

P

Fdx

b)

A P+ Pdx
 x

P

ρA∂

∂
∂

2udx

∂t2

c)

stress = s= P/A

strain = e=s/E

u1 u2

nodal
force

distributed
load nodal

displacement

rod axial stiffness
EA

1 2

Figure 2.1 Equilibrium of a rod element

assuming “small” strain, and for equilibrium from Figure 2.1(b),

dP

dx
+ F = 0 (2.2)

hence the differential equation to be solved is

EA
d2u

dx2
+ F = 0 (2.3)

In the finite element technique, the continuous variable u is approximated by ũ in terms
of its nodal values, u1 and u2, through simple functions of the space variable called shape
functions. That is

ũ = N1u1 + N2u2

or

ũ = [N1 N2]

{
u1
u2

}
= [N] {u} (2.4)

where
N1 = 1 − x

L
, N2 = x

L
(2.5)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 23

If the true variation in u is higher order, as will often be the case, greater accuracy
could be achieved by introducing higher order shape functions or by including more linear
subdivisions.

When (2.4) is substituted in (2.3), we have

EA
d2

dx2
[N1 N2]

{
u1
u2

}
+ F = R (2.6)

where R is a measure of the error in the approximation and is called the residual. The
differential equation has thus been replaced by an equation in terms of the nodal values u1
and u2. The problem now reduces to one of finding “good” values for u1 and u2 in order
to minimise the residual R.

Many methods could be used to achieve this. For example Griffiths and Smith (1991)
discuss collocation, subdomain, Galerkin, and least squares techniques. Of these, Galerkin’s
method, for example Finlayson (1972), is the most widely used in finite element work. The
method consists of multiplying or “weighting” the residual in (2.6) by each shape function
in turn, integrating over the element and equating to zero. Thus

∫ L

0

{
N1
N2

}
EA

d2

dx2
[N1 N2] dx

{
u1
u2

}
+

∫ L

0

{
N1
N2

}
F dx =

{
0
0

}
(2.7)

Note that in the present example, in which the shape functions are linear, double dif-
ferentiation of these functions would cause them to vanish. This difficulty is resolved by
applying Green’s theorem (integration by parts) to yield typically

∫
Ni

∂2Nj

∂x2
dx = −

∫
∂Ni

∂x

∂Nj

∂x
dx + boundary terms, which we usually ignore (2.8)

Hence, assuming EA and F are not functions of x, (2.7) becomes

−EA
∫ L

0

∂N1
∂x

∂N1
∂x

∂N1
∂x

∂N2
∂x

∂N2
∂x

∂N1
∂x

∂N2
∂x

∂N2
∂x

 dx

{
u1
u2

}
+ F

∫ L

0

{
N1
N2

}
dx =

{
0
0

}
(2.9)

On evaluation of the integrals,

−EA

 1

L
− 1

L

− 1
L

1
L

 {

u1
u2

}
+ F

L
2
L
2

 =

{
0
0

}
(2.10)

The above case is for a uniformly distributed force F acting along the element, and it
should be noted that the Galerkin procedure has resulted in the total force FL being shared
equally between the two nodes. If in Figure 2.1(a) the loading is applied only at the nodes
we have

EA

L

[
1 −1

−1 1

]{
u1
u2

}
=

{
fx1

fx2

}
(2.11)

24 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

where fx1 is the force in the x-direction at node 1 etc. Equation (2.11) represents the rod
element stiffness relationship, which in matrix notation becomes,

[km] {u} = {f} (2.12)

where [km] is the “element stiffness matrix”, {u} is the element nodal “displacements
vector”, and {f} is the element nodal “forces vector”.

2.2.2 Rod mass element

Consider now the case of an unrestrained rod in free longitudinal vibration. Figure 2.1(c)
shows the equilibrium of a segment in which the body force is now given by Newton’s
law as mass times acceleration. If the mass per unit volume is ρ, the partial differential
equation becomes,

EA
∂2u

∂x2
− ρA

∂2u

∂t2
= 0 (2.13)

On discretising u in space by finite elements as before, the first term in (2.13) clearly
leads again to [km]. The second term takes the form

−
∫ L

0

{
N1
N2

}
ρA [N1 N2] dx

d2

dt2

{
u1
u2

}
(2.14)

and assuming that ρA is not a function of x,

−ρA

∫ L

0

[
N1N1 N1N2
N2N1 N2N2

]
dx

d2

dt2

{
u1
u2

}
(2.15)

Evaluation of integrals yields

−ρAL

6

[
2 1
1 2

]
d2

dt2

{
u1
u2

}
(2.16)

or in matrix notation

−[mm]

{
d2u
dt2

}

where [mm] is the “element mass matrix”. Thus the full matrix statement of equation
(2.13) is

[km] {u} + [mm]

{
d2u
dt2

}
= {0} (2.17)

which is a set of ordinary differential equations.
Note that [mm] formed in this manner is the “consistent” mass matrix and differs from

the “lumped” equivalent which would lead to ρAL/2 terms on the diagonal with zeros
off-diagonal.

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 25

2.3 The eigenvalue equation

Equation (2.17) is sometimes integrated directly (Chapter 11) but is also the starting point
for derivation of the eigenvalues or natural frequencies of single elements or meshes of
elements.

Suppose the elastic rod element is undergoing free harmonic motion. Then all nodal
displacements will be harmonic, of the form,

{u} = {a} sin(ωt + ψ) (2.18)

where {a} are amplitudes of the motion, ω its frequency and ψ its phase shift. When (2.18)
is substituted in (2.17), the equation

[km] {a} − ω2[mm] {a} = {0} (2.19)

is obtained, which can easily be rearranged as a standard eigenvalue equation. Chapter 10
describes solution of equations of this type.

2.4 Beam element

2.4.1 Beam element stiffness matrix

As a second one-dimensional solid element, consider the slender beam in Figure 2.2. The
end nodes 1 and 2 are subjected to shear forces and moments which result in translations
and rotations. Each node, therefore, has 2 “degrees of freedom”.

The element shown in Figure 2.2 has length L, flexural rigidity EI, and carries a uniform
transverse load of q (units of force/length). The well known equilibrium equation for this
system is given by,

EI
d4w

dx4 = q (2.20)

dxx

a)

b)

q

m1

fz1 fz2

m2

L

q1 q2

w1 w2

loads

displacements

beam flexural stiffness
EI

1 2

distributed
load

Figure 2.2 Slender beam element

26 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

Again the continuous variable, w in this case, is approximated in terms of discrete
nodal values, but we introduce the idea that not only w itself but also its derivatives θ can
be used in the approximation. In this case the continuous variable w is approximated by w̃

in terms of nodal values as follows:

w̃ = [N1 N2 N3 N4]

w1

θ1

w2

θ2

= [N] {w} (2.21)

where θ1 = dw/dx at node 1, and so on. In this case, (2.21) can often be made exact by
choosing the cubic shape functions:

N1 = 1

L3
(L3 − 3Lx2 + 2x3)

N2 = 1

L2 (L2x − 2Lx2 + x3)

N3 = 1

L3
(3Lx2 − 2x3) (2.22)

N4 = 1

L2
(x3 − Lx2)

Note that the shape functions have the property that they, or their derivatives in this
case, equal one at a specific node and zero at all others.

Substitution in (2.20) and application of Galerkin’s method leads to the four element
equations:

∫ L

0

N1

N2

N3

N4

EI
d4

dx4
[N1 N2 N3 N4] dx

w1
θ1
w2
θ2

 =

∫ L

0

N1

N2

N3

N4

q dx (2.23)

Again Green’s theorem is used to avoid differentiating four times; for example

∫
Ni

d4Nj

dx4 dx ≈ −
∫

dNi

dx

d3Nj

dx3 dx ≈
∫

d2Ni

dx2

d2Nj

dx2 dx + neglected terms (2.24)

Hence assuming EI and q are not functions of x, (2.23) becomes

EI
∫ L

0

[
d2Ni

dx2

d2Nj

dx2

]
i,j=1,2,3,4

dx

w1
θ1
w2
θ2

 = q

∫ L

0

N1

N2

N3

N4

dx (2.25)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 27

Evaluation of the integrals gives,

2EI

L3

6 3L −6 3L

2L2 −3L L2

6 −3L

symmetrical 2L2

w1
θ1
w2
θ2

 = qL

12

6
L

6
−L

 (2.26)

which recovers the standard “slope-deflection” equations for beam elements.
The above case is for a uniformly distributed load applied to the beam. For the case in

which loading is applied only at the nodes we have,

2EI

L3

6 3L −6 3L

2L2 −3L L2

6 −3L

symmetrical 2L2

w1
θ1
w2
θ2

 =

fz1

m1
fz2

m2

 (2.27)

which represents the beam element stiffness relationship.
Hence, in matrix notation we again have,

[km] {w} = {f} (2.28)

Beam–column elements, in which axial and bending effects are combined from (2.11)
and (2.27), are described further in Chapter 4.

2.4.2 Beam element mass matrix

If the element in Figure 2.2 were vibrating transversely, it would be subjected to an addi-
tional restoring force −ρA(∂2w/∂t2). The matrix form, by analogy with (2.15), is just,

−ρA

∫ L

0

N1N1 N1N2 N1N3 N1N4

N2N1 N2N2 N2N3 N2N4

N3N1 N3N2 N3N3 N3N4

N4N1 N4N2 N4N3 N4N4

 dx

d2

dt2

w1
θ1
w2
θ2

 (2.29)

and evaluation of the integrals yields the beam element mass matrix given by,

[mm] = ρAL

420

156 22L 54 −13L

4L2 13L −3L2

156 −22L

symmetrical 4L2

 (2.30)

In this instance, the approximation of the consistent mass terms by lumped ones can
lead to large errors in the prediction of beam frequencies as shown by Leckie and Lindberg
(1963). Strategies for lumping the mass matrix of a beam element are described further in
Chapter 10.

28 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

2.5 Beam with an axial force

If the beam element in Figure 2.2 is subjected to an additional axial force P , as shown in
Figure 2.3, a simple modification to (2.20) results in the differential equation

EI
d4w

dx4
± P

d2w

dx2
= q (2.31)

where the positive sign corresponds to a compressive axial load and vice versa.
Finite element discretisation and application of Galerkin’s method leads to an additional

matrix associated with the axial force contribution,

∓P

∫ L

0

[
dNi

dx

dNj

dx

]
i,j=1,2,3,4

dx

w1
θ1
w2
θ2

 (2.32)

On discretising w in space by finite elements as before, the first term in (2.31) clearly
leads again to [km]. The second term from (2.32) takes the form for compressive P ,

P
1

30L

36 3L −36 3L

4L2 −3L −L2

36 −3L

symmetrical 4L2

w1
θ1
w2
θ2

 (2.33)

The matrix is sometimes called the beam geometric matrix, since it is a function only
of the length of the beam, given by,

[
kg

] = 1

30L

36 3L −36 3L

4L2 −3L −L2

36 −3L

symmetrical 4L2

 (2.34)

and the equilibrium equation can be written as:

([km] − P [kg]) {w} = {f} (2.35)

Buckling of a member can be investigated by solving the eigenvalue problem where
{f} = {0}, or by increasing the compressive force P on the element until large deformations
result or in simple cases, by determinant search. Equations (2.34) and (2.35) represent
an approximation of the approach to modifying the element stiffness involving stability

P P

q

L

Beam flexural stiffness
EI

Figure 2.3 Beam with an axial force

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 29

functions (Horne and Merchant, 1965). The accuracy of the approximation depends on
the value of P/PE for each member, where PE is the Euler load. Over the range −1 <

P/PE < 1 the approximation introduces errors no greater than 7% (Livesley, 1975). For
larger positive values of P/PE, however, (2.35) can become inaccurate unless more element
subdivisions are used. Program 4.6 uses a simple iterative approach to compute the buckling
load of beams and beams on elastic foundations.

2.6 Beam on an elastic foundation

In Figure 2.4 a continuous elastic support has been placed beneath the beam element. If this
support has stiffness k (units of force/length2) then clearly the transverse load is resisted
by an extra force kw leading to the differential equation,

EI
d4w

dx4
+ kw = q (2.36)

By comparison of the second term with the inertia restoring force −ρA∂2w/∂t2 from
equation (2.13), it will be apparent that application of the Galerkin process to (2.36) will
result in a foundation stiffness matrix that is identical to the consistent mass matrix from
(2.30), apart from the coefficient k instead of ρA. The equilibrium equation will then be
of the form

([km] + [mm]) {w} = {f} (2.37)

A “lumped mass” approach to this problem is also possible by simply adding the
appropriate spring stiffness to the diagonal terms of the beam stiffness matrix (see e.g.
Griffiths, 1989).

q

Foundation stiffness
 k

L

Beam flexural stiffness
EI

Figure 2.4 Beam on a continuous elastic foundation

2.7 General remarks on the discretisation process

Enough examples have now been described for a general pattern to emerge of how terms in
a differential equation appear in matrix form after discretisation. Table 2.1 gives a summary,
Ni being the shape functions.

In fact, first order terms such as du/dx have not yet arisen. They are unique in Table 2.1
in leading to matrix equations which are not symmetrical, as indeed would be the case for
any odd order of derivative. We shall return to terms of this type in Chapter 8, in relation
to advection in fluid flow.

30 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

Table 2.1 Semi-discretisation of partial differential
equations

Term in Typical term in Symmetry?
differential equation matrix equation

u

∫
NiNj dx Yes

du
dx

∫
Ni

dNj

dx
dx No

d2u

dx2 −
∫ dNi

dx

dNj

dx
dx Yes

d4u

dx4

∫ d2Ni

dx2
d2Nj

dx2 dx Yes

2.8 Alternative derivation of element stiffness

Instead of working from the governing differential equation, element properties can often
be derived by an alternative method based on a consideration of energy. For example, the
strain energy stored due to bending of a very small length δx of the elastic beam element
in Figure 2.2 is,

δU = 1

2

M2

EI
δx (2.38)

where M is the “bending moment” and by conservation of energy this must be equal to
the work done by the external loads q, thus

δW = 1

2
qwδx (2.39)

The bending moment M is related to w through the “moment-curvature” expression,

M = −EI
d2w

dx2

or
M = [D] {A}w (2.40)

where [D] is the material property EI and {A} is the operator −d2/dx2. Writing (2.38) in
the form,

δU = 1

2

(
−d2w

dx2

)
Mδx (2.41)

we have
δU = 1

2
({A}w)T Mδx (2.42)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 31

Introducing the discretised approximation w̃, from (2.21) and (2.40) this becomes

δU = 1

2
({A} [N] {w})T [D] {A} [N] {w} δx

= 1

2
{w}T ({A} [N])T [D] {A} [N] {w} δx (2.43)

The total strain energy of the element is thus,

U = 1

2

∫ L

0
{w}T ({A} [N])T [D] {A} [N] {w} dx (2.44)

The product {A} [N] is usually written as [B], and since {w} are nodal values and
therefore, constants

U = 1

2
{w}T

∫
[B]T [D] [B] dx {w} (2.45)

Similar operations on (2.39) lead to the total external work done, W , and hence the
stored potential energy of the beam is given by

	 = U − W

= 1

2
{w}T

∫ L

0
[B]T [D] [B] dx {w} − 1

2
{w}T q

∫ L

0
[N]T dx (2.46)

A state of stable equilibrium is achieved when 	 is a minimum with respect to all {w}.
That is,

∂	

∂ {w}T =
∫ L

0
[B]T [D] [B] dx {w} − q

∫ L

0
[N]T dx = 0 (2.47)

or ∫ L

0
[B]T [D] [B] dx {w} = q

∫ L

0
[N]T dx (2.48)

which is simply another way of writing (2.25).
Thus we see from (2.28) that the elastic element stiffness matrix [km] can be written

in the form,

[km] =
∫ L

0
[B]T [D] [B] dx (2.49)

which will prove to be a useful general matrix form for expressing stiffnesses of all elastic
solid elements. The computer programs for analysis of solids developed in the next chapter
use this notation and method of stiffness formation.

The “energy” formulation described above is clearly valid only for “conservative” sys-
tems. Galerkin’s method is more generally applicable.

32 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

2.9 Two-dimensional elements: plane strain
and plane stress

The elements so far described have not been true finite elements because they have been
used to solve differential equations in one space variable only. Thus the real problem
involving two or three space variables has been replaced by a hypothetical, equivalent
one-dimensional problem before solution. The elements we have considered can be joined
together at points (the nodes) and complete continuity (compatibility) and equilibrium
achieved. In this way we can sometimes obtain exact solutions to our hypothetical problems
(especially at the nodes) in which solutions will be unaffected by the number of elements
chosen to represent uniform line segments.

This situation changes radically when problems in two or three space dimensions are
analysed. For example, consider the plane shear wall with openings shown in Figure 2.5(a).
The wall has been sub-divided into rectangular elements of side lengths a and b of which
Figure 2.5(b) is typical. These elements have 4 corner nodes so that when the idealised
wall is assembled, the elements will only be attached at these points.

If the wall can be considered to be of unit thickness and in a state of plane stress,
(Timoshenko and Goodier, 1982), the equations to be solved are the following:

1. Equilibrium
∂σx

∂x
+ ∂τxy

∂y
+ Fx = 0

∂τxy

∂x
+ ∂σy

∂y
+ Fy = 0 (2.50)

x,u

y,v

(a)

x

y

a

b

1

2 3

4

(b)

Figure 2.5 (a) Shear wall with openings. (b) Typical rectangular 4-node element

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 33

where σx , σy and τxy are the only non-zero stress components and Fx , Fy are “body forces”
(units of force/length3).

2. Constitutive (plane stress)

σx

σy

τxy

 = E

1 − ν2

1 ν 0
ν 1 0

0 0
1−ν

2

εx

εy

γxy

 (2.51)

where E is Young’s modulus, ν is Poisson’s ratio, and εx , εy and γxy are the independent
small strain components.

3. Strain-displacement

εx

εy

γxy

 =

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

{
u

v

}
(2.52)

where u and v are the components of displacement in the x and y directions.
Equations (2.50) to (2.52) can be written in the form

[A]T {σσσ } = − {f}
{σσσ } = [D] {εεε} (2.53)

{εεε} = [A] {e}

where

{σσσ } =

σx

σy

τxy

 , {εεε} =

εx

εy

γxy

 , {e} =

{
u

v

}
, {f} =

{
Fx

Fy

}
(2.54)

[A] =

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

 , [D] = E

1 − ν2

1 ν 0
ν 1 0

0 0
1−ν

2

 (2.55)

We shall only be concerned in this book with “displacement” formulations in which
{σσσ } and {εεε} are eliminated from (2.53) as follows:

[A]T {σσσ } = − {f}
[A]T [D] {εεε} = − {f} (2.56)

[A]T [D] [A] {e} = − {f}

34 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

Writing out (2.56) in full we have

E

1 − ν2

∂2u

∂x2 + 1−ν
2

∂2u

∂y2 + ν
∂2v
∂x∂y

+ 1−ν
2

∂2v
∂y∂x

ν
∂2u
∂y∂x

+ 1−ν
2

∂2u
∂x∂y

+ 1−ν
2

∂2v

∂x2 + ∂2v

∂y2

 =

{ −Fx

−Fy

}
(2.57)

which is a pair of simultaneous partial differential equations in the continuous space vari-
ables u and v.

As usual these can be solved by discretising over each element using shape functions
(here we assume the same functions in the x- and y-directions)

ũ = [N1 N2 N3 N4]

u1

u2

u3

u4

= [N] {u} (2.58)

and

ṽ = [N1 N2 N3 N4]

v1

v2

v3

v4

= [N] {v} (2.59)

where in the case of the 4-node rectangular element shown in Figure 2.5(b) the Ni functions
were first derived by Taig (1961) to be

N1 =
(

1 − x

a

) (
1 − y

b

)
N2 =

(
1 − x

a

) y

b
(2.60)

N3 = x

a

y

b

N4 = x

a

(
1 − y

b

)
These result in linear variations in strain across the element which is sometimes called

the linear strain rectangle.
Discretisation and application of Galerkin’s method (Szabo and Lee, 1969), using

Table 2.1, leads to the stiffness equations for a typical element,

E

1 − ν2

∫ a

0

∫ b

0

(
∂Ni
∂x

∂Nj

∂x
+ 1−ν

2
∂Ni
∂y

∂Nj

∂y

) (
ν

∂Ni
∂x

∂Nj

∂y
+ 1−ν

2
∂Ni
∂y

∂Nj

∂x

)
(
ν

∂Ni
∂y

∂Nj

∂x
+ 1−ν

2
∂Ni
∂x

∂Nj

∂y

)(
∂Ni
∂y

∂Nj

∂y
+ 1−ν

2
∂Ni
∂x

∂Nj

∂x

)

i,j=1,2,3,4

dx dy {u} = {f}

(2.61)
where {u} and {f} are the nodal displacements and force components. Most programs in this
book arrange these components by alternating them, thus {u} = [u1 v1 u2 v2 u3 v3 u4 v4]T

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 35

and {f} = [fx1 fy1 fx2 fy2 fx3 fy3 fx4 fy4]T where u1 is the x-displacement at node 1,
and fy2 is the y-force at node 2, etc.

The stiffness relationship can also be written in the standard form of equation (2.28) as,

[km] {u} = {f} (2.62)

Evaluation of the first term in the plane stress stiffness matrix yields,

km1,1 = E

1 − ν2

(
b

3a
+ 1 − ν

2

a

3b

)
(2.63)

and so on.
Note that the size of the element does not appear in this expression, only the ratio a/b

(or b/a), which is called the aspect ratio of the element.
Integration by parts of the weighted form of (2.61) now leads to integrals of the type,

∫∫
Ni

∂2Nj

∂x2 dx dy = −
∫∫

∂Ni

∂x

∂Nj

∂x
dx dy +

∫
S

Ni

∂Nj

∂x
ln dS (2.64)

where ln is the direction cosine of the normal to boundary S and we assume that the contour
integral in (2.64) is zero between elements. This assumption is generally reasonable but
extra care is needed at mesh boundaries. Only if the elements become vanishingly small
can our solution be the correct one (an infinite number of elements) except in trivial cases.
Physically, in a displacement method, it is usual to satisfy compatibility everywhere in a
mesh but to satisfy equilibrium only at the nodes. It is also possible to violate compatibility,
but none of the elements described in this book does.

2.10 Energy approach

As was done in the case of the elastic beam element, the principle of minimum potential
energy can be used to provide an alternative derivation of (2.62) for elastic plane elements.
The element strain energy per unit thickness is

U =
∫∫

1

2
{σσσ }T {εεε} dx dy

= 1

2
{u}T

∫∫
([A] [S])T D ([A] [S]) dx dy {u} (2.65)

= 1

2
{u}T

∫∫
[B]T [D] [B] dx dy {u} (2.66)

where [A] and [D] are defined in (2.55),

[S] =
[

N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(2.67)

36 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

and [B] = [A] [S], leading to,

[B] =

∂N1
∂x

0
∂N2
∂x

0
∂N3
∂x

0
∂N4
∂x

0

0
∂N1
∂y

0
∂N2
∂y

0
∂N3
∂y

0
∂N4
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

 (2.68)

Thus, we have again for this element

[km] =
∫∫

[B]T [D] [B] dx dy (2.69)

which is the form in which it will be computed in Chapter 3.
Exactly the same expression holds in the case of plane strain, but the elastic [D] matrix

becomes (Timoshenko and Goodier, 1982), for unit thickness,

[D] = E(1 − ν)

(1 + ν)(1 − 2ν)

1
ν

1−ν
0

ν
1−ν

1 0

0 0
1−2ν

2(1−ν)

 (2.70)

2.11 Plane element mass matrix

When inertia is significant (2.57) are supplemented by forces −ρ∂2u/∂t2 and −ρ∂2v/∂t2

where ρ is the mass of the element per unit volume. For an element of unit thickness this
leads, in exactly the same way as in (2.15), to the element mass matrix which has terms
given by

[mm] = ρ

∫∫
[N]T [N] dx dy (2.71)

and hence to an eigenvalue equation the same as (2.19).
Evaluation of the first term in the plane element mass matrix as illustrated in Fig-

ure 2.5(b) yields,

mm1,1 = ρab

9
(2.72)

2.12 Axisymmetric stress and strain

Solids of revolution subjected to axisymmetric loading possess only two independent com-
ponents of displacement and can be analysed as if they were two-dimensional. For example,

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 37

Internal
pressure

p

Uniform axial pressure
q

r(u)

q

(a) (b)

z(v)

Figure 2.6 (a) Cylinder under axial and radial pressure. (b) Cylindrical coordinate system

Figure 2.6(a) shows a thick tube subjected to radial pressure p and axial pressure q. Only
a typical radial cross-section need be analysed and is sub-divided into rectangular elements
in the figure. The cylindrical coordinate system, Figure 2.6(b), is the most convenient and
when it is used the element stiffness equation equivalent to (2.69) is

[km] =
∫∫∫

[B]T [D] [B] r dr dz dθ (2.73)

which, when integrated over one radian, becomes

[km] =
∫∫

[B]T [D] [B] r dr dz (2.74)

where the strain-displacement relations are now (Timoshenko and Goodier, 1982)

εr

εz

γrz

εθ

 =

∂
∂r

0

0
∂
∂z

∂
∂z

∂
∂r

1
r

0

{
u

v

}
(2.75)

or {εεε} = [A] {e}, where u and v now represent displacement components in the r and z

directions.

38 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

As before [B] = [A] [S] leading to

[B] =

∂N1
∂r

0
∂N2
∂r

0
∂N3
∂r

0
∂N4
∂r

0

0
∂N1
∂z

0
∂N2
∂z

0
∂N3
∂z

0
∂N4
∂z

∂N1
∂z

∂N1
∂r

∂N2
∂z

∂N2
∂r

∂N3
∂z

∂N3
∂r

∂N4
∂z

∂N4
∂r

N1
r

0
N2
r

0
N3
r

0
N4
r

0

(2.76)

where for elements of rectangular cross-section, [N] could again be defined by (2.60). In
axisymmetric analysis, four independent stress and strain terms must be retained, so the
stress-strain matrix is redefined as

[D] = E(1 − ν)

(1 + ν)(1 − 2ν)

1
ν

1−ν
0

ν
1−ν

ν
1−ν

1 0
ν

1−ν

0 0
1−2ν

2(1−ν)
0

ν
1−ν

ν
1−ν

0 1

(2.77)

It can be noted that apart from the additional row and column, the axisymmetric and
plane strain stress-strain matrices are identical.

2.13 Three-dimensional stress and strain

When equations (2.50) to (2.52) are extended to the three-dimensional displacement com-
ponents u, v, and w, three simultaneous partial differential equations equivalent to (2.57)
result. Discretisation proceeds as usual, and again the familiar element stiffness properties
are derived as

[km] =
∫∫∫

[B]T [D] [B] dx dy dz (2.78)

where the full strain-displacement relations are (Timoshenko and Goodier, 1951),

εx

εy

εz

γxy

γyz

γzx

=

∂
∂x

0 0

0
∂
∂y

0

0 0
∂
∂z

∂
∂y

∂
∂x

0

0
∂
∂z

∂
∂y

∂
∂z

0
∂
∂x

u

v

w

 (2.79)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 39

1

2 3

4

6 7

8

x(u)

y(v)z(w)

a

c

b

Figure 2.7 8-node “brick” element

or
{εεε} = [A] {e} (2.80)

For example, the 8-noded brick-shaped element shown in Figure 2.7, would have shape
functions of the form,

[N] = [N1 N2 N3 N4 N5 N6 N7 N8] (2.81)

where
N1 =

(
1 − x

a

) (
1 − y

b

) (
1 − z

c

)
N2 =

(
1 − x

a

) (
1 − y

b

) z

c

N3 = x

a

(
1 − y

b

) z

c

N4 = x

a

(
1 − y

b

) (
1 − z

c

)
(2.82)

N5 =
(

1 − x

a

) y

b

(
1 − z

c

)
N6 =

(
1 − x

a

) y

b

z

c

N7 = x

a

y

b

z

c

N8 = x

a

y

b

(
1 − z

c

)

The full [S] matrix would be of the form,

[S] =

 N1 0 0 N2 0 0 N3 0 0 · · ·

0 N1 0 0 N2 0 0 N3 0 · · ·
0 0 N1 0 0 N2 0 0 N3 · · ·

 (2.83)

40 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

leading as usual to the formation of [B] = [A] [S]. The elastic stress-strain matrix in three
dimensions is given by,

[D] = E(1 − ν)

(1 + ν)(1 − 2ν)

1
ν

1−ν
ν

1−ν
0 0 0

ν
1−ν

1
ν

1−ν
0 0 0

ν
1−ν

ν
1−ν

1 0 0 0

0 0 0
1−2ν

2(1−ν)
0 0

0 0 0 0
1−2ν

2(1−ν)
0

0 0 0 0 0
1−2ν

2(1−ν)

(2.84)

2.14 Plate-bending element

The bending of a thin plate is governed by the equation,

D∇4w = q (2.85)

where ∇4 is the bi-harmonic operator, D is the flexural rigidity of the plate, given by,

D = Eh3

12(1 − ν2)
(2.86)

w is the deflection in the transverse z-direction, q is a applied transverse distributed load,
and h is the plate thickness.

Solution of (2.85) directly, for example by Galerkin’s method, appears to imply that
for a fixed D, a thin plate’s deflection is unaffected by the value of Poisson’s ratio. This
is in fact only true for certain boundary conditions and, in general, the integration by parts
in the Galerkin process will supply extra terms that are dependent on ν.

This is a case in which the energy approach provides a simpler formulation. The
strain energy in a piece of bent plate is given by (Timoshenko and Woinowsky-Krieger,
1959),

U = 1

2
D

∫∫ {(
∂2w

∂x2 + ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2 −
(

∂2w

∂x∂y

)2]}
dx dy (2.87)

or

U = 1

2
D

∫∫ {(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1 − ν)

(
∂2w

∂x∂y

)2}
dx dy

(2.88)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 41

x

y

1

2
3

4

b

a

∂w
∂x

∂w
∂y

∂2w
∂x∂y

w

Figure 2.8 Rectangular plate bending element

Consider, for example, the rectangular element shown in Figure 2.8. If there are assumed
to be four degrees of freedom per node, namely

w, θx = ∂w

∂x
, θy = ∂w

∂y
and θxy = ∂2w

∂x∂y

then the appropriate element shape functions can be shown to be products of the beam
shape functions already described, that is,

w̃ = [N] {w} (2.89)

where, if the freedoms {w} are numbered (w, θx, θy, θxy)node=1,2,3,4, the “first” shape func-
tion would be,

N1 = 1

a3
(a3 − 3ax2 + 2x3)

1

b3
(b3 − 3by2 + 2y3) (2.90)

Defining,

P1 = 1

a3 (a3 − 3ax2 + 2x3)

Q1 = 1

b3 (b3 − 3by2 + 2y3)

P2 = 1

a2
(a2x − 2ax2 + x3)

Q2 = 1

b2
(b2y − 2by2 + y3) (2.91)

P3 = 1

a3
(3ax2 − 2x3)

42 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

Q3 = 1

b3
(3by2 − 2y3)

P4 = 1

a2
(x3 − ax2)

Q4 = 1

b2
(y3 − by2)

the list of shape functions becomes

N1 = P1Q1 N9 = P3Q3

N2 = P2Q1 N10 = P4Q3

N3 = P1Q2 N11 = P3Q4

N4 = P2Q2 N12 = P4Q4

N5 = P1Q3 N13 = P3Q1

N6 = P2Q3 N14 = P4Q1

N7 = P1Q4 N15 = P3Q2

N8 = P2Q4 N16 = P4Q2

(2.92)

Using the same energy formulation as before, and defining

Mx

My

Mxy

 = D

1 ν 0
ν 1 0

0 0
1−ν

2

∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y

w (2.93)

or
{M} = [D] {A}w (2.94)

it can readily be verified that (2.88) for strain energy can be written

U = 1

2

∫∫
({A}w)T[D]({A}w) dx dy (2.95)

and that the stiffness matrix becomes

[km] =
∫∫

[B]T [D] [B] dx dy (2.96)

which is again the familiar equivalent of (2.49) with [B] = {A} [N].
A typical value of the stiffness matrix is given by

km i,j = D

∫∫ {
∂2Ni

∂x2

∂2Nj

∂x2
+ ν

∂2Ni

∂x2

∂2Nj

∂y2
+ ν

∂2Nj

∂x2

∂2Ni

∂y2

+∂2Ni

∂y2

∂2Nj

∂y2
+ 2(1 − ν)

∂2Ni

∂x∂y

∂2Nj

∂x∂y

}
dx dy (2.97)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 43

and these integrals are performed using Gaussian quadrature in two dimensions in
Chapter 4. For some boundary conditions, the terms including Poisson’s ratio will can-
cel out.

2.15 Summary of element equations for solids

The preceding sections have demonstrated the essential similarity of all problems in linear
elastic solid mechanics when formulated in terms of finite elements. The statement of
element properties is to be found in two expressions, namely, the element stiffness matrix

[km] =
∫∫

[B]T [D] [B] dx dy (2.98)

and the element–mass matrix

[mm] = ρ

∫∫
[N]T [N] dx dy (2.99)

These expressions then appear in the three main classes of problem which concern us
in engineering practice, namely

1. Static equilibrium, [km] {u} = {f} (2.100)

2. Eigenvalue, [km] {a} − ω2[mm] {a} = {0} (2.101)

3. Propagation, [km] {u} + [mm]

{
d2u
dt2

}
= {f(t)} (2.102)

Static problems lead to simultaneous equations which can be solved for known forces
{f} to give equilibrium displacements {u}. Eigenvalue problems may be solved by vari-
ous techniques (iteration, QR algorithm, etc. see Bathe and Wilson, 1996; Jennings and
McKeown, 1992) to yield mode shapes {a} and natural frequencies (squared) ω2 of elastic
systems, while propagation problems can be solved by advancing the displacements {u}
step by step in time due to a forcing function {f(t)} from known initial conditions.

Later chapters in the book describe programs which enable the user to solve practical
engineering problems that are governed by these three basic equations. Additional features,
such as treatment of non-linearity, damping etc, will be dealt with in these chapters as they
arise.

2.16 Flow of fluids: Navier–Stokes equations

We shall be concerned only with the equations governing the motion of viscous, incom-
pressible fluids. These equations are widely developed elsewhere, for example Schlicht-
ing (1960). For two dimensions, preserving an analogy with previous sections on two-
dimensional solids, u and v now become velocities in the x and y-directions respectively

44 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

and ρ is the mass density. Also as before, Fx and Fy are body forces in the appropriate
directions.

Conservation of mass leads to

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0 (2.103)

but due to incompressibility this may be reduced to

∂u

∂x
+ ∂v

∂y
= 0 (2.104)

Conservation of momentum leads to

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= Fx +

(
∂σx

∂x
+ ∂τxy

∂y

)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= Fy +

(
∂σy

∂y
+ ∂τxy

∂x

)
(2.105)

where σx , σy , and τxy , are stress components as previously defined for solids.
Introducing the simplest constitutive parameter µ (the molecular viscosity), the follow-

ing form of the stress equations is reached:

σx = −p − 2µ

3

(
∂u

∂x
+ ∂v

∂y

)
+ 2µ

∂u

∂x

σy = −p − 2µ

3

(
∂u

∂x
+ ∂v

∂y

)
+ 2µ

∂v

∂y
(2.106)

τxy = µ

(
∂u

∂y
+ ∂v

∂x

)

where p is the fluid pressure.
Combining equations (2.104) to (2.106), a form of the “Navier–Stokes” equations can

be written,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 1

ρ
Fx − 1

ρ

∂p

∂x
+ 1

3

µ

ρ

∂

∂x

(
∂u

∂x
+ ∂v

∂y

)
+ µ

ρ

(
∂2u

∂x2
+ ∂2u

∂y2

)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 1

ρ
Fy − 1

ρ

∂p

∂y
+ 1

3

µ

ρ

∂

∂y

(
∂u

∂x
+ ∂v

∂y

)
+ µ

ρ

(
∂2v

∂x2 + ∂2v

∂y2

)
(2.107)

On introduction of the incompressibility condition, these can be further simplified to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 1

ρ
Fx − 1

ρ

∂p

∂x
+ µ

ρ

(
∂2u

∂x2
+ ∂2u

∂y2

)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 1

ρ
Fy − 1

ρ

∂p

∂y
+ µ

ρ

(
∂2v

∂x2
+ ∂2v

∂y2

)
(2.108)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 45

For steady state conditions the terms ∂u/∂t and ∂v/∂t can be dropped resulting in
“coupled” equations in the “primitive” variables, u, v, and p. The equations are also, in
contrast to those of solid elasticity, non-linear because of the presence of products like
u(∂u/∂x).

Ignoring body forces for the present, the steady state equations to be solved are,

u
∂u

∂x
+ v

∂u

∂y
+ 1

ρ

∂p

∂x
− µ

ρ

(
∂2u

∂x2 + ∂2u

∂y2

)
= 0

u
∂v

∂x
+ v

∂v

∂y
+ 1

ρ

∂p

∂y
− µ

ρ

(
∂2v

∂x2
+ ∂2v

∂y2

)
= 0 (2.109)

Proceeding as before, and for the moment assuming that the same shape functions are
applied to all variables, the following trial solutions, ũ = [N] {u}, ṽ = [N] {v} and p̃ =
[N] {p} are used, where {u} = [u1 u2 u3 · · ·]T, represents the nodal values of the velocity
u in the x-direction, etc.

For the purposes of integration during the Galerkin procedure, the terms u and v in
(2.109) are set equal to the constants u = u = [N] {u0} and v = v = [N] {v0} where {u0}
and {v0} are estimates of the nodal velocities (see Chapter 9).

After substitution of the trial solutions,

u
∂

∂x
[N] {u} + v

∂

∂y
[N] {u} + 1

ρ

∂

∂x
[N] {p} − µ

ρ

∂2

∂x2
[N] {u} − µ

ρ

∂2

∂y2
[N] {u} = {0}

u
∂

∂x
[N] {v} + v

∂

∂y
[N] {v} + 1

ρ

∂

∂y
[N] {p} − µ

ρ

∂2

∂x2
[N] {v} − µ

ρ

∂2

∂y2
[N] {v} = {0}

(2.110)
Multiplying by the weighting functions and integrating as usual yields∫∫

[N]T u
∂

∂x
[N] {u} dx dx +

∫∫
[N]T v

∂

∂y
[N] {u} dx dy + 1

ρ

∫∫
[N]T ∂

∂x
[N] {p} dx dy

− µ

ρ

∫∫
[N]T ∂2

∂x2
[N] {u} dx dy − µ

ρ

∫∫
[N]T ∂2

∂y2
[N] {u} dx dy = {0}

∫∫
[N]T u

∂

∂x
[N] {v} dx dy +

∫∫
[N]T v

∂

∂y
[N] {v} dx dy + 1

ρ

∫∫
[N]T ∂

∂y
[N] {p} dx dy

− µ

ρ

∫∫
[N]T ∂2

∂x2
[N] {v} dx dy − µ

ρ

∫∫
[N]T ∂2

∂y2
[N] {v} dx dy = {0} (2.111)

Integrating products by parts where necessary and neglecting resulting contour integrals
gives,∫∫

[N]T u
∂

∂x
[N] dx dx {u} +

∫∫
[N]T v

∂

∂y
[N] dx dy {u} + 1

ρ

∫∫
[N]T ∂

∂x
[N] dx dy {p}

+ µ

ρ

∫∫
∂

∂x
[N]T ∂

∂x
[N] dx dy {u} + µ

ρ

∫∫
∂

∂y
[N]T ∂

∂y
[N] dx dy {u} = {0}

46 SPATIAL DISCRETISATIONBY FINITE ELEMENTS∫∫
[N]T u

∂

∂x
[N] dx dx {v} +

∫∫
[N]T v

∂

∂y
[N] dx dy {v} + 1

ρ

∫∫
[N]T ∂

∂y
[N] dx dy {p}

+ µ

ρ

∫∫
∂

∂x
[N]T ∂

∂x
[N]T dx dy {v} + µ

ρ

∫∫
∂

∂y
[N]T ∂

∂y
[N] dx dy {v} = {0} (2.112)

The set of equations is completed by the continuity condition,∫∫
[N]T

(
∂

∂x
[N] {u} + ∂

∂y
[N] {v}

)
dx dy = {0} (2.113)

Collecting terms in {u}, {p}, and {v} respectively leads to an equilibrium equation
(Taylor and Hughes, 1981)

 [c11] [c12] [c13]
[c21] [c22] [c23]
[c31] [c32] [c33]

u
p
v

 =

0
0
0

 (2.114)

where

[c11] =
∫∫ (

[N]T u
∂

∂x
[N]+[N]T v

∂

∂y
[N]+ µ

ρ

∂

∂x
[N]T ∂

∂x
[N]+ µ

ρ

∂

∂y
[N]T ∂

∂y
[N]

)
dx dy

[c12] = 1

ρ

∫∫
[N]T ∂

∂x
[N] dx dy

[c13] = [0]

[c21] =
∫∫

[N]T ∂

∂x
[N] dx dy

[c22] = [0]

[c23] =
∫∫

[N]T ∂

∂y
[N] dx dy (2.115)

[c31] = [0]

[c32] = 1

ρ

∫∫
[N]T ∂

∂y
[N] dx dy

[c33] = [c11]

Referring to Table 2.1 we now have many terms of the type Ni ∂Nj/∂x which imply
unsymmetrical structures for [c11] etc., thus special solution algorithms will be necessary.
Computational details are left until Chapters 3 and 9. Three-dimensional problems are
solved in Chapter 12, in which the velocity component in the z-direction is w.

2.17 Simplified flow equations

In many practical instances it may not be necessary to solve the complete coupled system
described in the previous section. The pressure p can be eliminated from (2.108) and if
vorticity is defined as,

ω = ∂u

∂y
− ∂v

∂x
(2.116)

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 47

this results in a single equation,

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= µ

ρ

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
(2.117)

Defining a stream function ψ such that,

u = ∂ψ

∂y

v = −∂ψ

∂x
(2.118)

an alternative coupled system involving ψ and ω can be devised, given here for steady
state conditions,

∂2ψ

∂x2
+ ∂2ψ

∂y2
= ω

µ

ρ

(
∂2ω

∂x2 + ∂2ω

∂y2

)
= ∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
(2.119)

This clearly has the advantage that only two unknowns are involved rather than the
previous three. However, the solution of (2.119) is still a relatively complicated process and
flow problems are sometimes solved via equation (2.117) alone, assuming that u and v can
be approximated by some independent means or measured. In this form, equation (2.117)
is an example of the “diffusion–convection” equation, the second order space derivatives
corresponding to a “diffusion” process and the first order ones to a “convection” process.
The equation arises in various areas of engineering, for example sediment transport and
pollutant disposal (Smith, 1976, 1979).

If there is no convection, the resulting equation is of the type

∂ω

∂t
= µ

ρ

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
(2.120)

which is the “heat conduction” or “diffusion” equation well known in many areas of
engineering.

A final simplification is a reduction to steady state conditions, in which case,

∂2ω

∂x2
+ ∂2ω

∂y2
= 0 (2.121)

leaving the familiar “Laplace” equation. In the following sections, finite element formula-
tions of these simplified flow equations are described, in order of increasing complexity.

2.17.1 Steady state

The form of Laplace’s equation (2.121) which arises in geomechanics, for example
concerning 2D groundwater flow beneath a water retaining structure or in an aquifer

48 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

(Muskat, 1937) is,

kx

∂2φ

∂x2 + ky

∂2φ

∂y2 = 0 (2.122)

where φ is the fluid “potential” or total head and kx and ky are permeabilities or con-
ductivities in the x and y directions. The finite element discretisation process reduces the
differential equation to a set of equilibrium type matrix equations of the form,

[kc] {φφφ} = {q} (2.123)

where [kc] is the symmetrical “conductivity matrix”, {φφφ} is a vector of nodal potential
(total head) values, and {q} is a vector of nodal inflows/outflows.

With the usual finite element discretisation,

φ̃ = [N] {φφφ} (2.124)

reference to Table 2.1 shows that typical terms in the matrix [kc] are of the form,∫∫ (
kx

∂Ni

∂x

∂Nj

∂x
+ ky

∂Ni

∂y

∂Nj

∂y

)
dx dy (2.125)

A convenient way of expressing the matrix [kc] in (2.123) is,

[kc] =
∫∫

[T]T [K] [T] dx dy (2.126)

where the property matrix [K] is analogous to the stress-strain matrix [D] in solid mechan-
ics, where,

[K] =
[

kx 0
0 ky

]
(2.127)

(assuming that the principal axes of the permeability tensor coincide with x and y). The
[T] matrix is similar to the [B] matrix of solid mechanics and is given by (for a 4-node
element),

[T] =

∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y

 (2.128)

The similarity between (2.126) for a fluid and (2.69) for a solid enables the correspond-
ing programs to look similar in spite of the governing differential equations being quite
different. This unity of treatment is utilised in describing the programming techniques in
Chapter 3.

Finally, it is worth noting that (2.126) can also be arrived at from energy considerations.
The equivalent energy statement is that the integral∫∫ [

1

2
kx

(
∂φ

∂x

)2

+ 1

2
ky

(
∂φ

∂y

)2
]

dx dy (2.129)

shall be a minimum for all possible φ(x, y).

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 49

Example solutions to steady state problems described by (2.122) are given in Chapter 7.
Three-dimensional problems are also solved in Chapter 12.

2.17.2 Transient state

Transient conditions must be analysed in many physical situations, for example in the case
of Terzaghi “consolidation” in soil mechanics or transient heat conduction. The governing
consolidation diffusion equation for excess pore pressure uw in 2D, takes the form

cx

∂2uw

∂x2
+ cy

∂2uw

∂y2
= ∂uw

∂t
(2.130)

where cx and cy are the coefficients of consolidation in the x- and y-directions. Discretisa-
tion of the left hand side of (2.130) clearly follows that of (2.122) while the time derivative
will be associated with a matrix of the “mass matrix” type from (2.71), without the multiple
ρ. Hence, the discretised system is,

[kc] {uw} + [mm]

{
duw

dt

}
= {0} (2.131)

where {uw} are the nodal values of uw.
This set of first order, ordinary differential equations can be solved by many methods,

the simplest of which discretise the time derivative by finite differences. The algorithms
are described in Chapter 3 with example solutions in Chapters 8 and 12.

2.17.3 Advection

If pollutants, sediments, tracers, etc, are transported by a laminar flow system they are at
the same time translated or “advected” by the flow and diffused within it. The governing
differential equation for the two-dimensional case is (Smith et al., 1973),

cx

∂2φ

∂x2 + cy

∂2φ

∂y2 − u
∂φ

∂x
− v

∂φ

∂y
= ∂φ

∂t
(2.132)

where φ can be interpreted as a “concentration” and u and v are the fluid velocity compo-
nents in the x- and y-directions (compare equation 2.117).

The extra advection terms −u∂φ/∂x and −v∂φ/∂y compared with (2.130) lead, as
shown in Table 2.1, to unsymmetric components of the resulting matrix of the type,∫∫ (

−uNi

∂Nj

∂x
− vNi

∂Nj

∂y

)
dx dy (2.133)

which must be added to the symmetric, diffusion components given in (2.125). When this
has been done, equilibrium equations like (2.123) or transient equations like (2.131) are
regained.

Mathematically, equation (2.132) is a differential equation which is not self-adjoint
(Berg, 1962), due to the presence of the first-order spatial derivatives. From a finite element

50 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

point of view, equations which are not self-adjoint will always lead to unsymmetrical
matrices.

A second consequence of non-self-adjoint equations is that there is no energy formu-
lation equivalent to (2.129). It is clearly a benefit of the Galerkin approach that it can be
used for all types of equation and is not restricted to self-adjoint systems.

Equation (2.132) can be rendered self-adjoint by using the transformation

h = φ exp

(
ux

2cx

)
exp

(
vy

2cy

)
(2.134)

but this is not recommended unless u and v are small compared with cx and cy , as shown
by Smith et al. (1973).

Equation (2.132) and the use of (2.134) are described in Chapter 8.

2.18 Further coupled equations: Biot consolidation

Thus far in this chapter, analyses of solids and fluids have been considered separately. How-
ever, Biot formulated the theory of coupled solid–fluid interaction which finds application
in soil mechanics (Smith and Hobbs, 1976). The soil skeleton is treated as a porous elastic
solid and the laminar pore fluid is coupled to the solid by the conditions of equilibrium
and continuity.

First, for two-dimensional equilibrium in the absence of body forces, the gradient of
effective stress from (2.50) must be augmented by the gradients of the fluid pressure uw

as follows:

∂σ
′
x

∂x
+ ∂τxy

∂y
+ ∂uw

∂x
= 0

∂τxy

∂x
+ ∂σ

′
y

∂y
+ ∂uw

∂y
= 0

(2.135)

where σ
′
x = σx − uw, etc are “effective” stresses.

Assuming plane strain conditions and small strains, and following the usual sequence of
operations for a displacement method, the stress terms in equation (2.135) can be eliminated
in terms of displacements to give (Griffiths, 1994),

E
′
(1 − ν

′
)

(1 + ν
′
)(1 − 2ν

′
)

[
∂2u

∂x2 + (1 − 2ν
′
)

2(1 − ν
′
)

∂2u

∂y2 + 1

2(1 − ν
′
)

∂2v

∂x∂y

]
+ ∂uw

∂x
= 0

E
′
(1 − ν

′
)

(1 + ν
′
)(1 − 2ν

′
)

[
1

2(1 − ν
′
)

∂2u

∂x∂y
+ ∂2v

∂y2 + (1 − 2ν
′
)

2(1 − ν
′
)

∂2v

∂x2

]
+ ∂uw

∂y
= 0

(2.136)

where E
′

and ν
′

are the effective elastic parameters.

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 51

Secondly, from considerations of 2D continuity, and assuming fluid incompressibility,
the net flow rate must equal the rate of change of volume of the element of soil, thus

∂

∂t

(
∂u

∂x
+ ∂v

∂y

)
+ kx

γw

∂2uw

∂x2
+ ky

γw

∂2uw

∂y2
= 0 (2.137)

Equations (2.136) and (2.137) represent the coupled “Biot” equations for a 2D poro-
elastic material. A solution to these equations will enable the displacements u, v, and excess
pore pressure uw to be estimated at spatial location (x, y) at any time t .

A finite element approach starts by discretising the dependent variables u, v, and excess
pore pressure uw in the normal way, hence

ũ = [N] {u}
ṽ = [N] {v} (2.138)

ũw = [N] {uw}

In practice, it may be preferable to use a higher order of discretisation for u and v

compared with uw but, for the present, the same shape functions are assumed to describe
all three variables.

When discretisation and the Galerkin process are completed, (2.136) and (2.137) lead
to the pair of equilibrium and continuity equations:

[km] {u} + [c] {uw} = {f}

[c]T
{

du
dt

}
− [kc] {uw} = {0} (2.139)

where, for a 4-noded element,

{u} =

u1
v1
u2
v2
u3
v3
u4
v4

and {uw} =

uw1

uw2

uw3

uw4

 (2.140)

[km] and [kc] are the familiar elastic stiffness and fluid conductivity matrices respectively,
[c] is a new rectangular coupling matrix consisting of terms of the form∫∫

∂Nj

∂x
Ni dx dy (2.141)

and {f} is the external loading vector. After assembly into global matrices, equations (2.139)
must be integrated in time by some method such as finite differences and this is described
further in Chapter 3. Examples of such solutions in practice are given in Chapter 9.

52 SPATIAL DISCRETISATIONBY FINITE ELEMENTS

Three-dimensional problems are solved in Chapter 12, in which the displacements in
the z-direction are given by w.

2.19 Conclusions

When viewed from a finite element standpoint, all static equilibrium problems, whether
involving solids or fluids, take the same form, namely,

[km] {u} = {f} (2.142)

or
[kc] {φφφ} = {q} (2.143)

For simple uncoupled problems the solid [km] and fluid [kc] matrices have similar
symmetrical structures, so computer programs to construct them will also be similar. How-
ever, for other problems, for example those described by the Navier–Stokes equations,
the constitutive matrices are unsymmetrical and appropriate alternative software will be
necessary.

In the same way, eigenvalue, propagation and transient problems all involve the mass
matrix [mm] (or a simple multiple of it). Therefore, coding of these different types of
solutions can be expected to contain sections common to all three problems.

So far, single elements have been considered in the discretisation process, and only
the simplest line and rectangular elements have been described. The next chapter is mainly
devoted to a description of programming strategy, but before this, the finite element concept
is extended to embrace meshes of interlinked elements and elements of general shape.

References

Bathe KJ and Wilson EL 1976 Numerical Methods in Finite Element Analysis. Prentice–Hall, Engle-
wood Cliffs, N.J.

Berg PN 1962 Calculus of Variations. McGraw–Hill, London, New York.
Biot MA 1941 General theory of three-dimensional consolidation. J Appl Phys 12, 155–164.
Cook RD, Malkus DS and Plesha ME 1989 Concepts and Applications of Finite Element Analysis,

3rd edn. John Wiley & Sons, Chichester, New York.
Finlayson BA 1972 The Method of Weighted Residuals and Variational Principles. Academic Press,

New York.
Griffiths DV 1989 Advantages of consistent over lumped methods for analysis of beams on elastic

foundations. Commun Appl Numer Methods 5(1), 53–60.
Griffiths DV 1994 Coupled analyses in geomechanics. In Visco-Plastic Behavior of Geomaterials

(eds. Cristescu ND and Gioda G). Springer-Verlag, Wien, New York, pp. 245–317. Chapter 5.
Griffiths DV and Smith IM 1991 Numerical Methods for Engineers. Blackwell Scientific Publications

Ltd., Oxford.
Horne MR and Merchant W 1965 The Stability of Frames. Pergamon Press, Oxford.
Jennings A and McKeown JJ 1992 Matrix Computation. John Wiley & Sons, Chichester, New York.
Leckie FA and Lindberg GM 1963 The effect of lumped parameters on beam frequencies. The

Aeronaut Q 14, 234.

SPATIAL DISCRETISATIONBY FINITE ELEMENTS 53

Livesley RK 1975 Matrix Methods of Structural Analysis. Pergamon Press, Oxford.
Muskat M 1937 The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, London,

New York.
Rao SS 1989 The Finite Element Method in Engineering, 2nd edn. Pergamon Press, Oxford.
Schlichting H 1960 Boundary Layer Theory. McGraw-Hill, London, New York.
Smith IM 1976 Integration in time of diffusion and diffusion–convection equations, Finite Elements

in Water Resources, vol. 1. Pentech Press, Plymouth, Mass., pp. 3–20.
Smith IM 1979 The diffusion–convection equation. Summary of Numerical Methods for Partial Dif-

ferential Equations, Oxford University Press, Oxford, pp. 195-211. Chapter 11.
Smith IM and Hobbs R 1976 Biot analysis of consolidation beneath embankments. Géotechnique 26,

149–171.
Smith IM, Farraday RV and O’Connor BA 1973 Rayleigh-Ritz and Galerkin finite elements for

diffusion–convection problems. Water Resour Res 9(3), 593–606.
Strang G and Fix GJ 1973 An Analysis of the Finite Element Method. Prentice–Hall, Englewood

Cliffs, N.J.
Szabo BA and Lee GC 1969 Derivation of stiffness matrices for problems in plane elasticity by the

Galerkin method. Int J Numer Methods Eng 1, 301.
Taig IC 1961 Structural analysis by the matrix displacement method. Technical Report SO17, English

Electric Aviation Report, Preston.
Taylor C and Hughes TG 1981 Finite Elements Programming of the Navier-Stokes Equation. Pineridge

Press, Swansea, UK.
Timoshenko SP and Goodier JN 1982 Theory of Elasticity. McGraw-Hill, Singapore. International

Edition.
Timoshenko SP and Woinowsky-Krieger S 1959 Theory of Plates and Shells. McGraw-Hill, New

York.
Zienkiewicz OC and Taylor RL 1989 The Finite Element Method, vol. 1, 4th edn. McGraw-Hill,

London, New York.

3

Programming Finite Element
Computations

3.1 Introduction

In Chapter 2, the finite element spatial discretisation process was described, whereby partial
differential equations can be replaced by matrix equations which take the form of linear
and non-linear algebraic equations, eigenvalue equations, or ordinary differential equations
in the time variable. The present chapter describes how programs can be constructed in
order to formulate and solve these kinds of equations.

Before this, two additional features must be introduced. First, we have so far dealt only
with the simplest shapes of elements, namely lines and rectangles. Obviously if differential
equations are to be solved over regions of general shape, elements must be allowed to
assume general shapes as well. This is accomplished by introducing general triangular,
quadrilateral, tetrahedral and hexahedral elements together with the concept of a coordinate
system local to the element.

Second, we have so far considered only a single element, whereas useful solutions will
normally be obtained by many elements, usually from hundreds to millions in practice,
joined together at the nodes. Also, various types of boundary conditions may be prescribed
which constrain the solution in some way.

Local coordinate systems, multi-element analyses, and incorporation of boundary con-
ditions are all explained in the sections that follow.

3.2 Local coordinates for quadrilateral elements

Figure 3.1 shows two types of plane 4-noded quadrilateral elements. The shape functions
for the rectangle (Figure 3.1(a)) were shown to be given by equation (2.60), namely N1 =
(1 − x/a)(1 − y/b) and so on. If it is attempted to construct similar shape functions in
the “global” coordinates (x, y) for the general quadrilateral (Figure 3.1(b)), rather complex

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

56 PROGRAMMING FINITE ELEMENT COMPUTATIONS

(a,0)

(0,b)

1

2 3

4

yy

x

1

2 3

4

x

(a) (b)

Figure 3.1 (a) Plane rectangular element and (b) Plane general quadrilateral element

x = 1

x = −1

h = 1

h = −1

P(x, h)

1

2 3

4

Figure 3.2 Local coordinate system for quadrilateral elements

algebraic expressions will result, which are best generated by computer algebra packages
(Griffiths, 1994b, 2004).

Traditionally, the approach has been to work in a local coordinate system as shown in
Figure 3.2, originally proposed by Taig (1961), and to evaluate resulting integrals numer-
ically. The general point P (ξ, η) within the quadrilateral is located at the intersection of
two lines which cut opposite sides of the quadrilateral in equal proportions. For reasons
associated with subsequent numerical integrations it proves to be convenient to “normalise”
the coordinates so that side 12 has ξ = −1, side 34 has ξ = 1, side 41 has η = −1, and
side 23 has η = 1. In this system, the intersection of the bisectors of opposite sides of the
quadrilateral is the point (0, 0), while the corners 1, 2, 3, and 4 are (−1, −1), (−1, 1),
(1, 1), and (1, −1) respectively.

When this choice is adopted, the shape functions for a 4-noded quadrilateral with corner
nodes take the simple form

N1 = 1

4
(1 − ξ)(1 − η)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 57

N2 = 1

4
(1 − ξ)(1 + η)

N3 = 1

4
(1 + ξ)(1 + η) (3.1)

N4 = 1

4
(1 + ξ)(1 − η)

and these can be used to describe the variation of unknowns such as displacement or fluid
potential in an element as before.

The same shape functions can also often be used to specify the relation between the
global (x, y) and local (ξ, η) coordinate systems. If this is so the element is of a type
called “isoparametric” (Ergatoudis et al., 1968; Zienkiewicz et al., 1969), and the 4-node
quadrilateral is an example. The coordinate transformation is therefore,

x = N1x1 + N2x2 + N3x3 + N4x4

= [N] {x}
y = N1y1 + N2y2 + N3y3 + N4y4 (3.2)

= [N] {y}
where the [N] are given by (3.1) and {x} and {y} are the nodal coordinates.

In the previous chapter (e.g. equations 2.68 and 2.128), it was shown that element prop-
erties involve not only [N] but also their derivatives with respect to the global coordinates
(x, y) which appear in matrices such as [B] and [T]. Further, products of these quantities
need to be integrated over the element area or volume.

Derivatives are easily converted from one coordinate system to the other by means of
the chain rule of partial differentiation, best expressed in matrix form for two dimensions by

∂
∂ξ

∂
∂η

 =

∂x
∂ξ

∂y

∂ξ

∂x
∂η

∂y

∂η

∂
∂x

∂
∂y

 = [J]

∂
∂x

∂
∂y

 (3.3)

or

∂
∂x

∂
∂y

 = [J]−1

∂
∂ξ
∂
∂η

 (3.4)

where [J] is the Jacobian matrix. The determinant of this matrix, det |J| known as “The
Jacobian”, must also be evaluated because it is used in the transformed integrals as follows:∫∫

dx dy =
∫ 1

−1

∫ 1

−1
det |J| dξ dη (3.5)

For three dimensions, the equivalent expressions are self-evident.
Degenerate quadrilaterals such as the one shown in Figure 3.3(a) are usually acceptable,

however reflex interior angles as shown in Figure 3.3(b) should be avoided as this will cause
the Jacobian to become indeterminate.

58 PROGRAMMING FINITE ELEMENT COMPUTATIONS

x

y

x

y

1

2

3

4

(a) (b)

1

2

3

4

Figure 3.3 (a) Degenerate quadrilateral (b) Unacceptable quadrilateral

3.2.1 Numerical integration for quadrilaterals

Although some integrals of this type can be evaluated analytically, this has traditionally
been impractical for complicated functions, particularly in the general case when (ξ, η)

become curvilinear (Ergatoudis et al., 1968). In most finite element programs (3.5) are
evaluated numerically, using Gauss–Legendre quadrature over quadrilateral regions (Irons,
1966a,b). The quadrature rules in two dimensions are all of the form∫ 1

−1

∫ 1

−1
f (ξ, η) det |J| dξ dη ≈

n∑
i=1

n∑
j=1

wiwjf (ξi, ηj)

≈
nip∑
i=1

Wif (ξ, η)i (3.6)

where nip = n2 (total number of integrating points), wi and wj (or Wi = wiwj) are
weighting coefficients and (ξi, ηj) are sampling points within the element. These values
for n equal to 1, 2, and 3 are shown in Table 3.1, and complete tables are available in other
sources, for example Kopal (1961). The table assumes that the range of integration is ±1,
hence the reason for normalising the local coordinate system in this way.

The approximate equality in (3.6) is exact for cubic functions when n = 2 and for
quintics when n = 3. Usually one attempts to perform integrations over finite elements as
accurately as possible, but in special circumstances (Zienkiewicz et al., 1971) “reduced”
integration, whereby integrals are deliberately evaluated approximately by decreasing n can
improve the quality of solutions.

3.2.2 Analytical integration for quadrilaterals

Computer Algebra Systems (CAS) such as “REDUCE” and “Maple” enable algebraic
expressions (e.g. the finite element shape functions) to be manipulated essentially “analyti-
cally”. Expressions can be differentiated, integrated, factorised and so on, leading to explicit
formulations of element matrices avoiding the need for conventional numerical integration.
Particularly for three-dimensional elements, this approach can lead to substantial savings

PROGRAMMING FINITE ELEMENT COMPUTATIONS 59

Table 3.1 Coordinates and weights in Gauss–
Legendre quadrilateral integration formulae

n nip (ξi, ηj) wi, wj Wi

1 1 (0, 0) (2, 2) 4

2 4

(
±
√

1
3 , ±
√

1
3

)
(1, 1) 1

3 9(4@)

(
±
√

3
5 , ±
√

3
5

) (
5
9 , 5

9

)
25
81

(2@)

(
±
√

3
5 , 0

) (
5
9 , 8

9

)
40
81

(2@)

(
0, ±
√

3
5

) (
8
9 , 5

9

)
40
81

(1@) (0, 0)
(

8
9 , 8

9

)
64
81

in integration times. A further point is that for some elements (e.g. a 14-node hexahedron
described later in this Chapter) the shape functions are so complex algebraically that it is
doubtful if they could be isolated at all without the help of computer algebra.

For finite elements in the context of plane elasticity, the element stiffness matrix has
been shown in Chapter 2 (e.g. 2.69) to be given by integrals of the form

[km] =
∫∫

[B]T [D] [B] dx dy (3.7)

where [B] and [D] represent the strain-displacement and stress–strain matrices respectively.
In the case of quadrilateral elements, if the element is rectangular with its sides parallel

to the x- and y-axes, the term under the integral consists of simple polynomial terms which
can be easily integrated in closed form by separation of the variables, resulting in compact
terms like (2.63). In general however, quadrilateral elements will lead to very complicated
expressions under the integral sign which can only be tackled numerically.

Noting that “2-point” Gaussian quadrature, that is nip = 4, leads in most cases to
accurate estimates of the stiffness matrix of a 4-node general quadrilateral, a compromise
approach is to evaluate the contribution to the stiffness matrix coming from each of the
four “Gauss-points” algebraically and add them together, thus:

[km] ≈
4∑

i=1

Wi det |J|i ([B]T [D] [B])i (3.8)

where det |J| is the Jacobian described previously.
This at first leads to rather long expressions, but a considerable amount of cancelling

and simplification is possible (e.g. the 1/
√

3 term that appears in the sampling points of the
integration formula disappears in the simplification process). The algebraic expressions can

60 PROGRAMMING FINITE ELEMENT COMPUTATIONS

be generated with the help of a CAS and the risk of typographical errors can be virtually
eliminated by outputting the results in Fortran format.

The simplified algebraic expressions that form the stiffness matrix of the 4-node quadri-
lateral element by this method have been isolated, and form the basis of subroutine stiff4
used in Program 11.5 of this book. A detailed description of the method is given in Griffiths
(1994b).

The same technique can be applied to other element types (Cardoso 1994) and other
element matrices (e.g. 8-node quadrilaterals, 3D elements, mass, conductivity, etc). For
example, the technique is to be found again in Program 7.3, where the conductivity matrix of
a general 4-node quadrilateral element is computed algebraically using subroutine seep4.

A similar approach was used to create subroutine bee8 used in Programs 6.3, 6.8 and
6.9, which generates an algebraic version of the [B] matrix for a general 8-node quadrilateral
element, corresponding to any given local coordinate (ξ, η).

3.3 Local coordinates for triangular elements

Local coordinates for triangles are conveniently described in terms of a right-angled isosce-
les triangle of side length equal to unity as shown in Figure 3.4. This approach is exactly
equivalent to “area coordinates” (Zienkiewicz et al., 1971) in which any point within the
triangle can be referenced using local coordinates (L1, L2). Clearly for a plane region, only
two independent coordinates are necessary. However a third “coordinate” L3 given by,

L3 = 1 − L1 − L2 (3.9)

can sometimes be included to simplify the algebra.
For example, the shape functions for a 3-noded (“constant strain”) triangular element

(Figure 3.4(b)) take the form

N1 = L1

N2 = L3 (3.10)

N3 = L2

y

1

2

3

x L1

L2

12

3

(0,0) (1,0)

(0,1)

L3 = 1 − L1 − L2

(a) (b)

Figure 3.4 (a) General triangular element (b) Local coordinate system for triangular
elements

PROGRAMMING FINITE ELEMENT COMPUTATIONS 61

and as before the isoparametric property gives,

x = N1x1 + N2x2 + N3x3

= [N] {x}
y = N1y1 + N2y2 + N3y3 (3.11)

= [N] {y}

Equations (3.3) and (3.4) from the previous paragraph still apply regarding the Jacobian
matrix but equation (3.5) must be modified for triangles to give,

∫∫
dx dy =

∫ 1

0

∫ 1−L1

0
det |J| dL2 dL1 (3.12)

3.3.1 Numerical integration for triangles

Numerical integration over triangular regions is similar to that for quadrilaterals, and takes
the general form

∫ 1

0

∫ 1−L1

0
f (L1, L2) dL2 dL1 ≈

nip∑
i=1

Wif (L1, L2)i (3.13)

where Wi is the weighting coefficient corresponding to the sampling point (L1, L2)i and
nip represents the number of integrating points. Typical values of the weights and sampling
points are given in Table 3.2.

As with quadrilaterals, numerical integration can be exact for certain polynomials. For
example, in Table 3.2, the 1-point rule is exact for integration of first degree polynomials
and the 3-point rule is exact for polynomials of second degree. Reduced integration can
again be beneficial in some instances.

Computer formulations involving local coordinates, transformations of coordinates and
numerical integration are described in subsequent paragraphs.

Table 3.2 Coordinates and weights
in triangular integration formulae

nip (L1, L2)i Wi

1
(

1
3 , 1

3

)
1
2

3
(

1
2 , 1

2

)
1
6(

1
2 , 0
)

1
6(

0, 1
2

)
1
6

62 PROGRAMMING FINITE ELEMENT COMPUTATIONS

3.4 Multi-element assemblies

Properties of elements in isolation have been shown to be given by matrix equations, for
example the conductivity equation (2.123),

[kc] {φφφ} = {q} (3.14)

describing steady laminar fluid flow. Figure 3.5 shows a small mesh containing three quadri-
lateral elements, all of which have properties defined by (3.14). If an assembly strategy
is chosen (for non-assembly strategies see Section 3.5), the next task is to assemble the
elements and so derive the properties of the 3-element “global” system. Each element
possesses node numbers, not circled, which follow the scheme in Figure 3.1(b), namely
numbering clockwise starting at any corner. Since there is only one unknown at every
node, the fluid “potential”, each individual element equation can be written (omitting the
c-subscript for clarity),

k1,1 k1,2 k1,3 k1,4
k2,1 k2,2 k2,3 k2,4
k3,1 k3,2 k3,3 k3,4
k4,1 k4,2 k4,3 k4,4

φ1
φ2
φ3
φ4

 =

q1
q2
q3
q4

 (3.15)

However, in the mesh numbering system circled, mesh node 4 corresponds to element
node 1 of element 1 and to element node 2 of element 3. The total number of equations
for the mesh is 8 and, within this system, term k1,1 from element 1 and term k2,2 from
element 3 would be added together to give global term K4,4 and so on. The global matrix
for Figure 3.5 is given in Table 3.3, where the superscripts refer to element numbers.

The global matrix equation can be written as

[Kc] {���} = {Q} (3.16)

where the upper case notation emphasises that these are global (assembled) equations.

Element
1

Element
2

Element
3

1
2

3

5

6

7 8

1

2
3

4 1

2

3

4

1

2
3

4

Global node
numbering

Local node
numbering

4

Figure 3.5 Mesh of quadrilateral elements

PROGRAMMING FINITE ELEMENT COMPUTATIONS 63

Table 3.3 Global matrix assembly for mesh in Figure 3.5. Superscripts indi-
cate element numbers

k1
2,2 k1

2,3 0 k1
2,1 k1

2,4 0 0 0

k1
3,2 k1

3,3 + k2
2,2 k2

2,3 k1
3,1 k1

3,4 + k2
2,1 k2

2,4 0 0

0 k2
3,2 k2

3,3 0 k2
3,1 k2

3,4 0 0

k1
1,2 k1

1,3 0 k1
1,1 + k3

2,2 k1
1,4 + k3

2,3 0 k3
2,1 k3

2,4

k1
4,2 k1

4,3 + k2
1,2 k2

1,3 k1
4,1 + k3

3,2 k1
4,4 + k2

1,1 + k3
3,3 k2

1,4 k3
3,1 k3

3,4

0 k2
4,2 k2

4,3 0 k2
4,1 k2

4,4 0 0

0 0 0 k3
1,2 k3

1,3 0 k3
1,1 k3

1,4

0 0 0 k3
4,2 k3

4,3 0 k3
4,1 k3

4,4

This system or global matrix is symmetrical provided its constituent matrices are sym-
metrical. The matrix also possesses the useful property of “bandedness”, which means that
the non-zero terms are concentrated around the “leading diagonal” which stretches from
the upper left to the lower right of the table. In this example, no term in any row can be
more than four locations removed from the leading diagonal, so the system is said to have
a “semi-bandwidth” of nband = 4. This can be obtained by inspection from Figure 3.5
by subtracting the lowest from the highest global freedom number in each element.

The importance of efficient mesh numbering is illustrated for a mesh of line elements
in Figure 3.6 where the scheme in parentheses has nband = 13 compared to the scheme
using circles with nband = 2.

If system symmetry exists it should also be taken into account. Using a constant band-
width storage strategy, the system in Table 3.3 would require 40 storage locations (eight
equations times five terms on each line). Greater efficiency can be achieved through “sky-
line” storage (Bathe, 1996), where the variability of the bandwidth is taken into account,
requiring 27 storage locations in this case. Most of the programs described in this book
make use of this variable bandwidth or “skyline” storage strategy (see Figure 3.18 for
examples of different storage strategies).

1

3

4 6 10

12

141195

(7)(14)

8

13

2

7

(10)(11)(13) (8)(9)(12)

(1) (3) (4) (6)(5)(2)

Figure 3.6 Alternative mesh numbering schemes

64 PROGRAMMING FINITE ELEMENT COMPUTATIONS

Later in this chapter, subroutines are described, whereby global matrices like that in
Table 3.3 can be automatically assembled in band or “skyline” form, from the constituent
element matrices.

3.5 “Element-by-element” or “Mesh-free” techniques

Our purpose is to solve classes of problems, for example as summarised for solids by
equations (2.100) to (2.102) for a single element by

1. Static equilibrium problems, [km] {u} = {f} (3.17)

2. Eigenvalue problems, [km] {a} − ω2[mm] {a} = {0} (3.18)

3. Propagation problems, [km] {u} + [mm]

{
d2u
dt2

}
= {f(t)} (3.19)

Traditionally, computer programs have been based on the assembly techniques described
in the previous section. For static equilibrium problems, all the element [km] matrices and
{f} vectors would be assembled to form a “global” system of linear simultaneous equations
of the form

[Km] {U} = {F} (3.20)

Then the assembled global linear algebraic system would be solved, typically by some
form of Gaussian elimination. In the previous section, it was emphasised that this strategy
depends on efficient storage of the system coefficient matrices. In Gaussian elimination
processes, “fill-in” means that coefficients in Table 3.3 like the fourth one in the third row,
will not remain zero during the elimination process. Therefore, all coefficients contained
within a “band” or “skyline” must be stored and manipulated.

As problem sizes grow, this storage requirement becomes a burden, even on a modern
computer. For meshes of three-dimensional elements 100,000 equations are likely to have
a semi-bandwidth of the order of 1000. Thus 108 “words” of storage, typically 800 Mb
would be required to hold the coefficient matrix [Km]. If this space is not available, out-
of-memory techniques or “paging” (see Chapter 1) cause a serious deterioration in analysis
speeds.

For this reason, alternative solution strategies to Gaussian elimination have been sought,
and there has been a resurgence of interest in iterative techniques for the solution of large
systems like (3.20). Griffiths and Smith (1991) describe a number of algorithms of this
type, the most popular for symmetric positive definite systems being based on the method
of “conjugate gradients” (Jennings and McKeown, 1992).

3.5.1 Conjugate gradient method

Solution of the linear algebraic system (3.20) starts by setting

{P}0 = {R}0 = {F} − [Km] {U}0 (3.21)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 65

where {R}0 is the “residual” or error for a first trial {U}0, followed by k steps of the process:

{Q}k = [Km] {P}k

αk = {R}T
k {R}k

{P}T
k {Q}k

{U}k+1 = {U}k + αk {P}k
{R}k+1 = {R}k − αk {U}k (3.22)

βk = {R}T
k+1 {R}k+1

{R}T
k {R}k

{P}k+1 = {R}k+1 + βk {R}k
until the difference between {U}k+1 and {U}k is sufficiently small, as determined by a
convergence criterion. In the above {Q}, {P}, and {R} are vectors of length equal to the
number of equations to be solved (neq in programming terminology), while α and β are
scalars.

It can be seen that the algorithm described by equations (3.21) and (3.22) consists of
simple vector operations of the type {U} + α {P}, which are neatly coded in Fortran 95
using whole arrays (Chapter 1), inner products of the type {R}T {R} which are computed
by the Fortran 95 intrinsic procedure DOT_PRODUCT, and a single two-dimensional array
operation {Q} = [Km] {P} which can be computed by the Fortran 95 intrinsic procedure
MATMUL.

Vitally, however, if [Km] is a system stiffness matrix such as in (3.20) or Table 3.3,
and all that is required is the product [Km] {P} where {P} is a known vector, this product
can be carried out “element-by-element” without ever assembling [Km] at all. That is,

{Q} =
nels∑
i=1

[km]i {p}i (3.23)

where nels is the number of elements, [km]i is the element stiffness matrix of the ith
element and {p}i the appropriate part of {P}, gathered as

[
p7 p4 p5 p8

]T
for i = 3 in

Figure 3.5 and so on.
The storage required by such an algorithm, compared with the 800 Mb discussed earlier

for a 3D system of 100,000 unknowns would be an order of magnitude less, and would
grow linearly with the increase in number of elements or equations rather than as the
square. In practice “preconditioning” (Griffiths and Smith, 1991) can be used to accelerate
convergence of some iterative processes for solving the “element-by-element” version of
(3.20). Iterative strategies for the solution of equations of the type given by (3.18) and
(3.19) will also be described in due course.

3.5.2 Preconditioning

Iterative solution of (3.20) can be accelerated by use of a “preconditioner” matrix [P], such
that

[P][Km] {U} = [P] {F} (3.24)

66 PROGRAMMING FINITE ELEMENT COMPUTATIONS

or
[Km][P] {U} = [P] {F} (3.25)

With excessive computational effort, [P] could be calculated as the inverse of [Km] and
the solution obtained in one step as,

{U} = [Km]−1 {F} (3.26)

In practice it turns out that relatively crude approximations to [Km]−1 can be used to
construct [P] and hence be used in the iteration process. For example, “diagonal” precon-
ditioning uses the inverse of the diagonal terms of [Km] as a vector {P}. This approach
is easy to program and carries over easily to the parallel solutions in Chapter 12. Alter-
natively, element-by-element preconditioning (Hughes et al., 1983; Smith et al., 1989) can
be exploited, which also carries over in parallel.

3.5.3 Unsymmetric systems

It was shown in Section 2.16 that finite element discretisation of the Navier–Stokes
equations leads to unsymmetric element matrices which, if assembled, result in unsym-
metric global systems of equations. When these are solved (see Chapter 9) appropriate
Gaussian elimination solvers have to be used.

In an element-by-element context, we therefore seek equivalent iterative techniques
to the conjugate gradient processes described above for symmetric systems. The essential
feature that such a technique must possess is that it consists only of matrix–vector mul-
tiplications which can be carried out by (3.23) together with vector operations and inner
products which are readily parallelisable.

Kelley (1995) and Greenbaum (1997) have described variations on this theme. Typical
methods are:

GMRES Generalised minimum residual
BiCGStab Stabilised bi-conjugate gradient
BiCGStab(l) Stabilised hybrid bi-conjugate gradient

all of which have been applied to finite element systems by Smith (2000), who includes
code for both left- and right-preconditioned BiCGStab following (3.24) and (3.25).

In this book, the method selected is BiCGStab(l), described by Sleijpen et al. (1994)
for example. The BiCGStab algorithm is

{P}0 = {R}0 = {F} − [Km]{U}0 (3.27)

where {R}0 is the “residual” or error for a first trial {U}0.
We then choose a vector {R̂0} such that {R}T

0 {R̂0} �= 0, followed by k steps of the
process:

(a) {Q}k−1 = [Km]{P}k−1

{U}
k− 1

2
= {U}k−1 + αk−1{P}k−1

PROGRAMMING FINITE ELEMENT COMPUTATIONS 67

where αk−1 = {R}T
k−1{R̂0}

{Q}T
k−1{R̂0}

(3.28)

{R}
k− 1

2
= {R}k−1 − αk−1{Q}k−1

(b) {S}
k− 1

2
= [Km]{R}

k− 1
2

{U}k = {U}
k− 1

2
+ ωk{R}

k− 1
2

where ωk =
{R}T

k− 1
2
{S}

k− 1
2

{S}T
k− 1

2
{S}

k− 1
2

(3.29)

{R}k = {R}
k− 1

2
− ωk{S}

k− 1
2

βk = αk−1{R}T
k {R̂0}

ωk{R}T
k−1{R̂0}

{P}k = {R}k + βk{P}k−1 − βkωk{Q}k−1

until convergence is achieved. Compared with (3.21) and (3.22), we see a similar, but two
stage process with initialisation followed by stages (a) and (b) in both of which a matrix–
vector multiplication like (3.23) is involved, together with whole array operations and inner
products, readily computed in Fortran 95.

The hybrid BiCGStab(l) version (Sleijpen et al., 1994) involves essentially the same
arithmetic. Serial implementations involving it can be found in Chapter 9 and parallel
equivalents in Chapter 12.

3.5.4 Symmetric non-positive definite equations

When Biot’s equations for coupled consolidation (2.136, 2.137) are discretised by finite
elements as (3.112) or (3.115) these systems will be seen to be symmetric but non-positive
definite. Although a candidate solution algorithm is the minimum residual method (MIN-
RES), Smith (2000) found that the diagonally preconditioned conjugate gradient method
worked quite effectively and is used herein. However, the whole question of preconditioning
is a developing area (Chan et al., 2001).

3.5.5 Symmetric eigenvalue systems

Again in an element-by-element context we seek algorithms which have at their heart
matrix–vector operations like (3.23) and vector or inner product operations which can read-
ily be parallelised. Candidates (Bai et al., 2000) are the long-established Lanczos method
and the Jacobi-Davidson method in which interest has recently been revived (Sleijpen and
van der Vorst, 2000). In this book the Lanczos method is used, which is deceptively simple
(Griffiths and Smith, 1991). Suppose the eigenproblem (3.18) has been reduced to finding

68 PROGRAMMING FINITE ELEMENT COMPUTATIONS

eigenvalues and eigenvectors of a symmetric positive definite matrix [A] (the “Hermitian
Eigenvalue Problem”, Bai et al. 2000). In the Lanczos method, [A] is tridiagonalised by
the following algorithm:

Choose a start vector {Y1}, and set {Y0} to {0} and β0 to 0, where {ααα} and {βββ} are the
leading diagonal and off-diagonal respectively of the tridiagonalisation.

Then for j=1,neq (the number of equations),

{V} = [A]{Y1} − βj−1{Y0}
{Y0} = {Y1}

αj = {Y1}T{V} (3.30)

{Z} = {V} − αj {Y1}

βj = ({Z}T{Z}) 1
2

{Y1} = {Z}/βj

Again we see the basic algorithm involving a matrix–vector multiplication [A]{Y1} which
can be carried out element-by-element following (3.23) together with whole array operations
and inner products. However, for other than small systems, roundoff errors rapidly lead
to erroneous results as orthogonality of the Lanczos vectors is lost. Practical algorithms
(Bai et al., 2000) involve rather elaborate techniques to re-orthogonalise these vectors after
convergence to a given eigenvalue. Fortunately the basic structure of (3.30) is not affected,
but the storage of information involving the previous vectors is a burden and can limit
the applicability of some versions of the method for very large systems. The reduction of
(3.18) to “standard form” is left until Section 3.9.2.

3.6 Incorporation of boundary conditions

Eigenvalues of stiffness matrices of freely floating elements or meshes are sometimes
required, but normally in eigenvalue problems and always in equilibrium and propaga-
tion problems additional boundary information has to be supplied before solutions can be
obtained. For example, the system matrix defined in Table 3.3 is singular and the set of
equations (3.16) has no solution.

The simplest type of boundary condition occurs when the dependent variable in the
solution is known to be zero at various points in the region (and hence nodes in the finite
element mesh). When this occurs, the equation components associated with these degrees of
freedoms are not required in the solution and information is given to the assembly routine
which prevents these components from ever being assembled into the final system. Thus
only the non-zero freedom values are solved for.

A variation of this condition occurs when the dependent variable has known, but non-
zero, values at various locations (e.g. φ = constant). Although an elimination procedure
could be devised, the way this condition is handled in practice is by adding a “large”

PROGRAMMING FINITE ELEMENT COMPUTATIONS 69

number or “penalty” term, say 1020, to the leading diagonal of the “stiffness” matrix in
the row in which the prescribed value is required. The term in the same row of the right
hand side vector is then set to the prescribed value multiplied by the augmented “stiffness”
coefficient. For example, suppose the fluid head at node 5 in Figure 3.5 is known to be
�5 = 57.0. The unconstrained set of equations (3.16) would be assembled, and the term
K5,5 augmented by adding 1020. In the subsequent solution there would be an equation,

(K5,5 + 1020)�5 + "small" terms = 57.0 (K5,5 + 1020) (3.31)

which would have the effect of making �5 = 57.0. Clearly this procedure is only successful
if indeed “small terms” are small relative to 1020.

This method could also be used to enforce the boundary condition �i = 0.0, and has
some attractions in simplicity of data preparation.

Boundary conditions can also involve gradients of the unknown in the forms

∂φ

∂n
= 0 (3.32)

∂φ

∂n
= C1φ (3.33)

∂φ

∂n
= C2 (3.34)

where n is the normal to the boundary and C1, C2 are constants.
To be specific, consider a solution of the diffusion–advection equation (2.132) subject

to boundary conditions (3.32), (3.33), and (3.34) respectively. When the second-order terms
cx∂

2φ/∂x2 and cy∂
2φ/∂y2 are integrated by parts, boundary integrals of the type∮

S

cn [N]T ∂φ

∂n
ln dS (3.35)

arise, where cn is the diffusion property and ln is the direction cosine of the normal to
boundary S. Clearly the case ∂φ/∂n = 0 presents no difficulty, since the contour integral
(3.35) vanishes and this is the default boundary condition obtained at any free surface of
a finite element mesh.

However, (3.33) gives rise to an extra integral, which for the boundary element shown
in Figure 3.7 is ∫ k

j

cy [N]T C1 φ̃ ly dS (3.36)

When φ̃ is expanded as [N] {φφφ} we get an additional matrix,

−C1cy(xk − xj)

6

0 0 0 0
0 2 1 0
0 1 2 0
0 0 0 0

 (3.37)

which must be added to the left hand side of the element equations.

70 PROGRAMMING FINITE ELEMENT COMPUTATIONS

x

y

= C1f
∂f

∂y

∂f

∂x
= C2

i l

j k

Figure 3.7 Boundary conditions involving non-zero gradients of the unknown

For boundary condition (3.34) in Figure 3.7, the additional term is,∫ l

k

cx [N]T C2 lx dS (3.38)

which is just a vector

C2cx(yk − yl)

2

0
0
1
1

 (3.39)

which would be added to the right hand side of the element equations. For a further
discussion of boundary conditions see Smith (1979).

In summary, boundary conditions of the type φ = constant or ∂φ/∂n = 0 are the most
common and are easily handled in finite element analyses. The cases given by (3.33) and
(3.34) in which ∂φ/∂n is fixed to a non-zero value that is either a constant or a linear
function of φ, are somewhat more complicated, but can be appropriately treated. Examples
of the use of all these types of boundary specification are included in the applications
Chapters 4 to 12.

3.7 Programming using building blocks

The programs in subsequent chapters are constituted from over 70 “building blocks” in
the form of Fortran 95 functions and subroutines which perform the tasks of computing
and integrating the element matrices, assembling these into system matrices if necessary
and carrying out the appropriate equilibrium, eigenvalue or propagation calculations. In
Chapter 12, the message passing interface MPI libraries handle the necessary communica-
tion between processors.

It is anticipated that users will elect to pre-compile all of the building blocks and to
hold these permanently in a library. The library should then be automatically accessible to

PROGRAMMING FINITE ELEMENT COMPUTATIONS 71

the calling programs by means of a simple USE statement at the beginning of the program
(see Chapter 1, Section 1.9.9).

A summary of these subroutines and functions is given in Appendices D, E, and F
where their actions and input/output parameters are described. Appendix D describes func-
tions and subroutines that appear in the main library, and describes “black box” routines
(concerned with some matrix operations), whose mode of action the reader need not nec-
essarily know in detail, and special purpose routines which are the basis of specific finite
element computations. Some of these routines should be thought of as an addition to
the intrinsic Fortran 95 library functions such as MATMUL or DOT_PRODUCT, and could
well be substituted with equivalents from a mathematical subroutine library, for example
Basic Linear Algebra Subroutine (BLAS), perhaps tuned to a specific machine. Appendix
E describes subroutines that appear in the geom library which holds customised routines,
usually for generating element nodal coordinates and numbering for some of the simple
geometries used with the specific examples described in this book. Appendix F describes the
additional subroutines and functions needed by the Chapter 12 programs for their parallel
algorithms.

3.7.1 Black box routines

Readers are reminded of the much improved array handling facilities of Fortran 95, com-
pared with earlier FORTRANs. Chapter 1, Section 1.9 summarised such features as whole
array operations and intrinsic array procedures, which mean that most simple array manip-
ulations can be done using the power of the language itself and do not need to be
user-supplied.

In the programs which follow from Chapter 4 onwards, only three simple functions
or subroutines have been added to those provided as standard in the language. These are,
determinant, invert, and cross_product

determinant returns the determinant of a 1 × 1, 2 × 2, or 3 × 3 matrix (usually
the Jacobian matrix [J]), invert computes the inverse of a (small) square matrix, again
usually the Jacobian matrix (3.4) and cross_product computes the matrix result given
by the cross-product of two vectors.

A second batch of subroutines shown in Table 3.4 is concerned with the solution of lin-
ear algebraic equations. The subroutines have been split into factorisation and forward/back-
substitution phases.

Several subroutines are associated with eigenvalue and eigenvector determination; for
example for symmetric banded matrices, bandred tridiagonalises the matrix and bisect

Table 3.4 Subroutines for solution of linear algebraic equations

Method Gauss Cholesky Gauss Gauss

Storage Symmetric Symmetric Symmetric Unsymmetric
half-band skyline skyline full band

Factorisation banred sparin sparin gauss gauss band
Substitution bacsub spabac spabac gauss solve band

72 PROGRAMMING FINITE ELEMENT COMPUTATIONS

extracts all of the eigenvalues. It should be noted that these routines, although robust and
accurate, can be inefficient both in storage requirements and in run-time and should not
be used for solving very large problems, for which in any case it is unlikely that the full
range of eigenmodes would be required. The various vector iteration methods (Bathe, 1996)
should be resorted to in such cases.

One of the most effective of these is the Lanczos method (see Sections 3.5.5 and
3.9.2), in which subroutines lancz1 and lancz2 are used to calculate the eigenvalues
and eigenvectors of a matrix.

When the Lanczos procedure is described in more detail, it will be found that, in
common with its close relation the conjugate gradient procedure (Section 3.5.1), the method
requires a matrix–vector product where the matrix is essentially the global system stiffness
matrix, followed by a series of whole-vector operations. To save storage, the matrix–
vector product can be done “element-by-element” and this feature is taken advantage of in
Chapters 10 and 12.

Although simple matrix-by-vector multiplications can be accomplished by intrinsic
procedure MATMUL, advantage is usually taken of the structure of global system matrix
coefficients whenever possible. To allow for this, three special matrix-by-vector multiplica-
tion subroutines are provided as shown in Table 3.5 and further information on when these
routines should be used is given in Sections 3.9, 3.10 and 3.12.

In a teaching text such as this, elaborate input and output procedures are avoided. It is
expected that users may pre- and post-process their data using independent programs.

In order to describe the action of the remaining special purpose subroutines, (see
Appendix D), it is necessary first to consider the properties of individual finite elements and
then the representation of continua from assemblages of these elements. Static linear prob-
lems (including eigenproblems) are considered first. Thereafter modifications to programs
to incorporate time dependence are added.

Table 3.5 Subroutines for matrix–vector multiplication

Storage Symmetric Symmetric Unsymmetric
skyline lower triangle full band

Assembly subroutine fsparv formkb formtb
Matrix–vector multiplication linmul sky banmul bantmul
subroutine

3.7.2 Special purpose routines

The job of these routines is to compute the element matrix coefficients, for example the
“stiffness”, to integrate these over the element area or volume and finally, if necessary,
to assemble the element submatrices into a global system matrix or matrices. The black
box routines for equation solution, eigenvalue determination and so on then take over to
produce the final results. The remainder of this section introduces a notation that follows
the variable names used in the subroutine listings. When appropriate, mnemonics are used
so that the Jacobian matrix becomes jac and so on.

PROGRAMMING FINITE ELEMENT COMPUTATIONS 73

3.7.3 Plane elastic analysis using quadrilateral elements

As an example of element matrix calculation, consider the computation of the element
stiffness matrix for plane elasticity given by (2.69)

[km] =
∫∫

[B]T [D] [B] dx dy (3.40)

This formulation in the programs is described by the inner loop of the structure chart
in Figure 3.8.

It is assumed for the moment that the element nodal coordinates (x, y) have been
calculated and stored in the array coord. For example, for a 4-node quadrilateral (nod=4),

coord =

x1 y1
x2 y2
x3 y3
x4 y4

 (3.41)

The shape functions [N] are held in array fun, as specified in (3.1) by,

fun =

1
4 (1 − ξ)(1 − η)

1
4 (1 − ξ)(1 + η)

1
4 (1 + ξ)(1 + η)

1
4 (1 + ξ)(1 − η)

(3.42)

For all elements

Find the element nodal coordinates.

Form the stress−strain matrix [D]

Null the stiffness matrix [km]

For all integrating points

Find the integrating point coordinates and
weighting coefficients

Form the element shape functions and
derivatives with respect to local coordinates

Transform to derivatives with respect
to global coordinates

Form the strain-displacment matrix [B]

Form product [B]T[D][B]
Weight this contribution and add it to the

element stiffness matrix [km]

Figure 3.8 Structure chart for element matrix assembly assuming numerical integration

74 PROGRAMMING FINITE ELEMENT COMPUTATIONS

The [B] matrix contains derivatives of the shape functions with respect to global coor-
dinates, but first these are computed in the local coordinate system as

der =

∂ funT

∂ξ

∂ funT

∂η

 (3.43)

or

der = 1

4

[−(1 − η) −(1 + η) (1 + η) (1 − η)

−(1 − ξ) (1 − ξ) (1 + ξ) −(1 + ξ)

]
(3.44)

The information in (3.42) and (3.44) for a 4-node quadrilateral (nod=4) is formed by
the subroutines, shape_fun and shape_der for the specific Gaussian integration points
(ξ, η)i held in the array points where i runs from 1 to nip, the total number of sampling
points specified in each element. Figure 3.9(a) shows the node numbering and the order in
which the sampling (Gauss) points are scanned in a “2-point” scheme. Since there are two
integrating points in each coordinate direction nip=4 in this example. In all cases, points
and their corresponding weights (Table 3.1) are found by the subroutine sample, where
nip can take the values 1, 4 or 9 for quadrilaterals.

The derivatives der must then be converted into their counterparts in the (x, y) coor-
dinate system, deriv, by means of the Jacobian matrix transformation (3.4). From the
isoparametric property (3.2),

x = 1

4
(1 − ξ)(1 − η)x1 + 1

4
(1 − ξ)(1 + η)x2

+ 1

4
(1 + ξ)(1 + η)x3 + 1

4
(1 + ξ)(1 − η)x4 (3.45)

y = 1

4
(1 − ξ)(1 − η)y1 + 1

4
(1 − ξ)(1 + η)y2

+ 1

4
(1 + ξ)(1 + η)y3 + 1

4
(1 + ξ)(1 − η)y4

x

h

1

2 3

4 L1

L2

12

3
i = 1 i = 2

i = 3 i = 4
i = 1

Figure 3.9 Integration schemes for (a) quadrilateral element with nip=4, and (b) trian-
gular element with nip=1

PROGRAMMING FINITE ELEMENT COMPUTATIONS 75

and since the Jacobian matrix is given by

[J] =

∂x
∂ξ

∂y

∂ξ

∂x
∂η

∂y

∂η

 (3.46)

it is clear that its terms can be obtained from (3.45), once the derivatives of the shape func-
tions with respect to the local coordinates have been provided by subroutine shape_der,
thus

CALL shape_der(der,points,i)

jac = MATMUL(der,coord) (3.47)

det = determinant(jac)

The function determinant computes det, the determinant of the Jacobian matrix,
required later for the purposes of numerical integration.

In order to compute deriv we must invert jac using subroutine invert and finally
carry out the multiplication of this inverse by der to give deriv,

CALL invert(jac)

deriv = MATMUL(jac,der) (3.48)

It should be noted that subroutine invert overwrites the original matrix by its inverse,
thus jac in fact holds [J]−1 after the subroutine call.

The matrix [B] in (3.40) (called bee in program terminology) can now be assembled
as it consists of components of deriv, and this operation is performed by the call,

CALL beemat(bee,deriv) (3.49)

The components of the integral of [B]T [D] [B], at each of the nip integrating points, can
now be computed by transposing bee using the Fortran 95 intrinsic function TRANSPOSE,
and by forming the stress–strain matrix dee using the subroutine deemat. In 2D analysis
(ndim=2), subroutine deemat gives the plane strain stress–strain matrix (2.70). The
size of dee is given by nst, the number of components of stress and strain, which for 2D
elastic analysis is equal to 3. A plane stress analysis would be obtained by simply replacing
subroutine deemat by fmdsig.

The multiplication

btdb=MATMUL(MATMUL(TRANSPOSE(bee),dee),bee) (3.50)

gives btdb, the quantity to be integrated numerically by

km =

nip∑
i=1

deti*weights(i)*btdbi (3.51)

where weights(i) are the numerical integration weighting coefficients from (3.8).

76 PROGRAMMING FINITE ELEMENT COMPUTATIONS

As soon as the element matrix has been formed from (3.51) it can be assembled into
the global system matrix (or matrices) by special subroutines described later in this chapter.

Following equation solution, once the global nodal displacements are known, the ele-
ment displacements eld are retrieved, and the strains eps given by the strain-displacement
relations,

eps = MATMUL(bee,eld) (3.52)

where, in the case of a 4-node quadrilateral

eld = [u1 v1 u2 v2 u3 v3 u4 v4]T (3.53)

and stresses sigma from the stress–strain relations,

sigma = MATMUL(dee,eps) (3.54)

The variables u and v are simply the nodal displacements in the x and y directions respec-
tively assuming the nodal ordering of Figure 3.9(a).

In cases where the stiffness matrix km of a 4-node quadrilateral is required “ana-
lytically”, the integration loop in Figure 3.8 is replaced by a single call to the subroutine
stiff4 (see Program 11.5). Similarly, when strains and stresses are back-calculated using
8-node quadrilateral elements (usually at the sampling points) the “analytical”, subroutine
bee8 can be used to replace the lines of program given by (3.47) to (3.49) (see e.g.
Programs 6.3, 6.8, and 6.9).

The shape functions and derivatives provided by subroutines shape_fun and shape_
der allow analyses to be performed using quadrilateral elements with 4, 8 or 9 nodes (e.g.
Program 5.1). A summary of the shape functions for all the elements used in this book is
given in Appendix B.

Before describing the assembly process, which is common to all elements, modifications
to the element matrix calculation for different situations will first be described.

3.7.4 Plane elastic analysis using triangular elements

The previous section showed how the stiffness matrix of a typical 4-node quadrilateral
could be built up. In order to use triangular elements, very few alterations are required. For
example, for a 3-node triangular element (nod=3),

coord =

 x1 y1

x2 y2
x3 y3

 (3.55)

The shape functions [N] and their derivatives with respect to local coordinates at a
particular location (L1, L2, L3) (where L3 = 1 − L1 − L2) are held in the arrays fun and
der. Subroutine shape_fun delivers the shape functions,

fun =

L1
L3
L2

 (3.56)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 77

and subroutine shape_der delivers the derivatives with respect to L1 and L2

der =
[

1 −1 0
0 −1 1

]
(3.57)

The nodal numbering is shown in Figure 3.9(b). Exactly the same sequence of oper-
ations (3.47) to (3.51) as was used for quadrilaterals places the required derivatives with
respect to (x, y) in deriv, finds the Jacobian determinant det, forms the bee matrix
and numerically integrates the terms of the stiffness matrix km. For this simple element,
only one integrating point at the element centroid is required (nip=1). For higher-order
elements more triangular integrating points would be required. For example, the 6-node
triangle would usually require nip=3 for plane analysis. For integration over triangles,
the sampling points in local coordinates (L1, L2) are held in the array points and the
corresponding weighting coefficients in the array weights. As with quadrilaterals, both
of these items are provided by the subroutine sample. This subroutine allows the total
number of integrating points (nip) for triangles to take the values, 1, 3, 6, 7, 12, or 16. The
coding should be referred to in order to determine the sequence in which the integrating
points are sampled for nip>1.

3.7.5 Axisymmetric strain of elastic solids

The formation of the strain-displacement matrix follows a similar course to that described by
(3.47) to (3.49), however in this case bee must be augmented by a fourth row corresponding
to the “hoop” strain εθ as shown in (2.76). The cylindrical coordinates (r, z) replace their
counterparts (x, y). The stress–strain matrix is given by equation (2.77) and is returned
by subroutine deemat with nst, the number of stress and strain components now set
to 4.

In this case, the integrated element stiffness is given by (2.74), namely

[km] =
∫∫

[B]T [D] [B] r dr dz (3.58)

where r is the radial coordinate given in the programs as gc(1) from the isoparametric
relationship,

gc = MATMUL(coord,fun) (3.59)

where gc and hence fun are evaluated at the sampling points.
The numerical integration summation in axisymmetry is written as

km =

nip∑
i=1

deti*weights(i)*btdbi*gc(1)i (3.60)

By comparison with (3.51) it may be seen that when evaluated numerically, the algo-
rithms for axisymmetric and plane stiffness formation will be essentially the same, despite
the fact that they are algebraically quite different. This is very significant from the points
of view of programming effort and of program flexibility (e.g. Program 5.1).

78 PROGRAMMING FINITE ELEMENT COMPUTATIONS

However (3.58) now involves numerical evaluation of integrals involving 1/r (held in
the [B] matrix, see 2.76) which do not have simple polynomial representations. Therefore,
in contrast to plane problems, it will be impossible to evaluate (3.60) exactly by numerical
means, and accuracy may deteriorate as r approaches zero. Provided integration points
do not lie on the r = 0 axis, however, reasonable results are usually achieved using a
similar order of quadrature to that used in plane analysis. Customised numerical integration
schemes for axisymmetric elements are available (Griffiths, 1991), but are not used in
this text.

3.7.6 Plane steady laminar fluid flow

It was shown in (2.126) that a fluid element has a “stiffness” or conductivity matrix defined
in 2D by,

[kc] =
∫∫

[T]T [K] [T] dx dy (3.61)

and the similarity to (3.40) is obvious. The matrix deriv simply contains the derivatives
of the element shape functions with respect to (x, y) which were previously needed in
the analysis of solids and formed by the sequence (3.47) to (3.48), while the constitutive
matrix [K] (called kay in program terminology) contains the permeability (or conductivity)
properties of the element in the form

kay =
[

kx 0
0 ky

]
(3.62)

Numerical integration of the conductivity matrix in planar problems is completed by
the sequence,

dtkd=MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)

kc =

nip∑
i=1

deti*weights(i)*dtkdi (3.63)

By comparison with (3.51) it will be seen that these physically very different problems
are likely to require similar solution algorithms.

3.7.7 Mass matrix formation

The mass matrix was shown in Chapter 2, for example (2.71), to take the general form

[mm] = ρ

∫∫
[N]T [N] dx dy (3.64)

where [N] holds the shape functions.

PROGRAMMING FINITE ELEMENT COMPUTATIONS 79

In the case of transient plane fluid flow, there is no density term, however with only
one degree of freedom per node (nodof=1), the “mass” matrix mm is particularly easy
to form by numerical integration giving the sequence

CALL cross_product(fun,fun,ntn)

mm =

nip∑
i=1

deti*weights(i)*ntni (3.65)

where cross_product forms the array ntn prior to integration.
In the case of dynamic applications in plane stress or strain of solids (nodof=2),

because of the arrangement of the displacement vector in (3.53) it is convenient to use a
special subroutine ecmat to form the terms of the mass matrix as ecm before integration,
hence,

CALL ecmat(ecm,fun,ndof,nodof)

mm = rho*

nip∑
i=1

deti*weights(i)*ecmi (3.66)

where ndof is the number of degrees of freedom of the element and rho is the mass
density of the material.

When “lumped” mass approximations are used mm becomes a diagonal matrix. For a
4-noded quadrilateral (nod=4), for example, the lumped mass matrix is given by

mm = rho*area/nod* [I] (3.67)

where area is the element area and [I] the unit matrix. For higher order elements, however,
all nodes may not receive equal (and indeed intuitively “obvious”) weighting. In Chapters
10 and 11, subroutine elmat is employed to generate the lumped mass matrix for 4- and
8-node quadrilaterals.

3.7.8 Higher-order 2D elements

The shape functions and derivatives provided by subroutines shape_fun and shape_der
allow analyses to be performed using quadrilateral elements with 4, 8, or 9 nodes, or
triangular elements with 3, 6, 10, or 15 nodes (e.g. Program 5.1). A summary of the
shape functions for those elements is given in Appendix B. In the following two sections,
examples of higher order quadrilateral and triangular elements are briefly described. As
will be seen, programs using different element types will be identical, although operating
on different sizes of arrays.

8-node quadrilateral

To emphasise the ease with which element types can be interchanged in programs, consider
the next member of the isoparametric quadrilateral group, namely the 8-noded “quadratic”

80 PROGRAMMING FINITE ELEMENT COMPUTATIONS

x

h

x

y

6

7
1

8

4
3

5

2

Figure 3.10 General quadratic quadrilateral element

quadrilateral element with mid-side nodes shown in Figure 3.10. The coordinate matrix
becomes

coord =

x1 y1
x2 y2
x3 y3
x4 y4
x5 y5
x6 y6
x7 y7
x8 y8

(3.68)

and using the same local coordinate system for quadrilaterals, the shape functions [N]T are
now

fun =

1
4 (1 − ξ)(1 − η)(−ξ − η − 1)

1
2 (1 − ξ)(1 − η2)

1
4 (1 − ξ)(1 + η)(−ξ + η − 1)

1
2 (1 − ξ2)(1 + η)

1
4 (1 + ξ)(1 + η)(ξ + η − 1)

1
2 (1 + ξ)(1 − η2)

1
4 (1 + ξ)(1 − η)(ξ − η − 1)

1
2 (1 − ξ2)(1 − η)

(3.69)

formed by subroutine shape_fun. The number of nodes (nod=8), and the dimensionality
of the problem (ndim=2), serve to uniquely identify the required element, and hence the
appropriate values of fun. Their derivatives with respect to local coordinates, der, are
again formed by the subroutine shape_der.

The sequence of operations described by (3.47) to (3.51) obtains the terms needed for
the element stiffness matrix integration.

PROGRAMMING FINITE ELEMENT COMPUTATIONS 81

x

y

L1

L2

1

2

3

4

5
6

Figure 3.11 General 6-noded triangular element

6-node triangle

Another plane element available for use with the programs later in this book is the next
member of the triangle family, namely the 6-noded triangular (nod=6) element as shown
in Figure 3.11.

The coordinate matrix becomes

coord =

x1 y1
x2 y2
x3 y3
x4 y4
x5 y5
x6 y6

(3.70)

and using the same local coordinate system for triangles, the shape functions [N]T are now

fun =

(2L1 − 1)L1
4L3L1

(2L3 − 1)L3
4L2L3

(2L2 − 1)L2
4L1L2

(3.71)

Both the shape functions fun and the derivatives der are formed as usual by the
subroutines shape_fun and shape_der. The sequence of operations described by (3.47)
to (3.51) again follow to generate the stiffness matrix of the element.

3.7.9 Three-dimensional elements

Cuboidal elements

The shape functions and derivatives provided by subroutines shape_fun and shape_der
allow analyses to be performed using cuboidal elements with 8, 14, or 20 nodes (see
Appendix B).

82 PROGRAMMING FINITE ELEMENT COMPUTATIONS

x

z
y

1

2
3

4

5

6 7

8

Figure 3.12 General linear hexahedron “brick” element

As was the case with changes of plane element types, changes of element dimensions
are readily made. For example, the 8-node hexahedral “brick” element in Figure 3.12 is
the three-dimensional extension of the 4-noded quadrilateral.

The coordinate matrix becomes

coord =

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7
x8 y8 z8

(3.72)

and using the three-dimensional local coordinate system (ξ, η, ζ), the shape functions
become

fun =

1
8 (1 − ξ)(1 − η)(1 − ζ)

1
8 (1 − ξ)(1 − η)(1 + ζ)

1
8 (1 + ξ)(1 − η)(1 + ζ)

1
8 (1 + ξ)(1 − η)(1 − ζ)

1
8 (1 − ξ)(1 + η)(1 − ζ)

1
8 (1 − ξ)(1 + η)(1 + ζ)

1
8 (1 + ξ)(1 + η)(1 + ζ)

1
8 (1 + ξ)(1 + η)(1 − ζ)

(3.73)

which together with their derivatives with respect to local coordinates, are as usual formed
by the subroutines shape_fun and shape_der with ndim=3 and nod=8.

PROGRAMMING FINITE ELEMENT COMPUTATIONS 83

The sequence of operations described by (3.47) to (3.48) results in deriv, the required
gradients with respect to (x, y, z) and the Jacobian determinant det.

For a three-dimensional elastic solid the element stiffness is given by

[km] =
∫∫∫

[B]T [D] [B] dx dy dz (3.74)

where bee and dee are formed by the subroutines beemat and deemat as usual, but
with nst, the number of components of stress and strain now 6.

The numerical integration summation follows the same course as described previously
for 2D elements in equations (3.51).

The 8-node cuboidal element will usually be integrated used “2-point” Gaussian integra-
tion (nip=8). For higher order cuboid elements the number of integrating points can expand
rapidly. For example, “exact” integration of the 20-node cuboid element (see Appendix B)
requires “3-point” integration, or nip=27. As with the 8-node plane element, “reduced”
integration of the 20-node element (nip=8) can often improve its performance; however
Smith and Kidger (1991) show that full nip=27 is essential with this element if spurious
“zero energy” eigenmodes are to be avoided in the element stiffness. In addition to the
conventional Gaussian rules, subroutine sample allows Irons’s (1971) 14 and 15 point
rules to be used for cuboid elements, and the reader is invited to experiment with these
different integration strategies.

For 3D steady laminar fluid flow, the element conductivity or “stiffness” matrix is
given by

[kc] =
∫∫∫

[T]T [K] [T] dx dy dz (3.75)

where the property matrix is formed as

[K] =

 kx 0 0

0 ky 0
0 0 kz

 (3.76)

Similarly, the “mass” matrix for fluid flow is

[mm] =
∫∫∫

[N]T [N] dx dy dz (3.77)

In both cases, an identical sequence of operations as described previously for planar
flow in equations (3.63) and (3.65) delivers the numerically integrated conductivity matrix
kc and “mass” matrix mm.

A 14-node hexahedral element

The 20-node element mentioned previously is rather cumbersome and its stiffness can be
expensive to compute in non-linear analyses, especially if employing nip=27. Furthermore,
the 20-node brick element stiffness matrix exhibits “zero energy modes” when integrated
using nip=8 (Smith and Kidger, 1991) which could be problematic.

84 PROGRAMMING FINITE ELEMENT COMPUTATIONS

1

3

5

7

8

11 12

4

13

2

z

x

y

Figure 3.13 A 14-node hexahedron “brick” element

1

x

h

z

x2

z2

xh
hz

xz

x3

h3

z3

h2z

hz 2

xz 2
x2z

x2h

xh 2

xh z

x4

h4

z4

x3h
x2h2

xh 3 h3z

h2z2

hz 3

xz 3
x2z2

x3z

h2

xhz 2

x2hz
xh 2z

this plane is
"Pascals triangle"

Figure 3.14 The Pascal pyramid

An alternative is to use a 14-node element (Smith and Kidger, 1992). As shown
in Figure 3.13, this has 8 corner and 6 mid-face nodes. These nodes “populate” three-
dimensional space more uniformly than 20 nodes do, since the latter are concentrated
along the mesh lines. However, there is no unique choice of shape functions for a 14-node
element. Figure 3.14 shows the “Pascal pyramid” of polynomials in (ξ, η, ζ) (or L1, L2, L3)
and one could experiment with various combinations of terms. It should be noted that the

PROGRAMMING FINITE ELEMENT COMPUTATIONS 85

nearest plane of the pyramid is “Pascal’s triangle”, which can be used to select shape
function terms for 2D elements. Smith and Kidger (1992) tried six permutations which
were called “Types 1 to 6”. For example, Type 1 contained all 10 polynomials down to
the second “plane” of the pyramid plus the terms ξηζ , ξ2η, η2ζ , and ζ 2ξ from the third
“plane”. Type 6 selectively contained terms as far down as the fifth “plane” and this is the
version available in library subroutines shape_fun and shape_der. Computer algebra
was essential when deriving the shape functions for the “Type 6” element which are listed
in Appendix B.

Tetrahedral elements

An alternative element for 3D analysis is the tetrahedron, the simplest of which has 4 corner
nodes and is called the “constant strain” tetrahedron. The local coordinate system involves
mapping a general tetrahedron onto a right-angled tetrahedron with three orthogonal sides
of unit length as shown in Figure 3.15 and Appendix B. This approach can be shown to
be identical to “volume coordinates”. For example, point P can be identified uniquely by
the coordinates (L1, L2, L3). As with triangles, an additional coordinate L4 given by

L4 = 1 − L1 − L2 − L3 (3.78)

is sometimes retained for algebraic convenience.
The shape functions for the “constant strain” tetrahedron are

fun =

L1
L2
L3
L4

 (3.79)

and these, together with their derivatives with respect to L1, L2 and L3 are formed by the
usual subroutines shape_fun and shape_der with ndim=3 and nod=4. The sequence

4
z

x

y

1

3

2

L1

L2

L3

Figure 3.15 A 4-node tetrahedron element

86 PROGRAMMING FINITE ELEMENT COMPUTATIONS

of operations described by (3.47) to (3.51) again follows to generate the stiffness matrix
of the element.

The “constant strain” tetrahedron requires only one integrating point (nip=1) situated
at the element centroid.

The addition of mid-side nodes results in the 10-node tetrahedron, which represents
the next member of family. Reference to Figure 3.14 shows that the tetrahedral family of
shape functions maps naturally onto the Pascal pyramid (4, 10, 20, 35, etc. nodes). These
elements could easily be implemented by the interested reader.

Transient, coupled poro-elastic transient and elastic-plastic analysis all involve manip-
ulations of the few simple element property matrices described above. Before describing
such applications, methods of assembling elements and of solving linear equilibrium and
eigenvalue problems will first be discussed.

3.7.10 Assembly of elements

The special purpose subroutines formnf, formkb, formku, fkdiag, formtb, and
fsparv are concerned with assembling the individual element matrices to form the global
matrices that approximate the desired continuum, if assembly is preferred to an “element-
by-element” approach. Allied to these there must be a specification of the geometrical
details, in particular the nodal coordinates of each element and the element’s place in some
overall node numbering scheme.

Large finite element programs contain mesh generation code, which is usually of some
considerable complexity. Indeed, in much finite element work, the most expensive and time
consuming task is the preparation of the input data using the mesh generation routines. In
the present book, this aspect of the computations is essentially ignored and most examples
are restricted to simple classes of geometry, such as those shown in Figure 3.16, which
can be automatically built up by “geometry” subroutines.

Alternatively, more general purpose programs are presented later in which the element
geometries and nodal connectivities are simply read into the analysis program as data,
having previously been worked out by an independent mesh generator.

In the present work, a typical program might use plane 4-node rectangular elements, so
subroutines such as geom_rect are provided to generate coordinates and node numbering.

A full list of “geometry” subroutines is given in Appendix E.
With reference to Figure 3.16, the nodes of the mesh are first assigned numbers as

economically as possible (i.e. always numbering in the “shorter” direction to minimise
the bandwidth). Associated with each node are degrees of freedom (displacements, fluid
potentials, etc.) which are numbered in the same order as the nodes. However, account can
be taken at this stage of whether a degree of freedom exists or whether, generally at the
boundaries of the region, the freedom is suppressed, in which case that freedom number is
assigned the value zero. Alternatively, all freedoms can be assigned values whether they
equal zero or not, and fixed later to their required values using the “penalty” approach.
This latter approach leads to larger systems of equations, but with simpler freedom num-
bering.

In the examples that follow, the “zero freedoms” have been removed from the assembly
process.

PROGRAMMING FINITE ELEMENT COMPUTATIONS 87

4

2

3

5

6

7

8

9

1

x

y

12

10

11

Boundary fixed to a zero potential

0 0 0 0

1

2

3

4

5

6

7

8

(a)

4

2

3

5

6

7

8

9

1

x

y

12

10

11

Restrained in both directions

Restrained in x-direction

1,2 5,6

3,4

0,0

7,8

0,0

11,12

0,0

0,13

0,14

9,10

0,0

(b)

4

2

3

5

6

7

8

9

1

x

y

12

10

11

Restrained in x-directionRestrained at zero pressure

Restrained in both directions

1,2,0

3,4,5

0,0,6

7,8,0

9,10,11

0,0,12

13,14,0

15,16,17

0,0,18

0,20,21

0,0,22

0,19,0

(c)

nxe = 3
nye = 2
nels = 6
neq = 8
nn = 12
nr = 4
nod = 4
nodof = 1
ndof = 4
nband = 3

nxe = 3
nye = 2
nels = 6
neq = 14
nn = 12
nr = 6
nod = 4
nodof = 2
ndof = 8
nband = 7

nxe = 3
nye = 2
nels = 6
neq = 22
nn = 12
nr = 9
nod = 4
nodof = 3
ndof = 8
ntot = 12
nband = 10

E

Figure 3.16 Numbering system and data for regular meshes. (a) One degree of freedom
per node. (b) Two degrees of freedom per node. (c) Coupled problem with three degrees
of freedom per node

The variables in Figure 3.16 have the following meaning:

nxe elements counting in x direction
nye elements counting in y direction
nels total number of elements
neq total number of (non-zero) freedoms in problem
nn total number of nodes in problem
nr number of restrained nodes
nod number of nodes per element

88 PROGRAMMING FINITE ELEMENT COMPUTATIONS

nodof number of freedoms per node
ndof number of freedoms per element
ntot total number of freedoms per element (for coupled problems)
nband the half-bandwidth

In many of the programs in the book which use the geometry subroutine geom_rect,
the values of nels and nn are first calculated by the subroutine mesh_size.

In scalar potential problems, there is one degree of freedom possible per node, the
“potential” φ (Figure 3.16(a)). In plane or axisymmetric strain problems there are two,
namely u and v, the components of displacement in the x- and y- (or r- and z-) directions
respectively (Figure 3.16(b)). In planar coupled solid-fluid problems there are three, with u,
v, and uw (where uw = excess pressure, Figures 3.16(c)), and similarly in Navier–Stokes
applications the order is u, p, v (where p = pressure, and u and v represent velocity
components). Regular 3D displacement problems have three freedoms per node given by
u, v, and w (in x, y, and z). For 3D coupled solid–fluid problems, the 4 degrees of freedom
per node are u, v, w, and uw, while for 3D Navier–Stokes the order is u, p, v, and w.

The information about the degrees of freedom associated with any node in specific
problems is stored in an integer array nf called the “node freedom array”, formed by the
subroutine formnf.

The node freedom array nf has nodof rows, one for each degree of freedom per
node, and nn columns, one for each node in the problem analysed. Formation of nf is
achieved by specifying, as data to be read in, the number of any node which has one or
more restrained freedoms, followed by the digit 0 if the node is restrained in that sense
and by the digit 1 if it is not. The appropriate Fortran 95 coding is

READ(10,*)nr,(k,nf(:,k),i=1,nr)

CALL formnf(nf)

For example, to create nf for the problem shown in Figure 3.16(b) the data specified
and the resulting nf are listed in Table 3.6.

In regular rectangular meshes, data for generating the mesh coordinates and connec-
tivity depends on a “geometry” subroutine such as geom_rect, which takes as input the
number of elements in the x(r)- and y(z)-directions respectively (nxe, nye), together with
the x- and y-coordinates of the vertical and horizontal lines that form the mesh (held in

Table 3.6 Formation of a typical nodal freedom array

Data Resulting nf array

6 1 3 0 5 7 0 9 11 0 0 0 0
3 0 0 2 4 0 6 8 0 10 12 0 13 14 0
6 0 0
9 0 0

10 0 1
11 0 1
12 0 0

PROGRAMMING FINITE ELEMENT COMPUTATIONS 89

vectors x_coords and y_coords). For each element, the subroutine works out the nodal
coordinates (held in array coord) and the nodal numbering (held in vector num). Both the
coordinates and the node numbering are generated in an order consistent with the local node
numbering of the element. In the case of a 4-node quadrilateral, this would be in the order
1-2-3-4 as shown in Figure 3.1 (see Appendix B for local numbering of all elements used
in this book). For example, element E in Figure 3.16(b) has the node numbering vector

num = [8 7 10 11]T (3.80)

Once the element node numbering is found, the “steering vector” g which holds the freedom
numbers for the element can be found by comparing num with the “node freedom array”
nf. This operation is performed by the subroutine num_to_g, which, again for element E
would give

g = [11 12 9 10 0 13 0 14]T (3.81)

In its turn g is used to assemble the coefficients of the element property matrices such
as km, kc, and mm into the appropriate places in the overall global coefficient matrix. This
is done according to one of the schemes given in Table 3.7.

A simple three-dimensional mesh is shown in Figure 3.17 and the system coefficients
can again be assembled using the same building blocks.

Although the user of these subroutines does not strictly need to know how the storage is
carried out, examples are given in Figure 3.18 of the most commonly used storage strategies
generated by the subroutines in Table 3.7.

x

y

z

1
3

4 5

8 9

10 11 12

19 20 21

24

27

15

2

7

6

18

Plane
restrained
in
y-direction

Plane
restrained
in
x-direction

Fixed base

0,0,1 2,0,3

0,0,6 7,0,8 9,0,10

0,0,0 0,0,00,0,0

0,11,12 13,14,15
16,17,18

0,27,28 29,30,31

32,33,34

24,25,26
4,0,5

40,41,42

0,0,0

nxe = 2
nye = 2
nze = 2
nels = 8
neq = 42
nn = 27
nr = 19
nod = 8
nodof = 3
ndof = 24
nband = 29

0,0,0

Figure 3.17 Numbering system and data for a regular 3D mesh with three degrees of
freedom per node

90 PROGRAMMING FINITE ELEMENT COMPUTATIONS

Table 3.7 Summary of assembly subroutines

Subroutine Banding/symmetry/ Storage Diagonals
triangle?

fsparv Yes/yes/lower kv(1:kdiag(neq)) kdiag “skyline”
formku Yes/yes/upper ku(neq,nband+1)) 1st col.
formkb Yes/yes/lower kb(neq,nband+1)) nband+1th col.
formtb Yes/no/both pb(neq,2(nband+1)-1) nband+1th col.

0 0 0 x x x x 0 0

 0 0 x x x 0 0 0

 0 x x x 0 x 0

 x 0 0 x x x

 0 0 x x x x

 0 0 0 x x x

nband+1
=4

x x x x 0 0

x x x 0 0 0

x x x 0 x 0

x 0 0 x x x 0

0 0 x x x x 0 0

0 0 0 x x x 0 0 0

nband+1
=4

neq=6

x x x x 0 0

x x x 0 0 0

x x x 0 x 0

x 0 0 x x x

0 0 x x x x

0 0 0 x x x

Symmetric matrix. Lower triangle
stored as a rectangle.
Assembly routine: formkb
Diagonals in nband+1th column.

Symmetric matrix. Upper triangle
stored as a rectangle.
Assembly routine: formku
Diagonals in 1st column.

Symmetric matrix. Lower triangle
stored as a skyline vector.
Assembly routine: fsparv
Diagonal locations stored in
kdiag=[1 3 6 10 13 16]T

Non-symmetric matrix. Full band
stored as a rectangle.
Assembly routine: formtb
Diagonals in nband+1th column.

neq=6

0 0 0 x x x x 0 0

 0 0 x x x 0 0 0

 0 x x x 0 x 0

 x 0 0 x x x 0

 0 0 x x x x 0 0

 0 0 0 x x x 0 0 0

2*(nband+1)-1
=7

Figure 3.18 Examples of storage strategies and assembly subroutines for symmetric and
non-symmetric banded arrays (neq=6, nband=3)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 91

The strategy in the majority of programs in this book is the “skyline” approach. It
should be noted that fsparv stores only those numbers within the “skyline” in the form
of a vector. Information regarding the position of the diagonal terms within the resulting
vector is held in the integer vector kdiag formed by subroutine fkdiag.

3.8 Solution of equilibrium equations

If an assembly strategy is chosen, after specification of boundary conditions, a typical
global equilibrium equation is

[Km] {U} = {F} (3.82)

in which the terms of the global coefficient matrix [Km] have usually been assembled
by subroutine fsparv and stored in a vector called kv, and the global right-hand side
vector {F}, usually stored in a vector called loads, is just input as data. The black box
subroutines for equation solution for the unknown vector {U} depend of course on the
method of coefficient storage according to the schemes shown in Table 3.8.

Table 3.8 Equation solution subroutines

Coefficients Solution Method
formed by routines

fsparv

{
sparin
spabac

Cholesky

fsparv

{
sparin gauss
spabac gauss

Gauss

formtb

{
gauss band
solve band

Gauss

In fact, to save storage, all of the solution routines overwrite the right hand side by
the solution. That is, following solution of (3.82) the vector loads holds the solution.
The storage strategy adopted by the compiler and the hardware, as described in Chapter 1,
strongly influences the solution method that should be used for large problems.

For very large systems, assembly would not be used at all, and the iterative processes
described in Section 3.5 would be substituted.

3.9 Evaluation of eigenvalues and eigenvectors

Before solution, it is often necessary to reduce the eigenvalue equation to “standard form”

[A] {Z} = ω2 {Z} (3.83)

where [A] is symmetric, {Z} represents the eigenvector and ω2 the eigenvalue.

92 PROGRAMMING FINITE ELEMENT COMPUTATIONS

3.9.1 Jacobi algorithm

The problem frequently presents itself in the form of a generalised eigenproblem of the
form

[Km] {X} = ω2 [Mm] {X} (3.84)

where [Km] and [Mm] are the global stiffness and mass matrices respectively. For example,
the stiffness can be stored as a banded matrix having been formed by subroutine formku
(Table 3.7). The mass would then be either a banded matrix with the same structure as
the stiffness or more frequently if the mass is assumed to be “lumped”, a diagonal matrix
which can be stored in a vector diag with the help of subroutine formlump. In order to
reduce (3.84) to the required form (3.83) it is necessary to factorise the mass matrix by
forming

[Mm] = [L] [L]T (3.85)

While this is essentially a Cholesky factorisation, it is particularly simple in the case
of a diagonal matrix, in which case the diagonal terms in [L] are simply the square roots
of the diagonal terms in [Mm] and the inverse of [L] merely consists of the reciprocals of
these square roots. In any case,

[Km] {X} = ω2 [L] [L]T {X} (3.86)

which is then reduced to standard form by making the substitution

[L]T {X} = {Z} (3.87)

Then
[L]−1 [Km] [L]−T {Z} = ω2 {Z} (3.88)

is of the desired form (3.83). Having solved for {Z}, the required eigenvectors {X} are read-
ily recovered using (3.87). The subroutines bandred and bisect deliver the appropriate
eigenvalues.

3.9.2 Lanczos algorithm

The transformation technique previously described is robust in that it will not fail to find
an eigenvalue or to detect multiple roots. However, it is expensive to use on large problems
for which, in general, vector iteration methods are preferable. Since the heart of all of these
involves a matrix-by-vector product as shown in Section 3.5.5, they are ideal for “element-
by-element” manipulation, in which case the lumped mass matrix is best used. Programs
described in Chapters 10 and 12 use the HSL (2002) package EA25 which implements the
work of Parlett and Reid (1981) on the Lanczos algorithm. These subroutines calculate the
eigenvalues and eigenvectors of a symmetric matrix, say [A] from (3.83), requiring the user
only to compute matrix–vector products and whole vector additions of the form [A]{V} +

PROGRAMMING FINITE ELEMENT COMPUTATIONS 93

{U} similar to those described in (3.30) for {U} and {V} provided by the subroutines. These
operations can be carried out element-wise as was described in Section 3.5.

There is a slight additional complexity in that, as in (3.84) we often have the generalised
eigenvalue problem to solve. For consistent mass approximations [L][L]T in (3.85) is
formed by Cholesky factorisation using cholin. Then on each Lanczos step from (3.30),
wherever [L]−1 [Km] [L]−T {V} + {U} is called for, we compute

[L]T {Z1} = {V} chobk2
{Z2} = [Km] {Z1} banmul

[L] {Z3} = {Z2} chobk1
{U} = {U} + {Z3} whole vector operation

(3.89)

Finally, the true eigenvectors are recovered from the transformed ones using backward
substitution (chobk2 as in 3.87). For lumped mass approximations, essentially the same
operations are performed but the diagonal nature of [L] means that subroutine calls can be
dispensed with.

3.10 Solution of first order time dependent problems

A typical equation at the element level from (2.131) is given by

[kc] {φφφ} + [mm]

{
dφφφ

dt

}
= {q} (3.90)

where {φφφ} represents the dependent variable, and {q} represents any additional sources
or sinks, and may be a function of time. There are many ways of integrating this set
of ordinary differential equations, and modern methods for small numbers of equations
would probably be based on variable order, variable timestep methods with error control.
However, for large engineering systems more primitive methods are still mainly used,
involving linear interpolations and fixed time steps t . If an element assembly method is
to be used, [kc] becomes [Kc], [mm] becomes [Mm] and the basic equations can be written
at two consecutive time steps “0” and “1” as follows:

[Kc] {���}0 + [Mm]

{
d���

dt

}
0

= {Q}0 (3.91)

[Kc] {���}1 + [Mm]

{
d���

dt

}
1

= {Q}1 (3.92)

where {���} and {Q} represent the global counterparts of {φφφ} and {q}.
A third equation advances the solution from “0” to “1” using a weighted average of

the gradients at the beginning and end of the time interval, thus,

{���}1 = {���}0 + t

(
(1 − θ)

{
d���

dt

}
0
+ θ

{
d���

dt

}
1

)
(3.93)

94 PROGRAMMING FINITE ELEMENT COMPUTATIONS

Elimination of {d���/dt}0 and {d���/dt}1 from equations (3.91) to (3.93) leads to the following
recurrence equation between time steps “0” and “1”:

([Mm] + θt [Kc]) {���}1 = ([Mm] − (1 − θ)t [Kc]) {���}0

+ θt {Q}1 + (1 − θ)t {Q}0 (3.94)

This system is only unconditionally “stable” (i.e. errors will not grow unboundedly)
if θ ≥ 1/2. Common choices would be θ = 1/2, giving the “Crank–Nicolson” method,
where, assuming for the moment {Q} = {0},(

[Mm] + t

2
[Kc]

)
{���}1 =

(
[Mm] − t

2
[Kc]

)
{���}0 (3.95)

and θ = 1 giving the “fully implicit” method,

([Mm] + t [Kc]) {���}1 = [Mm] {���}0 (3.96)

In programming terms, the marching process from “0” to “1” involves first, a matrix-
by-vector multiplication on the right hand side of (3.95) or (3.96) using linmul_sky
(assuming subroutine fsparv has been used for assembly), and second, solution of a
set of linear equations on each timestep. If the [Kc] and [Mm] matrices do not change
with time, the factorisation of the left hand side coefficients, which is a time consuming
operation, need only be performed once, as shown in the structure chart in Figure 3.19.

For all elements

Calculate the element matrices [kc] and [mm] and
assemble into global counterparts [Kc] and [Mm]

using subroutine fsparv

Form the matrix [Mm]+θ∆t[Kc] and factorise
using subroutine sparin

For all time steps

Calculate the vector [[Mm]−(1− θ)∆t[Kc]]{Φ}0
using subroutine linmul_sky.

Back substitute using subroutine spabac
to give result {Φ}1

Print results

Let {Φ}0={Φ}1

Figure 3.19 Structure chart for first-order time dependent problems by implicit methods
using an assembly strategy

PROGRAMMING FINITE ELEMENT COMPUTATIONS 95

The “implicit” strategies described above are quite effective for linear problems (con-
stant [Kc] and [Mm]), however storage requirements can be considerable, and in non-linear
problems the necessity to refactorise ([Mm] + θt [Kc]) can lead to lengthy calculations.

Storage can be saved by replacing subroutine linmul_sky by an element-by-element
matrix–vector multiply, and by solving the simultaneous equations iteratively (e.g. by
pcg). Such a strategy can be attractive for parallel processing and examples are given
in Chapter 12.

There is another alternative, widely used for second-order problems (see also
Section 3.13.4), in which θ is set to zero and the [Mm] matrix is “lumped” (see
equation 3.67). In this “explicit” approach, the system to be solved is

[Mm] {���}1 = ([Mm] − t [Kc]) {���}0 (3.97)

or

{���}1 = [Mm]−1 ([Mm] − t [Kc]) {���}0 (3.98)

Although written here at the global level, in the case of θ = 0 no global matrix assembly
is needed because the matrix–vector products on the right hand side of equation (3.98)
can all be achieved using an element-by-element strategy involving manipulations of the
element matrices [kc] and [mm].

Although the “explicit” algorithm is simple, the disadvantage is that (3.98) is only stable
on condition that t is “small”, and in practice perhaps so small that real times of interest
would require an excessive number of steps.

Yet another element-by-element approach which conserves computer storage while pre-
serving the stability properties of “implicit methods” involves “operator splitting” on an
element-by-element product basis (Hughes et al., 1983; Smith et al., 1989). Although not
necessary for the operation of the method, the simplest algorithms result from “lumping”
[Mm]. Assuming again that {Q} = {0}, equation (3.94) can be written,

{���}1 = ([Mm] + θt [Kc])−1 ([Mm] − (1 − θ)t [Kc]) {���}0 (3.99)

The element-by-element “operator splitting” methods are based on binomial theorem expan-
sions of ([Mm] + θt [Kc])−1 which neglect product terms. When [Mm] is “lumped”
(diagonal), the method is particularly straightforward because [Mm] can effectively be
replaced by [I], the unit matrix, where

([I] + θt [Kc])−1 =
(

[I] + θt
∑

[kc]
)−1

(3.100)

≈
∏

([I] + θt [kc])−1 (3.101)

where
∑

indicates a summation, and
∏

indicates a product over all the elements. As
was the case with implicit methods, optimal accuracy consistent with stability is achieved
for θ = 1/2. It is shown by Hughes et al. (1983) that further optimisation is achieved by
splitting further to

[kc] = 1

2
[kc] + 1

2
[kc] (3.102)

96 PROGRAMMING FINITE ELEMENT COMPUTATIONS

Input and initialisation

For all elements

For all integrating points

Form and sum [kc] contribution
Form and sum [mm] contribution

Store element [kc]
Assemble global lumped mass

For all elements

Retrieve [kc]

Invert [[mm] + q∆t[kc]/2]-1=[b]

Form [b][[mm]−(1 − q)∆t[kc]/2]=[a]

Store [a]

For all time steps

For both passes

Gather appropriate part of {f}0
Compute {f}1=[a]{f}0

Print solution.

Figure 3.20 Structure chart for the element-by-element product algorithm (two pass)

and carrying out the product (3.101) by sweeping twice through the elements. They suggest
from first to last and back again, but clearly various choices of sweeps could be employed.
It can be shown that as t → 0, any of these processes converges to the true solution of
the global problem. A structure chart for the process is shown in Figure 3.20 and examples
of all the methods described in this section are implemented in Chapter 8. Consistent mass
versions are described by Gladwell et al. (1989).

3.11 Solution of coupled Navier–Stokes problems

For steady state conditions, it was shown in Section 2.16 that a non-linear system of alge-
braic equations had to be solved, involving, at the element level, submatrices [c11], [c12],
etc. These element matrices contained velocities u and v (called ubar and vbar in the
programs) together with shape functions and their derivatives for the velocity and pressure
variables. It was mentioned that it would be possible to use different shape functions for

PROGRAMMING FINITE ELEMENT COMPUTATIONS 97

the velocity (vector) quantity and pressure (scalar) quantity and this is what is done in
programs in Chapters 9 and 12.

The velocity shape functions are designated as fun and the pressure shape functions as
funf. Similarly, the velocity derivatives are deriv and the pressure derivatives derivf.
The arrays nd1, nd2, ndf1, ndf2, nfd1, and nfd2 hold the results of cross products
between the velocity and pressure shape functions and their derivatives as shown below.

Thus, the element integrals which have to be evaluated numerically from equation (2.115)
are of the form

dtkd=MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)

CALL cross_product(fun,deriv(1,:),nd1) (3.103)

CALL cross_product(fun,deriv(2,:),nd2)

followed by

c11 (=c33) =
nip∑
i=1

deti*weights(i)*dtkdi

+ ubari

nip∑
i=1

deti*weights(i)*nd1i (3.104)

+ vbari

nip∑
i=1

deti*weights(i)*nd2i

In these equations, deriv(1,:) signifies the first row of deriv and so on in the
usual Fortran 95 style. The diagonal terms in kay represent the reciprocal of the Reynolds
number. Note the identity of the first term of c11 with (3.63) for uncoupled flow.

The remaining submatrices are formed as follows:

CALL cross_product(fun,derivf(1,:),ndf1)

CALL cross_product(fun,derivf(2,:),ndf2)

CALL cross_product(funf,deriv(1,:),nfd1) (3.105)

CALL cross_product(funf,deriv(2,:),nfd2)

followed by

c12 = 1

rho

nip∑
i=1

deti*weights(i)*ndf1i

c32 = 1

rho

nip∑
i=1

deti*weights(i)*ndf2i

98 PROGRAMMING FINITE ELEMENT COMPUTATIONS

c21 =
nip∑
i=1

deti*weights(i)*nfd1i (3.106)

c23 =
nip∑
i=1

deti*weights(i)*nfd2i

where rho is the mass density. The other submatrices c13, c22, and c31 are set to zero.
The (unsymmetrical) matrix built up from these submatrices is called [ke], and is formed

by a special subroutine called formupv (formupvw in 3D) and the global, unsymmetrical,
band matrix is assembled using formtb. The appropriate equation solution routines are
gauss_band and solve_band as shown in Table 3.8. In an element-by-element context,
the iterative solution method is BiCGStab(l) following the algorithm described in (3.27)
to (3.29).

3.12 Solution of coupled transient problems

The element equations for Biot consolidation were shown in equation (2.139) to be given by

[km] {u} + [c] {uw} = {f}

[c]T
{

du
dt

}
− [kc] {uw} = {0} (3.107)

where [km] and [kc] are the now familiar solid stiffness and fluid conductivity matrices.
The matrix [c] is the connectivity matrix which is formed from integrals of the form,

∫∫
∂Nj

∂x
Ni dx dy (3.108)

where the first derivative term comes from the displacement field, and the second term
comes from the excess pore pressure field. The programs described in Chapter 9 use differ-
ent element types for the displacements (8-node) and the excess pore pressures (4-node).
In Chapter 12, the 3D elements have 20 displacement and 8 pore pressure nodes.

The integrals that generate the [c] matrix involve the product of the vectors vol and
funf, where vol is derived from the familiar deriv array for the solid elements, and
takes the form, for 2D,

vol =
[
∂N1

dx

∂N1

dy

∂N2

dx

∂N2

dy
· · · · · · ∂N8

dx

∂N8

dy

]T

(3.109)

and funf holds the fluid component shape functions as

funf = [N1 N2 N3 N4]T (3.110)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 99

The following sequence completes the integration:

CALL cross_product(vol,funf,volf)

c =
nip∑
i=1

deti*weights(i)*volfi (3.111)

The volumetric strain (εv) at any point within a displacement element is easily retrieved
from the product, DOT_PRODUCT(vol,eld) where eld holds the element nodal dis-
placements.

To integrate equations (3.107) with respect to time there are again many methods avail-
able, but we consider only the simplest linear interpolation in time using finite differences,
similar to that used for first order uncoupled problems in equation (3.94).

3.12.1 Absolute load version

This approach applies the full external loading at each time step and is suitable for linear
elastic problems. Interpolation in time using θ , and elimination of the derivative terms as
was done for first order problems in (3.94), leads to the following recurrence equations at
the element level:[

θ [km] θ [c]
θ [c]T −θ2t [kc]

]{ {u}
{uw}

}
1

=
[−(1 − θ) [km] −(1 − θ) [c]

θ [c]T θ(1 − θ)t [kc]

]{ {u}
{uw}

}
0

+
{

(1 − θ){f}
{0}

}
0
+
{

θ{f}
{0}
}

1
(3.112)

where {f} represents the external loading vector which may itself be time dependent.
The left and right hand side element matrices, called [ke] and [kd] respectively, are

formed from their constituent matrices by subroutine fmkdke. The second equation has
been multiplied through by θ to preserve symmetry of the [ke] matrix; however, the right
hand side matrix [kd] is unsymmetric.

A Crank–Nicolson type of approximation, θ = 1/2 would be a popular choice in
equation (3.112); however, it will be shown in Chapter 8 that this approximation can
lead to oscillatory results. The oscillations can be smoothed out either by using the fully
implicit version with θ = 1, or by writing the first of (3.112) with θ = 1 and the second
with θ = 1/2. Examples of this algorithm with constant θ are presented in Chapter 9. In all
cases, a right hand side matrix-by-vector multiplication is followed by an equation solution
for each timestep. As before a saving in computer time can be achieved if [km], [c] and
[kc] are independent of time, and constant t is used, because the left hand side matrix
needs to be factorised only once.

Note that the left hand side matrix is always symmetrical whereas the right hand side
is not. Therefore, if using an assembly approach fsparv can be used to assemble the left
hand side system equations from (3.112), where formtb must be used to assemble the right
hand side system followed by bantmul to complete the matrix–vector multiply. Element-
by-element summation is most effective in the right-hand side operations in (3.112) due

100 PROGRAMMING FINITE ELEMENT COMPUTATIONS

to sparsity, and “element-by-element” (mesh-free) algorithms can be developed using pcg
equation solution as shown in Chapters 9 and 12 .

3.12.2 Incremental load version

In (3.107), {f} is the total force applied and these equations are appropriate to linear systems.
Later in this book we shall be concerned with non-linear systems similar to those described
in Chapter 6, in which it is desirable to apply loads incrementally and allow plastic stress
redistribution to equilibrate at each step.

If {f} is the change in load between successive times, the incremental form of the
first of (3.107) is

[km] {u} + [c] {uw} = {f} (3.113)

where {u} and {uw} are the resulting changes in displacement and excess pore pressure
respectively. Linear interpolation in time using the θ -method yields

{u} = t

(
(1 − θ)

{
du
dt

}
0
+ θ

{
du
dt

}
1

)
(3.114)

and the second of (3.107) can be written at the two time levels to give expressions for
the derivatives which can then be eliminated to give the following incremental recurrence
equations (Sandhu and Wilson, 1969; Griffiths, 1994a; Hicks, 1995).[

[km] [c]
[c]T −θt [kc]

]{ {u}
{uw}

}
=
{ {f}

t [kc] {uw}0

}
(3.115)

The left hand side element matrix, again called [ke], is formed from its constituent
matrices by subroutine formke and is symmetric. If using an assembly strategy, sub-
routine fsparv generates the global matrix. The right hand side vector consists of load
increments {f} and fluid “loads” given by t [kc] {uw}0. The fluid term is conveniently
computed without any need for assembly using an element-by-element product approach
(see Program 9.3). Subroutines sparin and spabac complete the solution for the incre-
mental displacements and excess pore pressures.

At each time step, all that remains is to update the dependent variables using

{u}1 = {u}0 + {u}
{uw}1 = {uw}0 + {uw} (3.116)

3.13 Solution of second order time dependent problems

The basic second-order propagation type of equation was derived in Chapter 2 and at the
element level takes the form of (2.102), namely

[km] {u} + [mm]

{
d2u
dt2

}
= {f(t)} (3.117)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 101

where in the context of solid mechanics, [km] is the element elastic stiffness and [mm] the
element mass. In equation (3.117) a time dependent forcing term {f(t)} has been included
on the right hand side. In addition to these elastic and inertial forces, solids in motion
experience a third type of force whose action is to dissipate energy. For example, the solid
may deform so much that plastic strains result, or may be subjected to internal or external
friction. Although these phenomena are non-linear in character and can be treated by the
non-linear analysis techniques given in Chapter 6, it has been common to linearise the
dissipative forces, for example by assuming that they are proportional to velocity. This
allows (3.117) to be modified to

[km] {u} + [cm]

{
du
dt

}
+ [mm]

{
d2u
dt2

}
= {f(t)} (3.118)

where [cm] is assumed to be a constant element damping matrix.
Although in principle [cm] could be independently measured or assessed, it is common

practice to assume that [cm] is taken to be a linear combination of [mm] and [km], where

[cm] = fm[mm] + fk[km] (3.119)

where fm and fk are scalars, the so-called “Rayleigh” damping coefficients. They can be
related to the more usual “damping ratio” ζ (Timoshenko et al., 1974) by means of

ζ = fm + fkω
2

2ω
(3.120)

where ω is the natural (usually fundamental) frequency of vibration.
The most generally applicable technique for integrating (3.118) with respect to time is

“direct integration” in an analogous way to that previously described for first order prob-
lems. Two of the simplest popular implicit methods are described in subsequent sections,
where the solution is advanced by one time interval t , the values of the displacement
and its derivatives at one instant in time being sufficient to determine these values at the
subsequent instant by means of recurrence relations. Both preserve unconditional stabil-
ity, and examples that utilise both element assembly and element-by-element strategies are
presented in Chapters 11 and 12.

Attention is first focused however on the “modal superposition” method.

3.13.1 Modal superposition

This method has as its basis the free undamped part of (3.118), that is when [cm] and {f}
are zero. The reduced equation in assembled form is

[Km] {U} + [Mm]

{
d2U
dt2

}
= {0} (3.121)

which can of course be converted into an eigenproblem by the assumption of harmonic
motion

{U} = {A} sin(ωt + ψ) (3.122)

102 PROGRAMMING FINITE ELEMENT COMPUTATIONS

to give

[Km] {A} − ω2[Mm] {A} = {0} (3.123)

Solution of this eigenproblem by the techniques previously described results in neq
eigenvalues ω2 and eigenvectors {A}, where neq (in program terminology) is the total
number of degrees of freedom in the finite element mesh. These eigenvectors or “mode
shapes” can be considered to be columns of a modal matrix [P], where

[P] = [{A1} {A2} . . {Anmodes+}] (3.124)

where nmodes is the number of modes that are contributing to the time response. Often it
is not necessary to include the higher frequency components in an analysis, so that nmodes
≤ neq.

Because of the properties of eigenproblems that mode shapes possess orthogonality,
one to the other, such that

{Ai}T [Mm]
{
Aj

} = 0

{Ai}T [Km]
{
Aj

} = 0

}
i �= j (3.125)

{Ai}T [Mm]
{
Aj

} = m
′
ii

{Ai}T [Km]
{
Aj

} = k
′
ii

}
i = j (3.126)

where m
′
ii and k

′
ii are the diagonal terms of the diagonal global “principal” mass and

stiffness matrices, [M
′
] and [K

′
] respectively. Use of these relationships in (3.121) has the

effect of uncoupling the equations in terms of the principal or “normal” coordinates {U′ },
thus

[K
′
]
{

U
′}+ [M

′
]

{
d2U

′

dt2

}
= {0} (3.127)

The effect of uncoupling has been to reduce the vibration problem to a set of nmodes
independent second order equations (3.127).

The actual displacements can be retrieved from the normal coordinates by a final super-
position process given by

{U} = [P]
{

U
′}

(3.128)

Inclusion of damping

Free damped vibrations, governed by

[Km] {U} + [Cm]

{
dU
dt

}
+ [Mm]

{
d2U
dt2

}
= {0} (3.129)

can be handled by the above technique if it is assumed that the undamped mode shapes are
also orthogonal with respect to the damping matrix [Cm] in the way described by (3.125)

PROGRAMMING FINITE ELEMENT COMPUTATIONS 103

and (3.126). This can readily be achieved if [Cm] is taken to be a linear combination of
[Mm] and [Km],

[Cm] = fm[Mm] + fk[Km] (3.130)

as defined previously in (3.119). Because of orthogonality with respect to [Cm], the uncou-
pled normal coordinate equations are

[K
′
]
{

U
′}+ [C

′
]

{
dU

′

dt

}
+ [M

′
]

{
d2U

′

dt2

}
= {0} (3.131)

The modal matrix [P] is usually “mass normalised”, leading to

[M
′
] = [I]

[C
′
] = (fm + fkω

2) [I]

[K
′
] = ω2 [I]

(3.132)

By working in normal coordinates it has become necessary to take a constant ζ for the
complete mesh being analysed (see equation 3.120), although ζ could be varied from mode
to mode. Since many real systems contain areas with markedly different damping properties,
this is an undesirable feature of the method in practice (see Program 11.2).

Inclusion of forcing terms

When {f(t)} is non-zero, the right hand side of a typical modal equation becomes

[K
′
]
{

U
′}+ [C

′
]

{
dU

′

dt

}
+ [M

′
]

{
d2U

′

dt2

}
= [P]T {F(t)} (3.133)

For example, suppose that in a specific problem only degrees of freedom 10 and 12 are
loaded with forces cos θt . The j th row of (3.133) would be

ω2
jU

′
j + (fm + fkω

2
j)

dU
′
j

dt
+

d2U
′
j

dt2
= (P10,j + P12,j) cos θt (3.134)

or

ω2
jU

′
j + 2ζωj

dU
′
j

dt
+

d2U
′
j

dt2
= P

′
j cos θt (3.135)

The particular solution to this equation with stationary initial conditions is

U
′
j =

(ω2
j − θ2)P

′
j

(ω2
j − θ2)2 + 4ζ 2ω2

j θ
2

cos θt +
2ζωj θP

′
j

(ω2
j − θ2)2 + 4ζ 2ω2

j θ
2

sin θt (3.136)

The normal coordinates having been determined, the actual displacements can be recov-
ered using (3.128).

For more general forcing functions (3.133) must be solved by other means, for example
by one of the direct integration methods described below.

104 PROGRAMMING FINITE ELEMENT COMPUTATIONS

3.13.2 Newmark or Crank–Nicolson method

If Rayleigh damping is assumed, a class of recurrence relations based on linear interpolation
in time can again be constructed, involving the scalar parameter θ which varies between
1/2 and 1 in the same way as was done for first order problems.

If using an assembly technique, the equations (3.118) are written at both the “0” and
“1” time stations,

[Km] {U}0 + (fm [Mm] + fk [Km])

{
dU
dt

}
0
+ [Mm]

{
d2U
dt2

}
0

= {F}0

(3.137)

[Km] {U}1 + (fm [Mm] + fk [Km])

{
dU
dt

}
1
+ [Mm]

{
d2U
dt2

}
1

= {F}1

and assuming linear interpolation in time,

{U}1 = {U}0 + t

(
(1 − θ)

{
dU
dt

}
0
+ θ

{
dU
dt

}
1

)
(3.138){

dU
dt

}
1

=
{

dU
dt

}
0
+ t

(
(1 − θ)

{
d2U
dt2

}
0
+ θ

{
d2U
dt2

}
1

)

Rearrangement of these equations and elimination of acceleration terms leads to the fol-
lowing three recurrence relations,[(

fm + 1

θt

)
[Mm] + (fk + θt) [Km]

]
{U}1

= θt {F}1 + (1 − θ)t {F}0 +
(

fm + 1

θt

)
[Mm] {U}0 (3.139)

+ 1

θ
[Mm]

{
dU
dt

}
0
+ (fk − (1 − θ)t) [Km] {U}0{

dU
dt

}
1

= 1

θt
({U}1 − {U}0) − 1 − θ

θ

{
dU
dt

}
0

(3.140)

{
d2U
dt2

}
1

= 1

θt

({
dU
dt

}
1
−
{

dU
dt

}
0

)
− 1 − θ

θ

{
d2U
dt2

}
0

(3.141)

The algorithm requires initial conditions on displacements {U}0 and velocities {dU/dt}0 to
be provided in order to get started.

In the special case when θ = 1/2 this method is Newmark’s “β = 1/4” method, which
is also the exact equivalent of the Crank–Nicolson method used in first order problems.
There are other variants of the Newmark type, but this is the most common.

The principal recurrence relation (3.139) is clearly similar to those which arose in first
order problems, for example (3.94). Although substantially more matrix-by-vector multipli-
cations are involved on the right hand side, together with matrix and vector additions, the

PROGRAMMING FINITE ELEMENT COMPUTATIONS 105

recurrence again consists essentially of an equation solution per time step. Advantage can as
usual be taken of a constant left-hand side matrix should this occur, and element-by-element
strategies are easily implemented via pcg (see Chapters 11 and 12).

3.13.3 Wilson’s method

Assuming again an assembly approach, the equations (3.118) are advanced from some
known state {U}0, {dU/dt}0, and

{
d2U/dt2

}
0 to the new solution {U}1, {dU/dt}1, and{

d2U/dt2
}

1 an interval t later by first linearly extrapolating to a hypothetical solution,
say {U}2, {dU/dt}2, and

{
d2U/dt2

}
2 an interval δt = θt later where 1.4 ≤ θ ≤ 2.

If Rayleigh damping is again assumed, {U}2 is first computed from

[(
6

θ2t2 + 3fm

θt

)
[Mm] +

(
3fk

θt
+ 1

)
[Km]

]
{U}2 = {F}2 +

[(
6

θ2t2 + 3fm

θt

)
{U}0

+
(

6

θt
+ 2fm

){
dU
dt

}
0
+
(

2 + fmθt

2

){
d2U
dt2

}
0

]
[Mm]

+
[

3fk

θt
{U}0 + 2fk

{
dU
dt

}
0
+ fkθt

2

{
d2U
dt2

}
0

]
[Km] (3.142)

where
{F}2 = (1 − θ) {F}0 + θ {F}1 (3.143)

The acceleration at the hypothetical station can then be computed from

{
d2U
dt2

}
2

= 6

θ2t2 ({U}2 − {U}0) − 6

θt

{
dU
dt

}
0
− 2

{
d2U
dt2

}
0

(3.144)

and thus the acceleration at the true station can be interpolated or “averaged” using

{
d2U
dt2

}
1

=
{

d2U
dt2

}
0
+ 1

θ

({
d2U
dt2

}
2
−
{

d2U
dt2

}
0

)
(3.145)

A Crank–Nicolson equation then gives the desired velocity from

{
dU
dt

}
1

=
{

dU
dt

}
0
+ t

2

({
d2U
dt2

}
0
+
{

d2U
dt2

}
1

)
(3.146)

and the updated displacements from

{U}1 = {U}0 + t

{
dU
dt

}
0
+ t2

3

{
d2U
dt2

}
0
+ t2

6

{
d2U
dt2

}
1

(3.147)

The principal recurrence relation (3.142) is again of the familiar type for all one-step time
integration methods.

106 PROGRAMMING FINITE ELEMENT COMPUTATIONS

3.13.4 Explicit methods and other storage-saving strategies

The implicit methods described above are relatively safe to use due to their unconditional
stability. However, as was the case for first order problems, storage demands become
considerable for large systems, and so can solution times for non-linear problems (even
though refactorisation of the left hand side of (3.139) or (3.142) is not usually necessary,
the non-linear effects having been transposed to the right hand side).

Using a pcg strategy, the implicit equation solution can always be done element-by-
element, but the simplest option is the analogue of (3.98), in which θ is set to zero and the
mass matrix lumped. In the resulting explicit algorithm, operations are carried out element-
wise and no global system storage is necessary (see e.g. Program 11.7). Of course the
drawback is potential loss of stability, so that stable time steps may need to be very small
indeed.

Since stability is governed by the highest natural frequency of the numerical approxi-
mation and since such high frequencies are derived from the stiffest elements in the system,
it is quite possible to implement hybrid methods in which the very stiff elements are inte-
grated implicitly, but the remainder are integrated explicitly. Equation solution as implied
by (3.139), for example, is still necessary, but the half-bandwidth of the rows in the coef-
ficient matrix associated with freedoms in explicit elements not connected to implicit ones
is only one. Thus great savings in storage can be made (Smith, 1984).

Another alternative is to resort to operator splitting, as was done in first order problems.
In Chapter 11, implicit, explicit and mixed implicit/explicit algorithms are described and
listed, with alternative assembly or EBE solution for the implicit cases. Although product
EBE methods have been developed (Wong et al., 1989) they are beyond the scope of the
present book.

References

Bai Z, Demmel J, Dongarra J, Ruhe A and der Vorst HV 2000 Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide. SIAM Press, Philadelphia, Pa.

Bathe KJ 1996 Numerical Methods in Finite Element Analysis, 3rd edn. Prentice Hall, Englewood
Cliffs, N.J.

Cardoso JP 1994 Generation of Finite Element Matrices Using Computer Algebra. Masters thesis,
School of Engineering, University of Manchester.

Chan SH, Phoon KK and Lee FH 2001 A modified Jacobi preconditioner for solving ill-conditioned
Biot’s consolidation equations using symmetric quasi-minimal residual method. Int J Numer Anal
Methods Geomech 25(10), 1001–1025.

Ergatoudis J, Irons BM and Zienkiewicz OC 1968 Curved isoparametric quadrilateral elements for
finite element analysis. Int J Solids Struct 4, 31.

Gladwell I, Smith IM, Gilvary B and Wong SW 1989 A consistent mass EBE algorithm for linear
parabolic systems. Commun Appl Numer Methods 5, 229–235.

Greenbaum A 1997 Iterative Methods for Solving Linear Systems. SIAM Press, Philadelphia, Pa.
Griffiths DV 1991 Generalised numerical integration of moments. Int J Numer Methods Eng 32(1),

129–147.
Griffiths DV 1994a Coupled analyses in geomechanics. In Visco-Plastic Behavior of Geomaterials

(eds. Cristescu ND and Gioda G). Springer-Verlag, Wien, New York pp. 245–317. Chapter 5.

PROGRAMMING FINITE ELEMENT COMPUTATIONS 107

Griffiths DV 1994b Stiffness matrix of the 4-node quadrilateral element in closed-form. Int J Numer
Methods Eng 37(6), 1027–1038.

Griffiths DV 2004 Use of computer algebra systems in finite element software development. Pro-
ceedings of the 7th International Congress on Numerical Methods in Engineering and Scientific
Applications, CIMENICS ’04 (ed. Rojo J et al.) Sociedad Venezolana de Métodos Numéricos en
Ingenierıa, Caracas, Venezuela, pp. CI 55–66.

Griffiths DV and Smith IM 1991 Numerical Methods for Engineers. Blackwell Scientific Publications
Ltd., Oxford.

Hicks MA 1995 MONICA-a computer algorithm for solving boundary value problems using the
double hardening constitutive model Monot: I algorithm development. Int J Numer Anal Methods
Geomech 19, 11–27.

HSL 2002 A Collection of Fortran Codes for Large Scientific Computation. See http://www.

cse.clrc.ac.uk/nag/hsl/.
Hughes TJR, Levit I and Winget J 1983 Element by element implicit algorithms for heat conduction.

J Eng Mech, ASCE 109(2), 576–585.
Irons BM 1966a Numerical integration applied to finite element methods. Conference on the Use of

Digital Computers in Structural Engineering, University of New Castle, New Castle, Pa.
Irons BM 1966b Engineering applications of numerical integration in stiffness method. J Am Inst

Aeronaut Astronaut 14, 2035.
Irons BM 1971 Quadrature rules for brick-based finite elements. Int J Numer Meths Eng 3, 293-294.
Jennings A and McKeown JJ 1992 Matrix Computation. John Wiley & Sons, Chichester, New York.
Kelley CT 1995 Iterative Methods for Linear and Nonlinear Equations. SIAM Press, Philadelphia,

Pa.
Kopal A 1961 Numerical Analysis, 2nd edn. Chapman & Hall, London, New York.
Parlett BN and Reid JK 1981 Tracking the progress of the Lanczos algorithm for large symmetric

eigenproblems. IMA J Numer Anal 1, 135–155.
Sandhu RS and Wilson EL 1969 Finite-element analysis of seepage in elastic media. J Eng Mech,

ASCE 95(EM3), 641–652.
Sleijpen GLG and van der Vorst HA 2000 Jacobi-Davidson methods. In Templates for the Solution

of Algebraic Eigenvalue Problems: A Practical Guide (eds. Bai Z. Demmel, J. Dongarra, J. Ruhe,
A. and van der Vorst, H. SIAM Press Philadelphia, Pa.

Sleijpen GLG, van der Vorst HA and Fokkema DR 1994 BiCGStab(l) and other hybrid Bi-CG
methods. Numer Algorithms 7, 75–109.

Smith IM 1979 Discrete element analysis of pile instability. Int J Numer Anal Methods Geomech 3,
205–211.

Smith IM 1984 Adaptability of truly modular software. Eng Comput 1(1), 25–35.
Smith IM 2000 A general purpose system for finite element analyses in parallel. Eng Comput 17(1),

75–91.
Smith IM and Kidger DJ 1991 Properties of the 20-node brick element. Int J Numer Anal Methods

Geomech 15(12), 871–891.
Smith IM and Kidger DJ 1992 Elastoplastic analysis using the 14-node brick element family. Int J

Numer Methods Eng 35, 1263–1275.
Smith IM, Wong SW, Gladwell I and Gilvary B 1989 PCG methods in transient FE analysis Part I:

first order problems. Int J Numer Methods Eng 28(7), 1557–1566.
Taig IC 1961 Structural analysis by the matrix displacement method. Technical Report SO17, English

Electric Aviation Report, Preston.
Timoshenko SP, Young D and Weaver W 1974 Vibration Problems in Engineering, 4th edn. John

Wiley & Sons, Chichester, New York.

108 PROGRAMMING FINITE ELEMENT COMPUTATIONS

Wong SW, Smith IM and Gladwell I 1989 PCG methods in transient FE analysis Part II: second
order problems. Int J Numer Methods Eng 28(7), 1567–1576.

Zienkiewicz OC, Too J and Taylor RL 1971 Reduced integration technique in general analysis of
plates and shells. Int J Numer Methods Eng 3, 275–290.

Zienkiewicz OC, Irons BM, Ergatoudis J, Ahmad S and Scott FC 1969 Isoparametric and associated
element families for two and three dimensional analysis. In Proceedings of a Course on Finite
Element Methods in Stress Analysis (eds. Holland I and Bell K). Norwegian University of Science
and Technology, Trondheim, Norway

4

Static Equilibrium of Structures

4.1 Introduction

Practical finite element analysis had as its starting point matrix analysis of “structures”,
by which engineers usually mean assemblages of elastic, line elements. The matrix dis-
placement (stiffness) method is a special case of finite element analysis, and since many
engineers still begin their acquaintance with the finite element method in this way, the
opening applications chapter of this book is devoted to “structural” analysis.

The first program, Program 4.1, permits the analysis of a rod subjected to combinations
of axial loads and displacements at various points along its length. Each 1D rod element can
have a different length and axial stiffness but the element stiffness matrices, being simple
functions of these two quantities are easily formed by a subroutine. Indeed, in nearly
all the programs in this chapter, the element stiffness matrices consist of simple explicit
expressions which are conveniently provided by subroutines. Program 4.2 introduces a
more general treatment involving rod elements, allowing analyses to be performed of 2D
or 3D pin-jointed frames.

Program 4.3 permits the analysis of slender beams subjected to combinations of trans-
verse and moment loading. Optionally, the program allows the inclusion of an elastic foun-
dation enabling analysis of problems generally classified as “beams on elastic foundations”.

When 1D beam and rod elements are superposed, the result is a “beam–rod” ele-
ment, which is a powerful general element that can sustain axial, transverse, and moment
loading. This element is able to analyse all conventional structural frames. Program 4.4
implements the “beam–rod” elements in the analysis of two- or three-dimensional framed
structures.

Program 4.5 introduces material non-linearity in the form of an elastic-perfectly plastic
moment/curvature relationship for beams. The program can compute plastic collapse of
one-, two-, or three-dimensional structures when subjected to incrementally changing loads.
The non-linearity is dealt with using an iterative, constant stiffness (modified Newton–
Raphson) approach. Unlike more traditional approaches, at each iteration the internal loads
on the structure are altered rather than the stiffness matrix itself. This approach will be

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

110 STATIC EQUILIBRIUM OF STRUCTURES

used extensively in the elastic–plastic analyses of solids described in later chapters of the
book, notably Chapter 6.

Program 4.6 performs elastic stability analysis of axially loaded beams. As in
Program 4.3, an elastic foundation is optional. The program computes the lowest buckling
load by iteratively obtaining the smallest eigenvalue of the system based on its stiffness
and geometric properties.

The final program in the chapter, Program 4.7, describes a method for analysing rectan-
gular thin plates in bending. This could be considered to be the first “genuine” finite element
in the book. The plate stiffness matrix is formed using numerical integration, anticipating
the solid mechanics applications of Chapter 5 and beyond.

In the interests of generality and portability, all programs in the book assume that
the data and results file have the generic names fe95.dat and fe95.res, respectively.
When running the programs, it is suggested that a small batch file or shell script is developed
by the user that copies the actual data file name to fe95.dat before execution. Similarly,
after the program has run, the generic results file fe95.res should be copied or moved
to the results file name required.

Program 4.1 One-dimensional analysis of axially loaded elastic rods using 2-node
rod elements.

PROGRAM p41
!---
! Program 4.1 One dimensional analysis of axially loaded elastic rods
! using 2-node rod elements.
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndof=2,nels,neq,nod=2, &
nodof=1,nn,nprops=1,np_types,nr

REAL(iwp)::penalty=1.0e20_iwp,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),kdiag(:),nf(:,:),no(:), &
node(:),num(:)

REAL(iwp),ALLOCATABLE::action(:),eld(:),ell(:),km(:,:),kv(:),loads(:), &
prop(:,:),value(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,np_types; nn=nels+1
ALLOCATE(g(ndof),num(nod),nf(nodof,nn),etype(nels),ell(nels),eld(ndof), &
km(ndof,ndof),action(ndof),g_g(ndof,nels),prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype; READ(10,*)ell
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq)); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
num=(/iel,iel+1/); CALL num_to_g(num,nf,g); g_g(:,iel)=g;
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global stiffness matrix assembly------------------
kv=zero
elements_2: DO iel=1,nels

STATIC EQUILIBRIUM OF STRUCTURES 111

CALL rod_km(km,prop(1,etype(iel)),ell(iel)); g=g_g(:,iel)
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
!-----------------------read loads and/or displacements-------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),no(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(1,node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution --------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
WRITE(11,'(/A)')" Node Disp"
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(nf(:,k)); END DO

!-----------------------retrieve element end actions----------------------
WRITE(11,'(/A)')" Element Actions"
elements_3: DO iel=1,nels
CALL rod_km(km,prop(1,etype(iel)),ell(iel)); g=g_g(:,iel)
eld=loads(g); action=MATMUL(km,eld); WRITE(11,'(I5,2E12.4)')iel,action

END DO elements_3
STOP
END PROGRAM p41

Scalar integers:
fixed freedoms number of fixed displacements
i simple counter
iel simple counter
iwp SELECTED REAL KIND(15)
k simple counter
loaded nodes number of loaded nodes
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nn number of nodes in the mesh
nod number of nodes per element
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes

Scalar reals:
penalty set to 1 × 1020

zero set to 0.0

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
kdiag diagonal term location vector

112 STATIC EQUILIBRIUM OF STRUCTURES

nf nodal freedom matrix
no fixed freedoms vector
node fixed nodes vector
num element node numbers vector

Dynamic real arrays:
action element nodal action vector
eld element displacement vector
ell element lengths vector
km element stiffness matrix
kv global stiffness matrix
loads global load (displacement) vector
prop element properties matrix
value fixed displacements vector

The main features of this program are the elastic rod element stiffness matrix (2.11)
and the global stiffness matrix assembly described in Section 3.7. The structure chart in
Figure 4.1 gives the main sequence of operations.

Program 4.1 is illustrated by two examples shown in Figures 4.2 and 4.3. In both cases,
the rod is restrained at one end and free at the other. The rod in Figure 4.2 is subjected to
a uniformly distributed axial force of 5.0/unit length, and the rod in Figure 4.3 is subjected
to a fixed displacement of 0.05 at its tip.

Read data.
Allocate arrays.

Find problem size.
Null global stiffness matrix.

For all elements

Find steering vector.
Compute element stiffness matrix.
Assemble global stiffness matrix.

Factorise the global stiffness matrix.
Read the loads and/or displacements.

Complete equation solution.
Print displacements.

For all elements

Find the element nodal displacements.
Compute and print nodal "actions".

Figure 4.1 Structure chart for Program 4.1

STATIC EQUILIBRIUM OF STRUCTURES 113

1.25 1.25 1.25 0.6250.625

1 2 3 4

0.25

Uniformly distributed load of 5/unit length

nels np_types
4 1

prop (ea)
100000.0

etype(not needed)

ell
0.25 0.25 0.25 0.25

nr,(k,nf(:,k),i=1,nr)
1
5 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
5
1 -0.625 2 -1.25 3 -1.25 4 -1.25 5 -0.625

fixed_freedoms
0

EA=100000.0

51 2 3 4

Figure 4.2 Mesh and data for first Program 4.1 example

nels np_types
4 2

prop (ea)
2000.0 1000.0

etype
2 2 1 1

ell
0.25 0.25 0.25 0.25

nr,(k,nf(:,k),i=1,nr)
1
1 0

loaded_nodes
0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
1
5 0.05

2 3 4

0.25

1 5

EA=1000 EA=1000 EA=2000 EA=2000

Fixed tip displacement of 0.05

1 2 3 4

Figure 4.3 Mesh and data for second Program 4.1 example

114 STATIC EQUILIBRIUM OF STRUCTURES

1 2
g(1) g(2)

Figure 4.4 Node and freedom numbering for rod elements

Each node has one degree of freedom, namely the axial displacement. The global node
numbering system reads from the left and, at the element level, node one is always to
the left and node two to the right as shown in Figure 4.4. As explained in Chapter 3, the
nodal freedom numbering associated with each element, accounting for any restraints, is
contained in the “steering” vector g. Thus, with reference to Figures 4.3 and 4.4, g for
element one would be [0 1]T and for element two, [1 2]T, and so on.

If a zero appears in the “steering” vector g, this means that the corresponding displace-
ment is fully fixed and equal to zero, as at the right end of the example in Figure 4.2,
and the left end of the example in Figure 4.3. In such cases, the “zero freedom” is not
assembled into the global matrices.

Nodal freedom data concerning boundary restraints is read by the main program, and
takes the form of the number of restrained nodes, nr, followed by, for each restrained node,
the restrained node number and a zero. The default is that nodes are not restrained. For
problems such as this where 1D elements are strung together in a line, it is a simple matter to
automate the generation of the g vector for each element. This is done by the library subrou-
tine num to g which picks the correct entries out of the nodal freedom array nf generated
by subroutine formnf (see Appendix D for listings of all special purpose subroutines).

Many programs in the book use this approach for defining boundary conditions. In
cases later on, where nodes have more than one degree of freedom, some of those nodal
freedoms may be restrained and others not. In these cases, the convention will then be to
give the node number followed by either ones or zeros (in the correct sequence), where the
latter implies a restrained (zero) degree of freedom and the former an unrestrained freedom.

Returning to the main program, some scalar quantities are defined by the type of element
being used. For example there can only be 2 nodes per element, so nod=2 and these are
assigned in the declaration lines.

The “input and initialisation” section reads the number of elements nels and the
number of property types np types. If there is only one property type (np types=1) as
in the example shown in Figure 4.2, then the property is read and automatically allocated to
all elements. If there is more than one property type, as in the example shown in Figure 4.3,
then the properties are read, followed by the reading of an integer vector etype which
holds information on which property is assigned to which element. The length of each
element is read into the real vector ell, and the boundary condition data is read enabling
the formation of array nf.

Inside the “global stiffness matrix assembly” section, the element stiffnesses and lengths
are used by subroutine rod km to compute the element stiffness matrices km.

The global stiffness matrix (stored as a skyline column vector kv, see Section 3.7.10)
is then assembled for all elements in turn by the library subroutine fsparv once the
“steering” vector g has been retrieved. Gaussian elimination on the system equations is
split into a “factorisation” phase performed by library subroutine sparin and a forward-
and back-substitution phase performed by library subroutine spabac. The “loading” data

STATIC EQUILIBRIUM OF STRUCTURES 115

is then read, and this takes the form of information relating to nodal forces and/or fixed
nodal displacements.

In the case of loads, loaded nodes is read first signifying the number of nodes with
forces applied. Then for each of these, the node number and the applied force are read.
In this rod example there is only one freedom at each node, but in later programs in the
chapter where more than one freedom exists at each node, all the “forces” applied at the
loaded node must be included in the correct sense (even if some of them are zero).

In the case of fixed displacements, fixed freedoms is read, signifying the number
of fixed freedoms in the mesh. Then for each of these, the node number and the value to
which the freedom is to be fixed is read. In later programs in the chapter where more than
one freedom exists at each node, data must also be read into the vector sense, which
gives the sequential number of the freedom at the node that is to be fixed. If a particular
node has more than one fixed freedom, the node must be entered in the data list for each
fixed “sense”. If either loaded nodes or fixed freedoms equals zero, no further
data relating to that category is required.

In the case shown in Figure 4.2, a rod of uniform stiffness equal to 105 is subjected to
a (negative) uniformly distributed axial load of 5/unit length. The force has been “lumped”
at the nodes as was indicated in (2.10). In this example, there are no fixed displacements,
so fixed freedoms is read as zero.

In the case shown in Figure 4.3, the rod has a non-uniform stiffness, and since there
is more than one property group (np types = 2), the element type vector etype must
be read indicating in this case that elements 1 and 2 have an axial stiffness of 1000.0,
and elements 3 and 4 have an axial stiffness of 2000.0. There are no loaded nodes so
loaded nodes is read as zero but a fixed displacement is applied to the tip of the rod,
so fixed freedoms is read as 1, followed by the node number (5) and the magnitude
of the fixed displacement (0.05).

Following equation solution, the nodal displacements (overwritten as loads) are com-
puted and printed. A final “post-processing” phase is then performed, in which the elements
are scanned once more. In this loop, the element nodal displacements (eld) are retrieved
from the global displacements vector and the element stiffness matrices (km) re-computed.
Multiplication of the element nodal displacements by the element stiffness matrix using
MATMUL, results in the element “actions” vector called action, which holds the internal
end reaction forces for each element.

The computed results for both cases are reproduced in Figure 4.5. In the first case,
the end deflection at node 1 is given as −0.25 × 10−4 which is the exact solution. Note,
however, that the element “actions” indicate that the fourth element sustains a mean tensile
force of 4.375 which is the best this element can do to approximate the true solution of a
linearly varying axial load.

In the second case, the nodal displacements indicate the distribution of displacements
along the length of the rod up to the end node 5, which has the expected displacement of
0.05. All the elements in the rod are sustaining a tensile load of 66.67.

In problems such as this, the nodal displacements are always in exact agreement with
the closed form solution achieved by direct integration of the governing equation. Between
the nodes however, the solution may be approximate, due to the limitations of the shape
functions.

116 STATIC EQUILIBRIUM OF STRUCTURES

 There are 4 equations and the skyline storage is 7

 Node Disp
 1 -0.2500E-04
 2 -0.2344E-04
 3 -0.1875E-04
 4 -0.1094E-04
 5 0.0000E+00

 Element Actions
 1 -0.6250E+00 0.6250E+00
 2 -0.1875E+01 0.1875E+01
 3 -0.3125E+01 0.3125E+01
 4 -0.4375E+01 0.4375E+01

 There are 4 equations and the skyline storage is 7

 Node Disp
 1 0.0000E+00
 2 0.1667E-01
 3 0.3333E-01
 4 0.4167E-01
 5 0.5000E-01

 Element Actions
 1 -0.6667E+02 0.6667E+02
 2 -0.6667E+02 0.6667E+02
 3 -0.6667E+02 0.6667E+02
 4 -0.6667E+02 0.6667E+02

Figure 4.5 Results from Program 4.1 examples

Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod elements in two
or three dimensions.

PROGRAM p42
!---
! Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod
! elements in 2- or 3-dimensions
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndim,ndof=2,nels,neq,nod=2, &
nodof,nn,nprops=1,np_types,nr

REAL(iwp)::axial,penalty=1.0e20_iwp,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::action(:),coord(:,:),eld(:),g_coord(:,:),km(:,:), &
kv(:),loads(:),prop(:,:),value(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nn,ndim,np_types; nodof=ndim; ndof=nod*nodof
ALLOCATE(nf(nodof,nn),km(ndof,ndof),coord(nod,ndim),g_coord(ndim,nn), &
eld(ndof),action(ndof),g_num(nod,nels),num(nod),g(ndof),g_g(ndof,nels),&
etype(nels),prop(nprops,np_types))

STATIC EQUILIBRIUM OF STRUCTURES 117

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)g_coord; READ(10,*)g_num
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)

ALLOCATE(kdiag(neq),loads(0:neq)); kdiag=0
!----------------------loop the elements to find global array sizes-------
elements_1: DO iel=1,nels
num=g_num(:,iel); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global stiffness matrix assembly------------------
kv=zero
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL pin_jointed(km,prop(1,etype(iel)),coord); g=g_g(:,iel)
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
!-----------------------read loads and/or displacements-------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),no(fixed_freedoms), &

sense(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution --------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
WRITE(11,'(/A)') " Node Displacement(s)"
DO k=1,nn; WRITE(11,'(I5,3E12.4)')k,loads(nf(:,k)); END DO

!-----------------------retrieve element end actions----------------------
WRITE(11,'(/A)')" Element Actions"
elements_3: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL pin_jointed(km,prop(1,etype(iel)),coord); g=g_g(:,iel)
eld=loads(g); action=MATMUL(km,eld); WRITE(11,'(I5,6E12.4)')iel,action
CALL glob_to_axial(axial,action,coord)
WRITE(11,'(A,E12.4)')" Axial force =",axial

END DO elements_3
STOP
END PROGRAM p42

New scalar integers:
ndim number of dimensions

New scalar reals:
axial element axial force

New dynamic integer arrays:
g num global element node numbers matrix
sense sense of freedoms to be fixed vector

118 STATIC EQUILIBRIUM OF STRUCTURES

New dynamic real arrays:
coord element nodal coordinates
g coord nodal coordinates for all elements

The philosophy used throughout this book is to explore solutions to new problems by
making gradual alterations to previously described programs, hence this section begins with
a listing of variables that have not been used so far in this chapter. This program therefore,
is an adaptation of the previous one to allow analysis of rod elements in two or three
dimensions. Since rod elements can only sustain axial loads, the types of structural systems
for which this is applicable are pin-jointed frames (in 2D) or space structures (in 3D).

The previous program considered rod elements in 1D joined end-to-end, in which the
number of nodes was always one greater than the number of elements. This will no longer
be true for general two- or three-dimensional structures, so the number of nodes nn is now
included as data together with the dimensionality of the problem ndim.

The variable names are virtually the same as in the previous program. The real array
ell has been discarded because the rod element lengths are more conveniently calculated
from their nodal coordinates. The variable axial has been introduced to hold the axial
force sustained by each member, and the integer vector sense holds the sense of any
nodal fixed freedoms, since there is now more than one freedom at each node.

Nodal coordinates must be provided as data and read directly into array g coord,
followed by data relating to the element node numbers, read into g num. Two new library
subroutines are also introduced. Subroutine pin jointed computes the element stiffness
matrix km, and subroutine glob to loc transforms the element “actions” into the axial
force held in axial.

The first example to be solved by Program 4.2 is the 2D pin-jointed frame shown in
Figure 4.6. Each element now has 4 degrees of freedom with an x- and a y-translation
permitted at each node as shown in Figure 4.7.

In a small problem such as this, the order in which the nodes are numbered is immate-
rial. In larger problems however, nodal numbering should be made in the most economical
order in order to minimise the skyline bandwidths and hence the storage requirements (see
Section 3.7.10). In very large problems which use an assembly strategy, a bandwidth opti-
miser would be used. The loaded nodes and fixed freedoms data follow the same procedure
as described in the previous program. In this example, a single load of −10.0 is applied in
the y-direction at node 6. Note how the load in the x-direction at this node has also to be
read in as zero. There are no fixed freedoms in this example, hence fixed freedoms is
read as zero, indicating no further data is needed.

The results given in Figure 4.8 indicate the nodal displacements, followed by the end
“actions” and axial force in each element. The results indicate that the displacement under
the load is −0.007263 and the axial load in element number 1 is −33.33 (compressive).

The second example to be solved by Program 4.2 is the 3D pin-jointed frame shown in
Figure 4.9. Each element now has 6 degrees of freedom with an x-, y-, and z-translation
permitted at each node as shown in Figure 4.10.

The data organisation is virtually the same as in the previous example. The dimensional-
ity is increased to ndim=3 and there are correspondingly three coordinates at each node and
three freedoms to be defined at each restrained node. The space–frame shown in Figure 4.9
represents a pyramid-like structure loaded by a force at its apex with components in the x-,

STATIC EQUILIBRIUM OF STRUCTURES 119

10 KN

4 m 4 m 4 m

3 m

1

2

3 4

5 6
EA = 2 × 105kN

1

2 3

4

5

6
7

8
9

10

nels nn ndim np_types
10 6 2 1

prop(ea)
2.0e5

etype(not needed)

g_coord
0.0 3.0 4.0 0.0 4.0 3.0
8.0 3.0 8.0 0.0 12.0 0.0

g_num
1 2 1 3 3 4 3 5 3 2
2 4 2 5 5 4 4 6 5 6

nr,(k,nf(:,k),i=1,nr)
2
1 0 0 2 1 0

loaded_nodes,(k,loads(nf(:,k))
1
6 0.0 -10.0

fixed_freedoms
0

Figure 4.6 Mesh and data for first Program 4.2 example

1

2

g(1)

g(2)

g(3)

g(4)

Figure 4.7 Node and freedom numbering for 2D rod elements

y-, and z-directions of 20, −20, and 30 respectively. In addition, the y-freedom (sense 2)
at the apex is displaced by −0.0005. The computed results shown in Figure 4.11 indicate
that the corresponding displacement components of the loaded node are 0.2569 × 10−3,
−0.5 × 10−3 (as would be expected), and 0.7614 × 10−4. The axial force in element num-
ber 2 is computed to be 49.57 (tensile). It may be noted that in cases such as this where

120 STATIC EQUILIBRIUM OF STRUCTURES

 There are 9 equations and the skyline storage is 39

 Node Displacement(s)
 1 0.0000E+00 0.0000E+00
 2 -0.1042E-02 0.0000E+00
 3 0.5333E-03 -0.6562E-04
 4 0.9500E-03 -0.3046E-02
 5 -0.1425E-02 -0.2981E-02
 6 -0.1692E-02 -0.7263E-02

 Element Actions
 1 0.2667E+02 -0.2000E+02 -0.2667E+02 0.2000E+02
 Axial force = -0.3333E+02
 2 -0.2667E+02 0.0000E+00 0.2667E+02 0.0000E+00
 Axial force = 0.2667E+02
 3 -0.2083E+02 0.0000E+00 0.2083E+02 0.0000E+00
 Axial force = 0.2083E+02
 4 -0.5833E+01 0.4375E+01 0.5833E+01 -0.4375E+01
 Axial force = 0.7292E+01
 5 0.0000E+00 -0.4375E+01 0.0000E+00 0.4375E+01
 Axial force = -0.4375E+01
 6 0.7500E+01 0.5625E+01 -0.7500E+01 -0.5625E+01
 Axial force = -0.9375E+01
 7 0.1917E+02 0.0000E+00 -0.1917E+02 0.0000E+00
 Axial force = -0.1917E+02
 8 0.0000E+00 0.4375E+01 0.0000E+00 -0.4375E+01
 Axial force = -0.4375E+01
 9 -0.1333E+02 0.1000E+02 0.1333E+02 -0.1000E+02
 Axial force = 0.1667E+02
 10 0.1333E+02 0.0000E+00 -0.1333E+02 0.0000E+00
 Axial force = -0.1333E+02

Figure 4.8 Results from first Program 4.2 example

x

y

z

5

1

2

3 4

Q

Nodal coords (m)

Node x y z
 1 0 0 0
 2 1.25 3 0
 3 3.5 2 0
 4 4 1 0
 5 2 1.5 3

Load components (kN)
Qx = 20.0
Qy = -20.0
Qz = 30.0

EA = 5 × 105kN
3

4

2

1

Figure 4.9 Mesh and data for second Program 4.2 example (Continued on page 121)

STATIC EQUILIBRIUM OF STRUCTURES 121

nels nn ndim np_types
4 5 3 1

prop(ea)
5.0e5

etype(not needed)

g_coord
0.0 0.0 0.0 1.25 3.0 0.0 3.5 2.0 0.0
4.0 1.0 0.0 2.0 1.5 3.0

g_num
1 5 2 5 3 5 4 5

nr,(k,nf(:,k),i=1,nr)
4
1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

loaded_nodes,(k,loads(nf(:,k))
1
5 20.0 -20.0 30.0

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
1
5 2 -0.0005

Figure 4.9 (Continued from page 120)

g(3)

g(1)

g(6)

g(4)
2

x

y
z

g(5)

g(2)

1

Figure 4.10 Node and freedom numbering for 3D rod elements

There are 3 equations and the skyline storage is 6

 Node Displacement(s)
 1 0.0000E+00 0.0000E+00 0.0000E+00
 2 0.0000E+00 0.0000E+00 0.0000E+00
 3 0.0000E+00 0.0000E+00 0.0000E+00
 4 0.0000E+00 0.0000E+00 0.0000E+00
 5 0.2569E-03 -0.5000E-03 0.7614E-04

Element Actions
 1 0.1298E+00 0.9735E-01 0.1947E+00 -0.1298E+00 -0.9735E-01 -0.1947E+00
 Axial force = -0.2534E+00
 2 -0.1082E+02 0.2163E+02 -0.4327E+02 0.1082E+02 -0.2163E+02 0.4327E+02
 Axial force = 0.4957E+02
 3 0.1789E+01 0.5963E+00 -0.3578E+01 -0.1789E+01 -0.5963E+00 0.3578E+01
 Axial force = 0.4045E+01
 4 -0.1110E+02 0.2775E+01 0.1665E+02 0.1110E+02 -0.2775E+01 -0.1665E+02
 Axial force = -0.2021E+02

Figure 4.11 Results from second Program 4.2 example

122 STATIC EQUILIBRIUM OF STRUCTURES

the data provides a load and a fixed displacement at the same freedom, the value of the
load is immaterial, and the displacement always takes precedence.

Program 4.3 Analysis of elastic beams using 2-node beam elements (elastic founda-
tion optional).

PROGRAM p43
!---
! Program 4.3 Analysis of elastic beams using 2-node beam elements
! (elastic foundation optional).
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndof=4,nels,neq,nod=2, &
nodof=2,nn,nprops,np_types,nr

REAL(iwp)::penalty=1.0e20_iwp,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),kdiag(:),nf(:,:),no(:), &
node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::action(:),eld(:),ell(:),km(:,:),kv(:),loads(:), &
mm(:,:),prop(:,:),value(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nprops,np_types; nn=nels+1
ALLOCATE(g(ndof),num(nod),nf(nodof,nn),etype(nels),ell(nels),eld(ndof), &
km(ndof,ndof),mm(ndof,ndof),action(ndof),g_g(ndof,nels), &
prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype; READ(10,*)ell
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq)); kdiag=0

!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
num=(/iel,iel+1/); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global stiffness matrix assembly------------------
kv=zero
elements_2: DO iel=1, nels
CALL beam_km(km,prop(1,etype(iel)),ell(iel)); g=g_g(:,iel)
mm=zero; IF(nprops>1)CALL beam_mm(mm,prop(2,etype(iel)),ell(iel))
CALL fsparv(kv,km+mm,g,kdiag)

END DO elements_2
!-----------------------read loads and/or displacements-------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),no(fixed_freedoms), &

sense(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution --------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero

STATIC EQUILIBRIUM OF STRUCTURES 123

WRITE(11,'(/A)')" Node Translation Rotation"
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(nf(:,k)); END DO

!-----------------------retrieve element end actions----------------------
WRITE(11,'(/A)')" Element Force Moment Force Moment"
elements_3: DO iel=1,nels
CALL beam_km(km,prop(1,etype(iel)),ell(iel)); g=g_g(:,iel)
mm=zero; IF(nprops>1)CALL beam_mm(mm,prop(2,etype(iel)),ell(iel))
eld=loads(g); action=MATMUL(km+mm,eld)
WRITE(11,'(I5,4E12.4)')iel,action

END DO elements_3
STOP
END PROGRAM p43

New dynamic real arrays:
mm element “mass” matrix

This program has much in common with Program 4.1 for rod elements. A line of beam
elements of different stiffnesses and lengths, optionally resting on an elastic foundation,
can be analysed for any combination of transverse and/or moment loading.

The inclusion of an elastic foundation is signalled by reading nprops as 2, indicating
that two properties, namely the beam flexural stiffness EI and the foundation stiffness k,
must be read into the properties matrix prop. If nprops is read as 1 however, only one
property, the flexural stiffness EI is required as data and the analysis is of a simple beam.

The beam element stiffness matrix is provided by subroutine beam km, and the foun-
dation stiffness matrix, closely related to the element “mass” matrix (see Section 2.4.2), by
subroutine beam mm. The real array mm is included in the program to hold the foundation
stiffness matrix. As in Program 4.1, the length of each element is read into the real vector
ell.

The first example problem shown in Figure 4.12, represents a non-uniform beam sub-
jected to a combination of nodal loads and fixed displacements. Node 1 is to be rotated
clockwise by 0.001 and node 3 is to be translated vertically downwards by 0.005. In addi-
tion, a vertical force of 20 acts at node 2, a uniformly distributed load of 4/unit length acts
between nodes 3 and 4, and a linearly decreasing load of 4/unit length to zero acts between
nodes 4 and 5.

At each node, 2 degrees of freedom are possible, a vertical translation and a rotation,
in that order. The global node numbering reads from left to right, and at the element
level, node one is always to the left and node two to the right as shown in Figure 4.13.
Each element has 4 degrees of freedom taken in the order w1, θ1, w2, and θ2. The nodal
freedom numbering associated with each element, accounting for any restraints, is as usual
contained in the “steering” vector g. Thus, with reference to Figures 4.12 and 4.13, the
steering vector for element 1 would be [0 1 2 3]T and for element 2, [2 3 4 5]T, and so
on. It should be noted that in the “penalty” or “stiff spring” technique, the freedoms to be
fixed are assembled into the global stiffness matrix in the usual way prior to augmenting
the appropriate diagonal and force terms (see Section 3.6).

It should also be pointed out that when freedoms are fixed to zero, as is common at the
boundaries of solid or structural analyses, the user has the choice of fixing them through
boundary condition data, using nr, in which case the equations are never assembled, or
through the “stiff spring” (or “penalty”) technique. The data in Figure 4.12 uses the former
strategy, however Figure 4.14 shows an alternative data set that achieves essentially the

124 STATIC EQUILIBRIUM OF STRUCTURES

20 kN

rotation of -0.001 displacement of -0.005 m

4 kN/m

Equivalent
nodal
loads

1

1.2 kN

0.8 kNm 0.5333 kNm

2.8 kN

6 kN 6 kN
3 kNm3 kNm

nels nprops np_types
4 1 2

props(ei)
4.0e4 2.0e4

etype
1 1 2 2

ell
2.5 2.5 3.0 2.0

nr,(k,nf(:,k),i=1,nr)
2
1 0 1 4 0 1

loaded_nodes,(k,loads(nf(:,k))
4
2 -20.0 0.0 3 -6.0 -3.0
4 -8.8 2.2 5 -1.2 0.5333

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
2
1 2 -0.001 3 1 -0.005

3

3 m 2 m2.5 m 2.5 m

EI = 4 × 104 kNm2 EI = 2 × 104 kNm2

41 2 3 42 5

Figure 4.12 Mesh and data for first Program 4.3 example

2
g(2)

g(1) g(3)

g(4)

1

Figure 4.13 Node and freedom numbering for beam elements

same results using “stiff springs”. An advantage of the “stiff spring” approach for fixing
all boundary conditions, is that all nodes retain their full complement of freedoms, leading
to a simpler freedom numbering system. Disadvantages are that there are greater memory
requirements with more equations needing to be solved and the chances of numerical
difficulties are higher.

Nodal loading in the context of beam analysis can take the form of either point loads or
moments. In the analysis, loading can only be applied at the nodes, so if forces or moments
are required between nodes a set of equivalent nodal loads must be derived for application
to the mesh. These equivalent nodal loads can be found by computing the shear forces
and moments that would have been generated at each node if the element had been fully

STATIC EQUILIBRIUM OF STRUCTURES 125

nels nprops np_types
4 1 2

props(ei)
4.0e4 2.0e4

etype
1 1 2 2

ell
2.5 2.5 3.0 2.0

nr
0

loaded_nodes,(k,loads(nf(:,k))
4
2 -20.0 0.0 3 -6.0 -3.0
4 -8.8 2.2 5 -1.2 0.5333

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
4
1 1 0.0 1 2 -0.001
3 1 -0.005 4 1 0.0

Figure 4.14 Alternative data for first Program 4.3 example without using ‘nr’ data

There are 8 equations and the skyline storage is 21

Node Translation Rotation
 1 0.0000E+00 −0.1000E−02
 2 −0.3579E−02 −0.1301E−02
 3 −0.5000E−02 0.2051E−03
 4 0.0000E+00 0.2410E−02
 5 0.4713E−02 0.2343E−02
Element Force Moment Force Moment
 1 0.2157E+02 0.3178E+02 −0.2157E+02 0.2214E+02
 2 0.1569E+01 −0.2214E+02 −0.1569E+01 0.2606E+02
 3 −0.9577E+01 −0.2906E+02 0.9577E+01 0.3333E+00
 4 0.1200E+01 0.1867E+01 −0.1200E+01 0.5333E+00

Figure 4.15 Results from first Program 4.3 example

“encastré” at both ends (the fixed end moments and shear forces). The signs of these fixed
end values are then reversed and applied to the nodes of the element in the actual problem
(see e.g. Przemieniecki, 1968). If loads or moments are required at the nodes themselves,
they are applied directly to the node without any further manipulation. If point loads are
to be applied to a beam it is recommended that a node be placed at that location to avoid
the need for unnecessary “fixed end” calculations.

In the example of Figure 4.12, elements 3 and 4 support distributed loads and the appro-
priate equivalent nodal loads to be applied are shown beneath their respective elements.

When the computed results shown in Figure 4.15 are examined, it will be seen that the
fixed freedoms have the expected values. This is confirmed by the rotation at node 1 of
−0.001 (clockwise) and the translation at node 3 of −0.005. Of the remaining displacements
it is seen that the rotation at node 3, for example, equals 0.000205 (anti-clockwise).

In order to compute the actual moments and shear forces in the beam, the equivalent
nodal loads must be subtracted from the corresponding “action” vector printed for each
element. This is of course only necessary for those elements that involved loading between

126 STATIC EQUILIBRIUM OF STRUCTURES

the nodes. For example, the moments at the nodes in this example for each of the elements
are given as follows:

Element 1
M1 = 31.78

M2 = 22.14

Element 2
M1 = −22.14

M2 = 26.06

Element 3
M1 = −29.06 + 3.00 = −26.06

M2 = 0.33 − 3.00 = −2.67

Element 4
M1 = 1.87 + 0.80 = 2.67
M2 = 0.53 − 0.53 = 0.00

Internal equilibrium is maintained, for example M2 of element 1 is equal and opposite
to M1 of element 2, and so on. A bending moment diagram for the beam based on these
values is given in Figure 4.16.

0 1 2 3 4 5 6 7 8 9 10

x (m)

−3
0

−2
0

−1
0

0
10

20
30

M
 (

kN
m

)

Figure 4.16 Bending moment diagram from first Program 4.3 example

A second example of the use of Program 4.3 is illustrated in Figure 4.17 and represents
a laterally loaded pile which is to be modelled as a “beam on an elastic foundation”, with

STATIC EQUILIBRIUM OF STRUCTURES 127

10 m

Linearly increasing
foundation stiffness

’Staircase’
approximation

2

3

4

5

6

1

2

3

4

5

1 kN

1

2 kN/m2 Foundation
stiffness
k(kN/m2)

Pile:
EI = 1.924 × 104 kNm2

nels nprops np_types
5 2 5
props(ei,k)
1.924e4 0.2 1.924e4 0.6
1.924e4 1.0 1.924e4 1.4
1.924e4 1.8
etype
1 2 3 4 5
ell
2.0 2.0 2.0 2.0 2.0
nr
0
loaded_nodes,(k,loads(nf(:,k))
1
1 1.0 0.0
fixed_freedoms
0

0.2

0.6

1.0

1.4

1.8

Figure 4.17 Mesh and data for second Program 4.3 example

a linearly increasing soil or foundation stiffness. The pile has a constant flexural stiffness
of EI = 1.924 × 104 kNm2, and the foundation stiffness increases from zero at the ground
surface to 2 kN/m2 at a depth of 10 m. The pile is modelled by 5 beam elements, and
the soil stiffness is approximated by a step function based on the stiffness at the mid-
point of each element. The data file provides nprops=2 to signify the presence of an
“elastic foundation”, and np types=5 since each element is supported by soil with a
different stiffness value. The composite beam/foundation global stiffness matrix in this
case involves the assembly of the sum of the element stiffness and “mass” matrices, km
and mm respectively.

The remainder of the program follows a familiar course. Forces and/or fixed dis-
placements are read, and, following equation solution, the global nodal displacements and
rotations are obtained. In the post-processing phase, the element nodal displacements eld
are retrieved, as are the element stiffness and “mass” matrices. The product of eld and the

128 STATIC EQUILIBRIUM OF STRUCTURES

There are 12 equations and the skyline storage is 38

 Node Translation Rotation
 1 0.8559E+00 -0.1148E+00
 2 0.6263E+00 -0.1147E+00
 3 0.3971E+00 -0.1145E+00
 4 0.1683E+00 -0.1143E+00
 5 -0.6008E-01 -0.1141E+00
 6 -0.2883E+00 -0.1141E+00

Element Force Moment Force Moment
 1 0.1000E+01 0.3638E-11 -0.7036E+00 0.1688E+01
 2 0.7036E+00 -0.1688E+01 -0.8960E-01 0.2436E+01
 3 0.8960E-01 -0.2436E+01 0.4757E+00 0.1973E+01
 4 -0.4757E+00 -0.1973E+01 0.6271E+00 0.7640E+00
 5 -0.6271E+00 -0.7640E+00 -0.9095E-12 -0.9095E-12

Figure 4.18 Results from second Program 4.3 example

element composite stiffness km+mm gives the element “actions” which holds the element
shear forces and moments.

The pile is supported by the foundation only, so no additional boundary conditions
are needed (nr=0). In this example, a unit horizontal load has been applied to the top of
the pile.

The computed results in Figure 4.18 show the horizontal translation and rotation at each
of the nodes. It is seen that the horizontal translation of node 1 is given as 0.856 which is
in reasonable agreement with the analytical solution to this problem from Hetenyi (1946).

Program 4.4 Analysis of elastic rigid-jointed frames using 2-node beam/rod elements
in two or three dimensions.

PROGRAM p44
!---
! Program 4.4 Analysis of elastic rigid-jointed frames using 2-node
! beam/rod elements in 2- or 3-dimensions.
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndim,ndof,nels,neq,nod=2, &
nodof,nn,nprops,np_types,nr

REAL(iwp)::penalty=1.0e20_iwp,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::action(:),coord(:,:),eld(:),gamma(:),g_coord(:,:),&
km(:,:),kv(:),loads(:),prop(:,:),value(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nn,ndim,nprops,np_types
IF(ndim==2)nodof=3; IF(ndim==3)nodof=6; ndof=nod*nodof
ALLOCATE(nf(nodof,nn),km(ndof,ndof),coord(nod,ndim),g_coord(ndim,nn), &
eld(ndof),action(ndof),g_num(nod,nels),num(nod),g(ndof),gamma(nels), &
g_g(ndof,nels),prop(nprops,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype;
IF(ndim==3)READ(10,*)gamma
READ(10,*)g_coord; READ(10,*)g_num
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq)); kdiag=0

!-----------------------loop the elements to find global array sizes------

STATIC EQUILIBRIUM OF STRUCTURES 129

elements_1: DO iel=1,nels
num=g_num(:,iel); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global stiffness matrix assembly------------------
kv=zero
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL rigid_jointed(km,prop,gamma,etype,iel,coord); g=g_g(:,iel)
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
!-----------------------read loads and/or displacements-------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),no(fixed_freedoms), &

sense(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution --------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
WRITE(11,'(/A)') " Node Displacements and Rotation(s)"
DO k=1,nn; WRITE(11,'(I5,6E12.4)')k,loads(nf(:,k)); END DO

!-----------------------retrieve element end actions----------------------
WRITE(11,'(/A)')" Element Actions"
elements_3: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL rigid_jointed(km,prop,gamma,etype,iel,coord); g=g_g(:,iel)
eld=loads(g); action=MATMUL(km,eld)
IF(ndim<3)THEN; WRITE(11,'(I5,6E12.4)')iel,action; ELSE

WRITE(11,'(I5,6E12.4)')iel, action(1: 6)
WRITE(11,'(A,6E12.4)')" ",action(7:12)

END IF
END DO elements_3

STOP
END PROGRAM p44

New dynamic real arrays:
gamma rotation of element about local axis

The first three programs in this chapter were concerned only with 1D elements which
could sustain either axial loads (rod elements) or transverse loading and moments (beam
elements). It is much more common to encounter structures made up of members arbitrarily
inclined and attached to one another. Loading of such structures results in displacements due
to both axial and bending effects, although the former is often ignored in many approximate
methods. The beam–rod element stiffness matrix used by this program is formed by super-
posing the beam and rod stiffness matrices described in earlier programs in this chapter. The
program described in this section can analyse two- or three-dimensional framed structures,
with the element stiffness matrix formed by the library subroutine rigid jointed.

130 STATIC EQUILIBRIUM OF STRUCTURES

6 m 6 m 2 m

2 m2 m2 m
20 kN/m

60 kN60 kN

4 m
5 m

1 2 3

4

5
6

1 2

3

4

5

6

Elements EA(kN) EI(kNm2)
1,2,3 5 × 109 6 × 104

4,5,6 1 × 109 2 × 104

20 kN 20 kN

6.67 kNm6.67 kNm
120 kN140 kNm 140 kNm120 kN

60 kN 60 kNm60 kN60 kNm Equivalent
nodal
loads

nels nn ndim nprops np_types
6 6 2 2 2

prop(ea,ei)
5.0e9 6.0e4
1.0e9 2.0e4

etype
1 1 1 2 2 2

g_coord
 0.0 0.0 6.0 0.0 6.0 -4.0
12.0 0.0 12.0 -5.0 14.0 0.0

g_num
1 2 2 4 4 6 3 2 3 4 5 4

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 1 3 0 0 0 5 0 0 0

loaded_nodes,(k,loads(nf(:,k))
4
1 0.0 -60.0 -60.0 2 0.0 -180.0 -80.0
4 0.0 -140.0 133.33 6 0.0 -20.0 6.67

fixed_freedoms
0

Figure 4.19 Mesh and data for first Program 4.4 example

The first example analysed by Program 4.4 is shown in Figure 4.19 and is a 2D rigid-
jointed frame subjected to distributed loads and point loads. In 2D, the elements have 6
degrees of freedom as shown in Figure 4.20. At each node there are two translational free-
doms in x- and y- and a rotation (in that order). The nodal freedom numbering associated
with each element, accounting for any restraints, is as usual contained in the “steering”
vector g. Thus, with reference to Figures 4.19 and 4.20, the steering vector for element 1
would be [0 0 1 2 3 4]T and for element 2, [2 3 4 5 6 7]T, and so on. The data organisation

STATIC EQUILIBRIUM OF STRUCTURES 131

g(2)

g(4)

g(5)

g(3)

2
g(6)

1
g(1)

Figure 4.20 Node and freedom numbering for 2D beam–rod elements

There are 10 equations and the skyline storage is 40

 Node Displacements and Rotation(s)
 1 0.0000E+00 0.0000E+00 -0.1025E-02
 2 0.3645E-07 -0.8319E-06 -0.9497E-03
 3 0.0000E+00 0.0000E+00 0.0000E+00
 4 0.6435E-07 -0.6283E-06 0.1774E-02
 5 0.0000E+00 0.0000E+00 0.0000E+00
 6 0.6435E-07 0.2880E-02 0.1329E-02

Element Actions
 1 -0.3038E+02 -0.1975E+02 -0.6000E+02 0.3038E+02 0.1975E+02 -0.5849E+02
 2 -0.2325E+02 0.8238E+01 -0.2519E+01 0.2325E+02 -0.8238E+01 0.5195E+02
 3 0.0000E+00 0.2000E+02 0.3333E+02 0.0000E+00 -0.2000E+02 0.6670E+01
 4 0.7123E+01 0.2080E+03 -0.9497E+01 -0.7123E+01 -0.2080E+03 -0.1899E+02
 5 0.3177E+02 0.2610E+02 0.9839E+01 -0.3177E+02 -0.2610E+02 0.1968E+02
 6 -0.8513E+01 0.1257E+03 0.1419E+02 0.8513E+01 -0.1257E+03 0.2838E+02

Figure 4.21 Results from first Program 4.4 example

is similar to the pin-jointed frame analysis described in Program 4.2. The first line of data
provides the number of elements (nels), the number of nodes (nn), the dimensionality
(ndim), the number of properties nprops and the number of property types np types.

In this program, the number of material properties required depends on the dimension-
ality, so the data now includes input to the integer nprops which indicates the number of
material properties required for each property type. In a 2D frame problem, there are two
material properties required (EA and EI), so nprops = 2. The material property values
for each type are then read into the two-dimensional array prop.

The material property data is followed by the etype vector (if needed), the global
nodal coordinates (g coord) and the element node numbering (g num). The loading on
the nodes is calculated using the equivalent nodal loads approach described previously for
the first example with Program 4.3, and these values are shown for each individual element
in Figure 4.19. There are no fixed freedoms in this example. The results shown in
Figure 4.21 indicate that the rotation at node 1 for example is −0.001025 (clockwise). The
action vectors for elements 4, 5, and 6 are correct as printed, however for elements 1,2,
and 3 the equivalent nodal loads must be subtracted, for example

Element 1
Fx1 = −30.38 + 0.00 = −30.38
Fy1 = −19.75 + 60.00 = 40.25

132 STATIC EQUILIBRIUM OF STRUCTURES

M1 = −60.00 + 60.00 = 0.00
Fx1 = 30.38 + 0.00 = 30.38
Fy1 = 19.75 + 60.00 = 79.75
M2 = −58.49 − 60.00 = −118.49

Element 2
Fx1 = −23.25 + 0.00 = −23.25
Fy1 = 8.24 + 120.00 = 128.24
M1 = −2.52 + 140.00 = 137.48
Fx1 = 23.25 + 0.00 = 23.25
Fy1 = −8.24 + 120.00 = 111.76
M2 = 51.95 − 140.00 = −88.05

Element 3
Fx1 = 0.00 + 0.00 = 0.00
Fy1 = 20.00 + 20.00 = 40.00
M1 = 33.33 + 6.67 = 40.00
Fx1 = 0.00 + 0.00 = 0.00
Fy1 = −20.00 + 20.00 = 0.00
M2 = 6.67 − 6.67 = 0.00

Moment equilibrium is established by adding the moments from the appropriate end of
all elements coming into the joint.

The second example to be analysed by Program 4.4 is shown in Figure 4.22 and rep-
resents a 3D rigid-jointed frame subjected to a vertical point load of −100.0. In 3D, the
elements have 12 degrees of freedom as shown in Figure 4.23. At each node there are three
translational freedoms in x-, y-, and z-, and three rotations about each of the global axes.
The extension to 3D is conceptually simple, but considerably more care is required in the
preparation of data and attention to sign conventions. The data organisation is virtually the
same as in the previous example, except ndim is set to 3 in the data.

In addition to the axial stiffness (EA), 3D involves the flexural stiffness about the
element’s local y′ and z′ axes (EI y and EI z respectively) and a torsional stiffness (GJ),
thus nprops is 4. The local coordinate x′ defines the long axis of the element. The
relationship between the global axes (x, y, z) and local axes (x′, y ′, z′) must be considered
for 3D space frames because in addition to the six coordinates that define the position of
each node of the element in space, a seventh rotational “coordinate” γ must be read in as
data. The additional real vector gamma is provided to hold this information (in degrees)
for each element.

For the purposes of data preparation, a “vertical” element is defined as one which
lies parallel to the global y axis. For non-vertical elements the angle γ is defined as
the rotation of the element about its local x′ axis as shown in Figure 4.24. For “ver-
tical” elements however, γ is defined as the angle between the global z axis and the
local z′ axis, measured towards the global x axis as shown in Figure 4.25. For “vertical”
elements it is essential that the local x′ axis points in the same direction as the global
y axis.

STATIC EQUILIBRIUM OF STRUCTURES 133

Returning to the example problem, it is necessary to establish the local coordinate
system for each element as shown in Figure 4.26. As indicated in Figure 4.23, the positive
local x′ direction is defined by moving from node 1 to node 2, so this is also the order in
which the element nodal numbering must be given in the data.

y

x
5 m

5 m

5 m

1

2

3

4

100 kN

For all elements
EA = 4 × 106 kN
EIy = 1 × 106 kNm2

EIz = 0.3 × 106 kNm2

GJ = 0.3 × 106 kNm2

z

nels nn ndim nprops np_types
3 4 3 4 1

prop(ea,eiy,eiz,gj)
4.0e6 1.0e6 0.3e6 0.3e6

etype(not needed)

gamma
0.0 0.0 90.0

g_coord
0.0 5.0 5.0 5.0 5.0 5.0
5.0 5.0 0.0 5.0 0.0 0.0

g_num
1 2 3 2 4 3

nr,(k,nf(:,k),i=1,nr)
2
1 0 0 0 0 0 0 4 0 0 0 0 0 0

loaded_nodes,(k,loads(nf(:,k))
1
2 0.0 -100.0 0.0 0.0 0.0 0.0

fixed_freedoms
0

3

1 2

Figure 4.22 Mesh and data for second Program 4.4 example

134 STATIC EQUILIBRIUM OF STRUCTURES

x

y

z

g(1)

g(2)

g(3) g(4)

g(7)

g(8)

g(9) g(10)

g(11)

g(6) g(5)

g(12)

1

2

x’

Figure 4.23 Node and freedom numbering for 3D beam–rod elements

g is the rotation
about the local x’ axis

View as seen from the
positive x’ direction

g

g

y’

z’

Parallel to
xz-plane

Figure 4.24 Transformation angle for “non-vertical” elements

z’

y’

g

g is the angle between z and z’
measured towards x

z

x’,y

x

Figure 4.25 Transformation angle for “vertical” elements

STATIC EQUILIBRIUM OF STRUCTURES 135

x’

x’
x’

y’

z’

y’

y’

z’

z’

g = 0°

g = 0°

g = 90°

y

z

x

Figure 4.26 Element local coordinate systems

There are 12 equations and the skyline storage is 78

 Node Displacements and Rotation(s)
 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 2 -0.3039E-05 -0.5997E-02 0.8769E-03 0.1129E-02 -0.2360E-03 -0.1514E-02
 3 0.9571E-03 -0.4536E-04 0.9113E-03 0.7470E-03 -0.1582E-03 -0.3727E-03
 4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Element Actions
 1 0.2431E+01 0.6371E+02 -0.2754E+02 -0.6777E+02 0.1160E+03 0.2501E+03
 -0.2431E+01 -0.6371E+02 0.2754E+02 0.6777E+02 0.2165E+02 0.6846E+02
 2 -0.2431E+01 0.3629E+02 0.2754E+02 -0.1137E+03 0.9490E+01 0.6846E+02
 0.2431E+01 -0.3629E+02 -0.2754E+02 -0.6777E+02 -0.2165E+02 -0.6846E+02
 3 -0.2431E+01 0.3629E+02 0.2754E+02 0.2403E+02 0.9490E+01 0.8062E+02
 0.2431E+01 -0.3629E+02 -0.2754E+02 0.1137E+03 -0.9490E+01 -0.6846E+02

Figure 4.27 Results from second Program 4.4 example

In the example of Figure 4.22, elements 1 and 2 both have their local z′ axes parallel
to the global xz plane, thus there has been no rotation of these non-vertical elements and γ

is set to zero. For vertical element 3 however, γ is set to 90◦, which is the angle between
the global z and local z′ axes measured towards the global x axis.

The results of the analysis given in Figure 4.27 indicate that the vertical deflection under
the load is −0.005997. As a check on equilibrium under the applied loading of −100.0,
the Fy1 component of the action vector at the built-in end (node 1) of each of elements
1 and 3 is 63.71 and 39.29 respectively.

136 STATIC EQUILIBRIUM OF STRUCTURES

Program 4.5 Analysis of elastic–plastic beams or rigid-jointed frames using 2-node
beam or beam/rod elements in one, two or three dimensions.

PROGRAM p45
!---
! Program 4.5 Analysis of elasto-plastic beams or rigid-jointed frames
! using 2-node beam or beam/rod elements in 1-, 2- or
! 3-dimensions
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,incs,iters,iy,k,limit,loaded_nodes,ndim,ndof,nels,neq, &
nod=2,nodof,nn,nprops,np_types,nr

REAL(iwp)::tol,total_load,zero=0.0_iwp; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
node(:),num(:)

REAL(iwp),ALLOCATABLE::action(:),bdylds(:),coord(:,:),dload(:),eld(:), &
eldtot(:),gamma(:),g_coord(:,:),holdr(:,:),km(:,:),kv(:),loads(:), &
oldis(:),prop(:,:),react(:),val(:,:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nn,ndim,nprops,np_types
IF(ndim==1)nodof=2; IF(ndim==2)nodof=3; IF(ndim==3)nodof=6; ndof=nod*nodof
ALLOCATE(nf(nodof,nn),km(ndof,ndof),coord(nod,ndim),g_coord(ndim,nn), &
eld(ndof),action(ndof),g_num(nod,nels),num(nod),g(ndof),gamma(nels), &
g_g(ndof,nels),holdr(ndof,nels),react(ndof),prop(nprops,np_types), &
etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype;
IF(ndim==3)READ(10,*)gamma
READ(10,*)g_coord; READ(10,*)g_num
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),eldtot(0:neq),bdylds(0:neq),oldis(0:neq))

!-----------------------loop the elements to find global array sizes------
kdiag=0
elements_1: DO iel=1,nels
num=g_num(:,iel); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global stiffness matrix assembly------------------
holdr=zero; kv=zero
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL rigid_jointed(km,prop,gamma,etype,iel,coord); g=g_g(:,iel)
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
READ(10,*)loaded_nodes
ALLOCATE(node(loaded_nodes),val(loaded_nodes,nodof))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes); READ(10,*)limit,tol,incs
ALLOCATE(dload(incs)); READ(10,*)dload

!-----------------------equation factorisation----------------------------
CALL sparin(kv,kdiag); total_load=zero

!-----------------------load increment loop-------------------------------
load_incs: DO iy=1,incs
total_load=total_load+dload(iy); WRITE(*,'(/,A,I5)')" load step",iy

STATIC EQUILIBRIUM OF STRUCTURES 137

WRITE(11,'(/A,i3,A,E12.4)')" Load step",iy," Load factor ",total_load
oldis=zero; iters=0
its: DO

iters=iters+1; WRITE(*,*)"iteration no",iters; loads=zero
DO i=1,loaded_nodes; loads(nf(:,node(i)))=dload(iy)*val(i,:); END DO
loads=loads+bdylds; bdylds=zero

!-----------------------forward/back-substitution and check convergence---
CALL spabac(kv,loads,kdiag); loads(0)=zero
CALL checon(loads,oldis,tol,converged)

!-----------------------inspect moments in all elements-------------------
elements_3: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL rigid_jointed(km,prop,gamma,etype,iel,coord); g=g_g(:,iel)
eld=loads(g); action=MATMUL(km,eld); react=zero

!------------------if plastic moments exceeded generate correction vector-
IF(limit/=1)THEN

CALL hinge(coord,holdr,action,react,prop,iel,etype,gamma)
bdylds(g)=bdylds(g)-react; bdylds(0)=zero

END IF
!-----------------------at convergence update element reactions-----------

IF(iters==limit.OR.converged) &
holdr(:,iel)=holdr(:,iel)+react(:)+action(:)

END DO elements_3
IF(iters==limit.OR.converged)EXIT its

END DO its
eldtot=loads+eldtot;
WRITE(11,'(A)') " Node Displacement(s) and Rotation(s)"
DO i=1,loaded_nodes

WRITE(11,'(I5,6E12.4)')node(i),eldtot(nf(:,node(i)))
END DO
WRITE(11,'(A,I5,A)')" Converged in",iters," iterations"
IF(iters==limit.AND.limit/=1)EXIT load_incs

END DO load_incs
STOP
END PROGRAM p45

New scalar integers:
incs number of load increments
iters counts plastic iterations
iy counts load increments
limit plastic iteration ceiling

New scalar reals:
tol plastic convergence tolerance
total load running total of dload (= λ)

Scalar logical:
converged set to .TRUE. if algorithm has converged

New dynamic real arrays:
bdylds internal correction “forces” to redistribute moments
dload load increment values
eldtot keeps a running total of nodal displacements

138 STATIC EQUILIBRIUM OF STRUCTURES

holdr holds element “actions” at convergence
oldis nodal displacements from previous iteration
react element self-equilibrating “correction” vector
val nodal load weightings

This program is an extension of the preceding Program 4.4 in which a limit is placed on
the maximum moment that any member can sustain. As loads on the structure are increased,
plastic hinges form progressively and “collapse” occurs when a mechanism develops. This
program is currently limited to load control analysis.

This is the first example in the book of a non-linear analysis in which the moment-
curvature behaviour of the members is assumed to be elastic-perfectly plastic as shown in
Figure 4.28. To deal with this non-linearity, an iterative approach is used to find the nodal
displacements and element “actions” under a given set of applied loads. Moments in excess
of their plastic limits are re-distributed to other joints which still have reserves of moment
carrying capacity. Convergence of the iterative process is said to have occurred when,
within certain tolerances, moments at the element nodes nowhere exceed their limiting
plastic values, and the internal “actions” are in equilibrium with the applied external loads.

The conventional approach for tackling this type of problem is progressively to modify
the global stiffness matrix as joints reach the plastic limit. The modification is necessary
because a plastic joint is replaced by a pin joint with the appropriate plastic moment
applied. In the method shown in the structure chart in Figure 4.29, the global stiffness

Moment

Curvature

Mp

Mp = Plastic moment

Figure 4.28 Elastic-perfectly plastic moment-curvature relationship

STATIC EQUILIBRIUM OF STRUCTURES 139

Read data.
Allocate arrays.
Find problem size.

Null global stiffness matrix.

 For all elements

Find steering vector.
Compute element stiffness matrix.
Assemble global stiffness matrix.

Read load increment data.
Factorise the global stiffness matrix.

For each load increment

For each iteration

Add body loads to load increment vector.
Solve equilibrium equations to give displacement increments.

Check convergence.

 For all elements

Retrieve element stiffness matrices and nodal displacements.
Multiply together to give element "actions".
Add to "actions" left over after last step.

If plastic moment exceeded form self-equilibrating
correction terms.

Subtract correction from accumulated body loads vector.

Convergence?

 Yes No

Update "actions" ready for
 next load step. Iterate again.
Update nodal displacements.

Figure 4.29 Structure chart for Program 4.5

matrix is formed once only, with the non-linearity introduced by iteratively modifying
the applied forces on the structure until convergence is achieved. For greater detail of this
particular algorithm the reader is referred to Griffiths (1988). Similar procedures are utilised
in Chapter 6 in relation to elastic–plastic solids.

When a problem involves a constant left hand side matrix and multiple right hand
side vectors, the benefits of splitting the solution of the equilibrium equations into two
stages, namely factorisation performed once (using subroutine sparin), and a forward and

140 STATIC EQUILIBRIUM OF STRUCTURES

back substitution performed at each iteration for each new right-hand side (using subroutine
spabac) become clear.

Material properties in Program 4.5 must now include both elastic properties and plastic
moment values for all members. For 1D beams or 2D frames, only one plastic moment
(Mp) is read, thus nprops is 2 in 1D and 3 in 2D. For 3D space frames, however, three
plastic moments, (Mpy , Mpz, and Mpx in that order) are read, thus nprops is 7, where
Mpy and Mpz represent respectively, the limiting bending moment about the local y ′- and
z′-axes of the member, and Mpx represents the limiting torsional moment about the long
axis of the member.

Loads are applied in incs increments to the nodes and the magnitude of each incre-
ment is read into the vector dload. The loading remains proportional as is customary in
plastic hinge analysis, so the relative magnitudes of the nodal loads are read by node and
val, where node holds the node numbers and val holds the load weightings on each
freedom.

Following assembly of the global stiffness matrix and factorisation by subroutine
sparin, the program enters the load increment loop. For each iteration counted by iters,
the external load increments are added to the redistributive loads vector bdylds. The equi-
librium equations are solved using subroutine spabac and the resulting nodal displacement
increments compared with their values at the previous iteration using subroutine checon.
This subroutine observes the relative change in displacement increments from one iteration
to the next. If the change is less than tol then the logical variable converged is set to
.TRUE and convergence has occurred. Alternatively, converged is set to .FALSE and
another iteration is performed.

At each iteration, each element is inspected and its action vector computed from
the product of its nodal displacements and the element stiffness matrix. The subroutine
hinge adds the action vector to the values already existing from the previous load
step (held in holdr) and checks both nodes to see if the plastic moment value has been
exceeded. If the plastic moment value has been exceeded, the self-equilibrating vector
react is formed. In Figure 4.30(a), a typical 2D element is shown in which a particular
load increment has pushed the moment value at both nodes over their plastic limit. The
correction vector applies a moment to each node equal to the amount of overshoot of the
plastic moment values, however to preserve equilibrium, a couple is required as shown
in the local coordinate system in Figure 4.30(b). Finally as shown in Figure 4.30(c), the
couple is transformed into global coordinate directions before being assembled into the
bdylds vector. Only those elements that have moments in excess of the plastic limits will
contribute any loading to bdylds.

If, at any load step, the algorithm fails to converge within the prescribed iteration ceiling
limit then “collapse” of the structure is indicated, because the algorithm has been unable
to satisfy equilibrium without violating the plastic moment values.

The first example shown in Figure 4.31 is a two-bay portal frame subjected to propor-
tional loading. After each increment, the output shown in Figure 4.32 gives the loading
factor λ (equal to the accumulated values of dload) together with the loaded nodal dis-
placements and the iteration count to achieve convergence. To reduce the volume of output,
only the displacements of loaded nodes (2, 3, and 6) are given. In Figure 4.33, the horizon-
tal movement of point A is plotted against λ, indicating close agreement with the theoretical
value of λf = 1.375 given by Horne (1971) for this problem.

STATIC EQUILIBRIUM OF STRUCTURES 141

12

15
1

q

L L = 1
q = 18.43°
Mp = 10

action+
holdr

a)

2

q

local
correction

b)

2
1

5

2

3

3

q

global
correction

c)

2
1

2

5

2.8460

0.9487

0.9487

2.8460

Figure 4.30 Correction terms for “yielding” element

4λ

6l

1 8

2 3 7

5

1 4 7

42 3 5 6

12l

6

20 m 30 m

20

50 50 80 80

20 20 15 m

A
EA = 1010 kN

EI = 106 kNm2

Mp kNm

Figure 4.31 Mesh and data for first Program 4.5 example (Continued on page 142)

142 STATIC EQUILIBRIUM OF STRUCTURES

nels nn ndim nprops np_types
7 8 2 3 3

prop(ea,ei,mp)
1.0e10 1.0e6 20.0
1.0e10 1.0e6 50.0
1.0e10 1.0e6 80.0

etype
1 2 2 1 3 3 1

g_coord
 0.0 0.0 0.0 15.0 10.0 15.0 20.0 15.0
20.0 0.0 35.0 15.0 50.0 15.0 50.0 0.0

g_num
1 2 2 3 3 4 5 4 4 6 6 7 8 7

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 0 5 0 0 0 8 0 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
3
2 4.0 0.0 0.0
3 0.0 -6.0 0.0
6 0.0 -12.0 0.0

limit tol
200 0.0001

incs,(dload(i),i=1,incs)
8
0.5 0.3 0.2 0.2 0.1 0.05 0.02 0.01

Figure 4.31 (Continued from page 141)

There are 15 equations and the skyline storage is 66

Load step 1 Load factor 0.5000E+00
 Node Displacement(s) and Rotation(s)
 2 0.2073E-03 -0.9812E-09 -0.2015E-04
 3 0.2073E-03 -0.8478E-04 0.1410E-04
 6 0.2073E-03 -0.1161E-02 -0.3057E-05
Converged in 2 iterations

Load step 2 Load factor 0.8000E+00
 Node Displacement(s) and Rotation(s)
 2 0.4912E-03 -0.1102E-08 -0.3817E-04
 3 0.4912E-03 -0.1133E-03 0.2775E-04
 6 0.4912E-03 -0.2210E-02 -0.2088E-04
Converged in 25 iterations
.
.
.
Load step 7 Load factor 0.1370E+01
 Node Displacement(s) and Rotation(s)
 2 0.2043E-02 -0.9284E-09 -0.1300E-03
 3 0.2043E-02 -0.2059E-03 0.9912E-04
 6 0.2043E-02 -0.5453E-02 -0.5822E-04
Converged in 65 iterations

Load step 8 Load factor 0.1380E+01
 Node Displacement(s) and Rotation(s)
 2 0.3203E-02 -0.9416E-09 -0.1087E-03
 3 0.3203E-02 0.2461E-04 0.1241E-03
 6 0.3203E-02 -0.6727E-02 -0.5976E-04
Converged in 200 iterations

Figure 4.32 Results from first Program 4.5 example

STATIC EQUILIBRIUM OF STRUCTURES 143

The second example in 3D shown in Figure 4.34 is of a plane triangular grid, rigidly
supported along one side and subjected to a point transverse load at its apex (node 7). All
members have the same stiffness and plastic moment. The output shown in Figure 4.35
indicates failure occurs when the transverse load approaches a value of 1.55.

0 5 10 15 20 25 30 35 40
×10−4

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

l

d A

2

25

19

23

30
76 65 200+ lf= 1.375

Horne(1971)

Iterations

Figure 4.33 Load displacement behaviour from first Program 4.5 example

1 2

3

4

5

6

7

8

9

10

3.0

3.0
Out-of-plane load
applied to node 7
in z-direction

x

y

Figure 4.34 Mesh and data for second Program 4.5 example (Continued on page 144)

144 STATIC EQUILIBRIUM OF STRUCTURES

nels nn ndim nprops np_types
12 10 3 7 1

prop(ea,eiy,eiz,gj,mpy,mpz,mpx)
1.0 1.e4 1.e4 1.0 1.0 1.0 1.e8

etype(not needed)

gamma
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

g_coord
0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 2.0 0.0 0.0
2.0 1.0 0.0 2.0 2.0 0.0 3.0 0.0 0.0 3.0 1.0 0.0
3.0 2.0 0.0 3.0 3.0 0.0

g_num
1 2 2 3 2 4 3 5 4 5 5 6 4 7 5 8 6 9 7 8 8 9 9 10

nr,(k,nf(:,k),i=1,nr)
4
1 0 0 0 0 0 0 3 0 0 0 0 0 0 6 0 0 0 0 0 0 10 0 0 0 0 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
1
7 0.0 0.0 1.0 0.0 0.0 0.0

limit,tol
200 0.00001

incs,(dload(i)=1,incs)
5
0.5 0.5 0.5 0.05 0.05

Figure 4.34 (Continued from page 143)

There are 36 equations and the skyline storage is 378

Load step 1 Load factor 0.5000E+00
 Node Displacement(s) and Rotation(s)
 7 0.0000E+00 0.0000E+00 0.1059E-03 -0.6345E-04 -0.6345E-04 0.0000E+00
Converged in 3 iterations
Load step 2 Load factor 0.1000E+01
 Node Displacement(s) and Rotation(s)
 7 0.0000E+00 0.0000E+00 0.2117E-03 -0.1269E-03 -0.1269E-03 0.0000E+00
Converged in 3 iterations
Load step 3 Load factor 0.1500E+01
 Node Displacement(s) and Rotation(s)
 7 0.0000E+00 0.0000E+00 0.3247E-03 -0.1936E-03 -0.1936E-03 0.0000E+00
Converged in 18 iterations
Load step 4 Load factor 0.1550E+01
 Node Displacement(s) and Rotation(s)
 7 0.0000E+00 0.0000E+00 0.1517E-02 -0.7944E-03 -0.7944E-03 0.0000E+00
Converged in 200 iterations

Figure 4.35 Results from second Program 4.5 example

STATIC EQUILIBRIUM OF STRUCTURES 145

Program 4.6 Stability (buckling) analysis of elastic beams using 2-node beam ele-
ments (elastic foundation optional).

PROGRAM p46
!---
! Program 4.6 Stability (buckling) analysis of elastic beams using 2-node
! beam elements (elastic foundation optional).
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,iters,k,limit,ndof=4,nels,neq,nod=2,nodof=2,nn,nprops, &
np_types,nr

REAL(iwp)::eval,tol,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),kdiag(:),nf(:,:),num(:)
REAL(iwp),ALLOCATABLE::ell(:),evec(:),kg(:,:),gv(:),km(:,:),kv(:), &
mm(:,:),prop(:,:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nprops,np_types; nn=nels+1
ALLOCATE(nf(nodof,nn),ell(nels),num(nod),g(ndof),g_g(ndof,nels), &
etype(nels),prop(nprops,np_types),km(ndof,ndof),kg(ndof,ndof), &
mm(ndof,ndof))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype; READ(10,*)ell
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr),limit,tol; CALL formnf(nf)
neq=MAXVAL(nf); ALLOCATE(kdiag(neq),evec(neq)); kdiag=0

!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
num=(/iel,iel+1/); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),gv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global stiffness and geometric matrix assembly----
kv=zero; gv=zero
elements_2: DO iel=1, nels
CALL beam_km(km,prop(1,etype(iel)),ell(iel)); g=g_g(:,iel)
mm=zero; IF(nprops>1)CALL beam_mm(mm,prop(2,etype(iel)),ell(iel))
CALL beam_ge(kg,ell(iel))
CALL fsparv(kv,km+mm,g,kdiag); CALL fsparv(gv,kg,g,kdiag)

END DO elements_2
!-----------------------solve eigenvalue problems-------------------------
CALL stability(kv,gv,kdiag,tol,limit,iters,evec,eval)
WRITE(11,'(/A,E12.4,/)')" The buckling load =",eval
WRITE(11,'(A,E12.4)')" The buckling mode =",evec(1)
DO i=2,neq; WRITE(11,'(A,E12.4)')" ",evec(i); END DO
WRITE(11,'(/A,I5,A)')" Converged in",iters," iterations"

STOP
END PROGRAM p46

New scalar reals:
eval smallest eigenvalue (buckling load)

146 STATIC EQUILIBRIUM OF STRUCTURES

New dynamic real arrays:
evec eigenvector (mode shape)
kg element geometric matrix
gv global geometric matrix

This program computes the fundamental (lowest) buckling load and associated mode
shape of beam elements subjected to axial compressive loading. The program has much in
common with Program 4.3 and includes the option of an elastic foundation. The element
geometric matrices kg (see Section 2.5) are generated by subroutine beam ge and the
assembled geometric matrix stored in vector gv. The beam/foundation stiffness matrices
are km and mm, and assembled into kv as in Program 4.3.

Subroutine stability uses simple iteration to solve the eigenvalue problem for the
smallest eigenvalue called eval, corresponding to the lowest buckling load. The program
prints the buckling load and the corresponding eigenvector evec, or mode shape, scaled so
that its Euclidean norm equals unity. Other variables in this program relating to the eigen-
value solver include tol, which is the convergence tolerance for the iterative algorithm,
iters, which holds the number of iterations to achieve convergence, and limit which
represents the iteration ceiling.

The first example shown in Figure 4.36 is of a beam of unit length, fixed at one end and
pinned at the other. Since only a beam is being analysed, nprops=1. Four beam elements,
each of length 0.25 have been used to model the beam, and for simplicity, the flexural
stiffness EI has also been set to unity. The output shown in Figure 4.37 gives a buckling
load of 20.23, which agrees closely with the theoretical solution of 2.04π2EI /L2 = 20.19.

1.0

EI = 1.0

0.25

P 1 2 3 4 5

nels nprops np_types
4 1 1

prop (ei)
1.0

etype(not needed)

ell
0.25 0.25 0.25 0.25

nr,(k,nf(:,k),i=1,nr)
2
1 0 1 5 0 0

limit tol
100 1.0e-5

Figure 4.36 Mesh and data for first Program 4.6 example

STATIC EQUILIBRIUM OF STRUCTURES 147

There are 7 equations and the skyline storage is 20

The buckling load = 0.2023E+02

Converged in 12 iterations

The buckling mode = 0.7273E+00
0.1524E+00
0.3884E+00
0.1687E+00

-0.2440E+00
0.6725E-01

-0.4522E+00

Figure 4.37 Results from first Program 4.6 example

1.0

P 1 2 3 4 5

0.25

EI = 1.0
k = 800

nels nprops np_types
4 2 1

prop(ei,k)
1.0 800.0

etype(not needed)

ell
0.25 0.25 0.25 0.25

nr,(k,nf(:,k),i=1,nr)
2
1 0 1 5 0 1

limit tol
100 1.0e-5

Figure 4.38 Mesh and data for second Program 4.6 example

The second example shown in Figure 4.38 is of a simply supported beam on an elastic
foundation. As in the previous example, four elements have been used to discretise the
problem, with the foundation stiffness set to 800.0. The result given in Figure 4.39 indicates
a buckling load of 60.0 which compares well with the exact solution of 59.9 (Timoshenko
and Gere, 1961). It may also be noted that the fundamental buckling mode is antisymmetric
about the centreline, which is to be expected if the foundation stiffness exceeds the critical
value given by 4π4EI /L4, which in this case equals about 390. A fuller treatment, including
the case of a “follower” force is given by Smith (1979).

148 STATIC EQUILIBRIUM OF STRUCTURES

There are 8 equations and the skyline storage is 23

The buckling load = 0.6003E+02

The buckling mode = 0.5725E+00
0.9138E-01
0.1282E-05
0.8854E-06
-0.5725E+00
-0.9138E-01
-0.1282E-05
0.5725E+00

Converged in 26 iterations

Figure 4.39 Results from second Program 4.6 example

Program 4.7 Analysis of plates using 4-node rectangular plate elements. Homoge-
neous material with identical elements. Mesh numbered in x- or y-direction.

PROGRAM p47
!---
! Program 4.7 Analysis of plates using 4-node rectangular plate elements.
! Homogeneous material with identical elements.
! Mesh numbered in x- or y-direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndim=2,ndof=16,nels,neq, &
nip=16,nn,nod=4,nodof=4,nprops=2,np_types,nr,nxe,nye

REAL(iwp)::aa,bb,d,d4=4.0_iwp,d12=12.0_iwp,e,one=1.0_iwp, &
penalty=1.0e20_iwp,th,two=2.0_iwp,v,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bm(:),coord(:,:),dtd(:,:),d2x(:),d2xy(:),d2y(:), &
g_coord(:,:),km(:,:),kv(:),loads(:),points(:,:),prop(:,:),x_coords(:), &
y_coords(:),value(:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types,aa,bb,th
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),g_coord(ndim,nn),g_num(nod,nels),g(ndof),bm(3), &
g_g(ndof,nels),coord(nod,ndim),km(ndof,ndof),dtd(ndof,ndof),d2x(ndof), &
d2y(ndof),d2xy(ndof),num(nod),x_coords(nxe+1),y_coords(nye+1), &
points(nip,ndim),weights(nip),prop(nprops,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)read(10,*)etype
DO i=1,nxe+1; x_coords(i)=(i-1)*aa; END DO
DO i=1,nye+1; y_coords(i)=(i-1)*bb; END DO
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq)); kdiag=0

!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
CALL num_to_g(num,nf,g); CALL fkdiag(kdiag,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1
CALL mesh(g_coord,g_num,12)

STATIC EQUILIBRIUM OF STRUCTURES 149

DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------element stiffness integration and assembly--------
CALL sample(element,points,weights); kv=zero
elements_2: DO iel=1,nels
e=prop(1,etype(iel)); v=prop(2,etype(iel))
d=e*th**3/(d12*(one-v**2)); g=g_g(:,iel); km=zero
integration: DO i=1,nip

CALL fmplat(d2x,d2y,d2xy,points,aa,bb,i)
DO k=1,ndof

dtd(k,:)=d4*aa*bb*d*weights(i)* &
(d2x(k)*d2x(:)/(aa**4)+d2y(k)*d2y(:)/(bb**4)+(v*d2x(k)*d2y(:)+ &
v*d2x(:)*d2y(k)+two*(one-v)*d2xy(k)*d2xy(:))/(aa**2*bb**2))
dtd(:,k)=dtd(k,:)

END DO
km=km+dtd

END DO integration
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
!-----------------------read loads and/or displacements-------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)then
ALLOCATE(node(fixed_freedoms),no(fixed_freedoms),sense(fixed_freedoms),&

value(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
WRITE(11,'(/A)')" Node Disp Rot-x Rot-y Twist-xy"
DO k=1,nn; WRITE(11,'(I5,6E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover moments at element centroids--------------
nip=1; DEALLOCATE(points); ALLOCATE(points(nip,ndim))
CALL sample(element,points,weights)
WRITE(11,'(/A)')(" Element x-moment y-moment xy-moment")
DO iel=1,nels
g=g_g(:,iel)
moms: DO i=1,nip

CALL fmplat(d2x,d2y,d2xy,points,aa,bb,i); bm=zero
DO k=1,ndof
bm(1)=bm(1)+d4*d*(d2x(k)/aa/aa+v*d2y(k)/bb/bb)*loads(g(k))
bm(2)=bm(2)+d4*d*(v*d2x(k)/aa/aa+d2y(k)/bb/bb)*loads(g(k))
bm(3)=bm(3)+d4*d*(one-v)*d2xy(k)/aa/bb*loads(g(k))

END DO
END DO moms
WRITE(11,'(I5,3E12.4)')iel,bm

END DO
STOP
END PROGRAM p47

New scalar integers:
nip number of integration points per element
nxe number of elements in the x-direction
nye number of elements in the y-direction

150 STATIC EQUILIBRIUM OF STRUCTURES

New scalar reals:
aa element dimension in x-direction
bb element dimension in y-direction
d plate flexural stiffness
d4 set to 4.0
d12 set to 12.0
e Young’s modulus
one set to 1.0
th plate thickness
two set to 2.0
v Poisson’s ratio

New dynamic real arrays:
bm bending moments
dtd integration point contribution to km
d2x second derivatives of shape functions with respect to ξ

d2xy “mixed” second derivatives of shape functions with respect to ξ and η

d2y second derivatives of shape functions with respect to η

points holds sampling points in local coordinates
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout
weights holds weighting coefficients for numerical integration

The previous examples have illustrated the principles of finite elements applied to
“structures” made up of one-dimensional elements. Solutions to these idealised problems
were not usually dependent upon the number of elements, which were chosen conveniently
to reflect the positions of the load applications and changes of geometry. This example
models a two-dimensional thin plate structure using a genuine finite element approximation.
The number of elements used to model the plate is decided by the user, but as the number
increases, so the solution should improve. The success of a finite element analysis rests on
“close enough” solutions being found using a reasonable number of elements. Section 2.14
describes the governing differential equation and the finite element discretisation.

The formulation described here enforces complete compatibility of displacements bet-
ween elements and equilibrium at the nodes, but there will in general be some loss of
equilibrium between the nodes. Figure 4.40 illustrates a typical element and gives the
freedom numbering of the g vector. It can be seen that there are 16 degrees of freedom per
element comprising a vertical translation (w), two ordinary rotations (θx , θy) and a “twist”
rotation (θxy), at each node.

The structure of the program is similar to several of the earlier programs in this chapter,
except that the element stiffness matrix is calculated using (Gaussian) numerical integration
in the x- and y-directions. Property data involves Young’s modulus and Poisson’s ratio, read
into the array prop, the plate thickness th and the rectangular element dimensions aa and
bb (the dimensions of the elements in the x- and y-directions respectively). The flexural
stiffness of the plate d is calculated from the plate thickness and elastic properties. All
elements are assumed to be the same size in this program and arranged into a rectangular
mesh. This enables the nodal coordinates and “steering” vector for each element to be

STATIC EQUILIBRIUM OF STRUCTURES 151

g(5)

g(7)g(6)

g(8)

g(9)

g(11)

g(10)

g(12)

g(13)

g(14)

g(16)

g(15)g(3)

g(1) g(2)

g(4)

aa

x

y

3

4
1

2

bb

Figure 4.40 Node and freedom numbering for plate element

generated automatically by a geometry subroutine called geom rect. This subroutine will
be used frequently in later chapters of the book, having the ability to generate rectangular
meshes for a variety of 2D elements.

In the “element stiffness integration and assembly” loop, all the derivative arrays men-
tioned above are delivered for each Gauss point by the library subroutine fmplat. Once
the Gauss point loop is completed, the element stiffness matrix is held in km. This is fol-
lowed by assembly into a global stiffness matrix, stored as usual as a skyline vector kv.
Nodal loads (forces, moments) and/or fixed displacements (translations, rotations) are then
read and the equilibrium equations solved.

Following calculation of the global displacements, a post-processing phase begins in
which the elements are scanned once more. Element nodal displacements are retrieved and
the three moments (Mx , My and Mxy) are computed at the centroid of each element. It
should be noted that since nip=16 was needed for the integration phase (four Gauss points
in each of the coordinate directions for exact integration), and nip=1 is required to find
the centroid of each element, it was necessary to reset nip to unity and “reallocate” the
points array.

The example shown in Figure 4.41 illustrates a symmetrical quadrant of a square plate
simply supported at its edges and modelled by four square elements. The plate supports a
central unit load so one quarter of this value is applied to node 9.

The results in Figure 4.42 show the central deflection of the plate (node 9) to be
0.01147 which can be compared with the “exact” solution of 0.01160 (Timoshenko and
Woinowsky–Krieger, 1959). By increasing the number of elements, better approximations
to the exact solution are obtained.

In addition to the results file fe95.res, Program 4.7 is the first program in the book
to output a graphics file, generically called fe95.msh, which holds a PostScript image of
the mesh. This file is generated by subroutine mesh, which is one of a suite of graphics
subroutines held in the library main. Some of the other subroutines will be described in
the next chapter, and are useful for visualising results and debugging data.

152 STATIC EQUILIBRIUM OF STRUCTURES

2 3

4 5 6

0.25

Simple
support 0.5

0.5

Line of
symmetry

Line of
symmetry

nxe nye np_types
2 2 1

aa bb th
0.25 0.25 1.0

prop(e,v)
10.92 0.3

etype(not needed)

nr,(k,nf(:,k),i=1,nr)
8
1 0 0 0 1 2 0 0 1 1 3 0 0 1 0 4 0 1 0 1
6 1 0 1 0 7 0 1 0 0 8 1 1 0 0 9 1 0 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
1
9 0.25 0.0 0.0 0.0

fixed_freedoms
0

x

Simple
support

1

y

7 8 9

Figure 4.41 Mesh and data for Program 4.7 example

There are 16 equations and the skyline storage is 115

 Node Disp Rot-x Rot-y Twist-xy
 1 0.0000E+00 0.0000E+00 0.0000E+00 -0.8743E-01
 2 0.0000E+00 0.0000E+00 -0.2021E-01 -0.6814E-01
 3 0.0000E+00 0.0000E+00 -0.2956E-01 0.0000E+00
 4 0.0000E+00 0.2021E-01 0.0000E+00 -0.6814E-01
 5 0.4772E-02 0.1661E-01 -0.1661E-01 -0.6460E-01
 6 0.7125E-02 0.0000E+00 -0.2594E-01 0.0000E+00
 7 0.0000E+00 0.2956E-01 0.0000E+00 0.0000E+00
 8 0.7125E-02 0.2594E-01 0.0000E+00 0.0000E+00
 9 0.1147E-01 0.0000E+00 0.0000E+00 0.0000E+00

Element x-moment y-moment xy-moment
 1 -0.1193E-01 -0.1193E-01 -0.5555E-01
 2 -0.3813E-01 -0.2497E-01 -0.2804E-01
 3 -0.2497E-01 -0.3813E-01 -0.2804E-01
 4 -0.1211E+00 -0.1211E+00 -0.3347E-01

Figure 4.42 Results from Program 4.7 example

STATIC EQUILIBRIUM OF STRUCTURES 153

4.2 Concluding remarks

It has been shown how sample programs can be built up from the library of subroutines
described in Chapter 3. A central feature of the programs has been their brevity. A typical
main program has around 100 lines, is comprehensible to the user and is well suited for
compilation on a small computer. In subsequent chapters, programs of greater complexity
are introduced but the central theme of conciseness is adhered to.

Glossary of variable names used in Chapter 4

Scalar integers:
fixed freedoms number of fixed displacements
i simple counter
iel simple counter
incs number of load increments
iters counts plastic iterations
iy counts load increments
iwp SELECTED REAL KIND(15)
k simple counter
limit plastic iteration ceiling
loaded nodes number of loaded nodes
ndim number of dimensions
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integration points per element
nod number of nodes per element
nodof number of degrees of freedom per node
nn number of nodes in the mesh
np types number of different property types
nprops number of material properties
nr number of restrained nodes
nxe number of elements in the x-direction
nye number of elements in the y-direction

Scalar reals:
aa element dimension in x-direction
axial element axial force
bb element dimension in y-direction
d plate flexural stiffness
d4 set to 4.0
d12 set to 12.0
e Young’s modulus
eval smallest eigenvalue (buckling load)
one set to 1.0

154 STATIC EQUILIBRIUM OF STRUCTURES

penalty set to 1 × 1020

th plate thickness
tol plastic or eigenvalue convergence tolerance
total load running total of dload (= λ)

two set to 2.0
v Poisson’s ratio
zero set to 0.0

Scalar logical:
converged set to .TRUE. if converged achieved

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term location vector
nf nodal freedom matrix
no fixed freedom numbers vector
node fixed nodes vector
num element node numbers vector
sense sense of freedoms to be fixed vector

Dynamic real arrays:
action element nodal action vector
bdylds internal correction “forces” to redistribute moments
bm bending moments
coord element nodal coordinates
dload load increment values
evec eigenvector (mode shape)
dtd integration point contribution to km
d2x second derivatives of shape functions with respect to ξ

d2xy “mixed” second derivatives of shape functions with respect to
ξ and η

d2y second derivatives of shape functions with respect to η

eld element displacement vector
eldtot keeps a running total of nodal displacements
ell element lengths vector
gamma rotation of element about local axis
kg element geometric matrix
gv global geometric matrix
g coord nodal coordinates for all elements

STATIC EQUILIBRIUM OF STRUCTURES 155

holdr holds element “actions” at convergence
km element stiffness matrix
kv global stiffness matrix
loads global load (displacement) vector
mm element “mass” matrix
oldis nodal displacements from previous iteration
points holds integration point (local) coordinates
prop element properties matrix
react element self-equilibrating “correction” vector
val nodal load weightings
value fixed displacements vector
weights holds weighting coefficients for numerical integration
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

4.3 Exercises

1. A simply supported beam (L = 1, EI = 1) supports a unit point transverse load
(Q = 1) at its mid-span. The beam is also subjected to a compressive axial force
P which will reduce the bending stiffness of the beam. Using two ordinary beam
elements of equal length, assemble the global matrix equations for this system but do
not attempt to solve them. Take full account of symmetries in the expected deformed
shape of the beam to reduce the number of equations.

Ans:

[
(8 − P/15) (−24 + P/10)

(−24 + P/10) (96 − 12P/5)

]{
U1
U2

}
=

{
0

−1/2

}

2. Derive the mass matrix of a 3-noded 1D rod element (one node at each end and one
in the middle) of unit length, cross-sectional area and density, given the following
shape functions:

N1 = 2(x2 − 1.5x + 0.5)

N2 = −4(x2 − x)

N3 = 2(x2 − 0.5x)

Ans: 1
30

 4 2 −1

2 16 2
−1 2 4

3. A cantilever (L = 1, EI = 1) rests on an elastic foundation of stiffness k = 10. A
transverse point load P = 1 is applied at the cantilever tip. Using a single finite
element, estimate the transverse deflection under the load.

Ans: 0.188

156 STATIC EQUILIBRIUM OF STRUCTURES

4. The governing equation for the axial displacement u of a 1D rod embedded in an
elastic medium and subjected to a distributed axial load F is:

EA
d2u

dx2
− ku + F = 0

where EA is the axial stiffness of the rod and k is the stiffness of the surrounding
elastic material.

Use a 2-element discretization to estimate the axial displacement at the mid point
and tip of the rod shown in Figure 4.43 which is subjected to a point load of 5 at its
tip.

Ans: 0.0098, 0.0588

4

Elastic medium
5

EA = 100
k = 60

Figure 4.43

5. A propped cantilever is subjected to the loads and displacements indicated in Fig-
ure 4.44. Using two finite elements estimate the internal moment at the center of the
beam.

Ans: M = 1975

Fixed translation
= 0.1

1 1

Uniform load
q = -600

Fixed nodal
rotation = 0.1

EI = 4000

Figure 4.44

6. Use a single finite element to estimate the lowest buckling load of a column fully
fixed at one end and restrained at the other in such a way that it can translate but
not rotate as shown in Figure 4.45. Express your solution in terms of EI and L.

Ans: Pcrit = 10EI /L2

STATIC EQUILIBRIUM OF STRUCTURES 157

P

L

1,0

0,0

EI

Figure 4.45

7. A cantilever of unit length and stiffness supports a unit load at its tip. The governing
equation for the transverse deflection y as a function of x is given by

d2y

dx2
= 1 − x

Estimate the tip deflection using the trial solution,

ỹ = C(3x2 − x3)

and Galerkin’s weighted residual method.

Ans: 1/3

8. A beam (L = 1, EI = 1), fully clamped at one end and simply supported at the
other, supports a unit point transverse load (Q = 1) at its mid-span. The beam is
also subjected to a compressive axial force P which will reduce the bending stiff-
ness of the beam. Using two ordinary beam elements of equal length, assemble the
global stiffness equations for this system in matrix form, but do not attempt to solve
them.

Ans:

 (192 − 24P/5) 0 (24 − P/10)

0 (16 − 2P/15) (4 + P/60)

(24 − P/10) (4 + P/60) (8 − P/15)

U1
U2
U3

 =

−1
0
0

9. A simply supported beam of stiffness EI and length 2L rests on an elastic foundation
of stiffness k and supports a point load P at its mid-span. By discretising half the
beam, estimate the value of P that would result in a mid-span transverse deflection
of 1 unit.

Ans: P = 24EI /L3 + 26kL/35 − (13kL2/210 − 12EI /L2)2/(kL3/105 + 4EI /L)

158 STATIC EQUILIBRIUM OF STRUCTURES

10. Compute the rotation at the middle of the beam shown in Figure 4.46.

Ans: θ = 0.17

Fixed rotation
= 0.1

Fixed translation
= 0.1 m

0.5 m0.5 m

EI = 1 kNm2 EI = 10 kNm2

Uniform load
q = -300 kN/m

Figure 4.46

11. A beam of unit length is built in at both ends, has a stiffness EI = 1, and rests on an
elastic foundation as shown in Figure 4.47. A unit load is applied 1/3 of the distance
from one end. Estimate the value of the foundation stiffness k such that the deflection
under the load is limited to 0.003.

Ans: k = 123

1

k

2/31/3

Figure 4.47

12. The continuous beam shown in Figure 4.48 is subjected to an axial load P . Using
beam elements, derive the cubic expression in P which is given by the buckling
loads of the system. Estimate a root of this cubic close to 5.

Ans: Pcrit = 4.96

P

EI = 1

2.01.0

Figure 4.48

13. Use a simple finite element discretization to estimate the deflection at point A of the
loaded rod shown in Figure 4.49.

Ans: 0.075

STATIC EQUILIBRIUM OF STRUCTURES 159

Distributed load
=

20 (force/length)

Fixed displacement
=

-0.05
EA = 150

1 2 1 1

A

Figure 4.49

14. A beam, 20-m long, rests on the ground and is to support a uniformly distributed load
of 20 kN/m. The stiffness of the ground (k) and the beam (EI) have been estimated
at 103 kN/m2 and 21 × 104 kNm2 respectively. Use two finite elements with simply
supported boundary conditions to estimate the central deflection of the foundation
beam. (Ans: −0.022)

15. Use a finite element approach to estimate the lowest buckling load of the beam shown
in Figure 4.50 which is supported along half its length by an elastic foundation. (Ans:
Pcrit = 7.66)

P

EI = 1
k = 10
L = 1.5

L L

Figure 4.50

16. Use rod elements to generate the global stiffness equations due to self weight of the
tower structure shown in Figure 4.51. Do not attempt to solve the equations.

Ans: 108

2

 4 −4 0

−4 5.44 −1.44
0 −1.44 1.60

U1
U2
U3

 =

274.68
373.56
109.87

2 m

0.4 m

1.2 m

2 m

2 m

2 m

E = 108 kN/m2

r = 7000 kg/m3

All sections are
square in plan.

Figure 4.51

160 STATIC EQUILIBRIUM OF STRUCTURES

17. Use beam elements to compute the reaction force RB and moment MB at the right
support of the uniform beam shown in Figure 4.52.

Once you have found these values, use global equilibrium equations to compute the
corresponding reactions at the left support.

Ans: RA = 13
32qL MA = 11

192qL2

RB = 3
32qL MB = − 5

192qL2

q

L/2
MBMA

RBRA

L

EI = constant

Figure 4.52

18. Compute the buckling loads of the beam shown in Figure 4.53. (Ans: P = 735,
P = 2099)

P
1 2

EI = 200EI = 100

P

Figure 4.53

19. The structure shown in Figure 4.54, consists of three cylindrical sections with the
diameters indicated. Using rod finite elements, estimate the deflection of points A
and B due to self-weight, and the reaction forces at the top and bottom. (Ans: Top
573.9 kN, Bottom 30.1 kN)

2 m

0.4 m

2 m

2 m

2 m

E = 108 kN/m2

r = 7000 kg/m3

All sections are
circular in plan.

A

B

1.2 m

Figure 4.54

STATIC EQUILIBRIUM OF STRUCTURES 161

20. A framed structure is attached to a rigid table as shown in Figure 4.55. Use a finite
element analysis to compute the force Q needed to push point A down to the table
surface.

Ans: Q = 1348.5 kN

Q

3° 3°

1 m 1 m

EI = 850 kNm2

EA = 106 kN
NOT TO SCALE A

Figure 4.55

21. A simply supported beam of length L and stiffness EI supports a uniformly dis-
tributed load q and rests on an elastic foundation of stiffness k as shown in Fig-
ure 4.56. Use a single beam element to compute the end rotations, and hence estimate
the mid-point translation.

Ans: θ = 35qL3/(840EI + 7kL4), wmid = 35qL4/(3360EI + 28kL4)

q

L

EI, k

Figure 4.56

22. Compute the vertical deflection and rotation at the lower end of the system shown
in Figure 4.57. Use a single beam–rod element.

Ans: U1 = −0.00112, U2 = 0.04792

50°

1

EA = 105

EI = 102

Q = 100

0.5

Figure 4.57

162 STATIC EQUILIBRIUM OF STRUCTURES

23. The propped cantilever shown in Figure 4.58 has a constant E and a linearly varying
I . Use two beam elements to estimate the reaction force at B.

Ans: RB = 177.1 (analytical 168.75)

10

x

E = 100
I(0) = 100
I(10) = 20

B

q = 50

Figure 4.58

24. The column shown in Figure 4.59 has been subjected to a gradually increasing axial
load P . The onset of instability was observed when P = 102.7. Estimate the stiffness
EI of the lower half of the column.

Ans: EI = 100

P = 102.7

EI = 200

EI = ?

5

5

Figure 4.59

25. A single railway track resting on a ballast sub-grade can be approximated as a beam
of length L of stiffness EI resting on an elastic foundation of stiffness k. If a single
concentrated load P acts on a rail between the ties which can be assumed to be
rigid supports, use a single finite element to estimate the relationship between EI,
k, P , and L so that the rail deflection can be limited to 5 units. (Hint: Consider the
cases of both simply supported and fully clamped end conditions since reality will
lie somewhere in between. In the fully clamped case you will need to consider just
half the problem and account for symmetry.)

Ans: P < 320EI
L3 + 8kL

3 simply supported; P < 960EI
L3 + 13kL

7 clamped

26. A laterally loaded pile is to be modelled as a beam on an elastic foundation system as
shown in Figure 4.60. Use a single beam element to estimate the lateral deflection of
the pile cap under a unit load. (Hint: You may assume the base of the pile is clamped.)

Ans: 0.489

STATIC EQUILIBRIUM OF STRUCTURES 163

1

10
Foundation stiffness

EI = 400

z

k(z)

k(10) = 2

Figure 4.60

27. Use a single beam element to compute the lowest buckling load of the following
cases (you may assume the flexural stiffness and length both equal unity):

(a) A pin-ended column. Ans: 12, exact solution = π2

(b) A column clamped at one end and free at the other. In this case also estimate
the ratio of tip rotation to translation when the column buckles. Ans: 2.486,
exact solution = π2/4; 0.638:1.000

(c) A column clamped at both ends. Ans: 40.0, exact solution = 4π2

(d) A column clamped at both ends with a support preventing deflection at the
mid-point. Ans: 120.0, exact solution = 8.18π2

28. Buckling of a slender beam of stiffness EI resting on a uniform elastic foundation
of stiffness k is governed by the equation

EI
∂4w

∂x4
+ P

∂2w

∂x2
+ kw = 0

where w is the transverse deflection of the beam and P the buckling load.

Using a single finite element, compute two buckling loads for such a beam of length
L, simply supported at its ends. Show that depending on the relationship among k,
EI and L, either of these two loads could be the critical one,

if θ1 = −θ2, Pcrit = 12EI

L2 + kL2

10

if θ1 = θ2, Pcrit = 60EI

L2 + kL2

42

and that the transition between these two conditions occurs when

k = 630EI

L4
.

164 STATIC EQUILIBRIUM OF STRUCTURES

29. A simply supported beam element of length L, stiffness EI, resting on an elastic
foundation of stiffness k supports a uniformly distributed load of q. Estimate the end
rotations using a single finite element.

Ans: θ = qL2/12

2EI /L + 7kL3/420

30. The simply supported rigid-jointed Vierendeel girder shown in Figure 4.61 has plas-
tic moment values of 90 kNm and 150 kNm in the vertical and horizontal members
respectively. Compute the maximum point vertical load that the beam can support if
it is applied at point A or point B.

Ans: The strength of the beam is greater at point A (the centreline) than at point B.
Use Program 4.5 to give results close to the exact solutions of WultA = 112 kN and
WultB = 99 kN.

Mp =

6 bays @ 5 m

5 m

EA = 1.e6 kN
EI = 1.e6 kNm2

B A

90 kNm (verticals)
150 kNm (horizontals)

Figure 4.61

References

Griffiths DV 1988 An iterative method for plastic analysis of frames. Comput Struct 30(6), 1347–
1354.

Hetenyi M 1946 Beams on Elastic Foundations. University of Michigan Press, Ann Arbor.
Horne MR 1971 Plastic Theory of Structures. MIT Press, Cambridge, Mass.
Przemieniecki JS 1968 Theory of Matrix Structural Analysis. McGraw-Hill, New York.
Smith IM 1979 Discrete element analysis of pile instability. Int J Numer Anal Methods Geomech 3,

205–211.
Timoshenko SP and Gere JM 1961 Theory of Elastic Stability. McGraw-Hill Book Co., New York.

International Edition.
Timoshenko SP and Woinowsky-Krieger S 1959 Theory of Plates and Shells. McGraw-Hill, New

York.

5

Static Equilibrium of Linear
Elastic Solids

5.1 Introduction

This chapter describes six programs, which can be used to solve equilibrium problems
in small strain solid elasticity. The programs differ only slightly from each other and,
following the method adopted in Chapter 4, the first is described in some detail with changes
gradually introduced into the later programs. Program 5.1 deals with 2D plane strain or
axisymmetric analysis of rectangular regions using any of the 2D elements described in this
book. Program 5.2 introduces 3D strain for the special case of non-axisymmetric strain of
axisymmetric solids. Program 5.3 introduces conventional 3D analysis of cuboidal meshes
offering a choice of hexahedral elements. Program 5.4 is a general program capable of
analysing geometrically more complex problems in 2 or 3D including the use of tetrahedral
elements. Program 5.5 repeats the analyses described by Program 5.3 using a mesh free
pcg technique in which global stiffness assembly is avoided entirely. This procedure lends
itself to vectorisation as shown in Program 5.6, which highlights some efficiency issues
which arise when programming for a vector computer.

The majority of examples in this chapter consider problems involving a regular (usu-
ally rectangular or cuboidal) geometry. This has been done to simplify the presentation
and minimise the volume of data required. The simple geometries enable the nodal coor-
dinates and numbers to be generated automatically once the user has provided the element
type and preferred numbering direction as data. This is done by geometry subroutines
(e.g. geom rect for rectangles and hexahedron xy for cuboids, see Appendix E for
geometry subroutine listings). For more complicated geometries, such as are possible using
Program 5.4, the geometry subroutines are replaced by read statements for the nodal coor-
dinates and numbering, and it is left to the user to find some other means of generating
this data. Once nodal coordinates, nodal numbering, and boundary conditions are known,
the next stage in all programs is to determine the element “steering vectors” g. These are
found from num and nf as in Chapter 4, using the library subroutine num to g.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

166 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

To help with debugging and to visualise results, the 2D programs in this chapter include
simple graphical subroutines mesh, dismsh, and vecmsh which produce PostScript out-
put files of the undeformed mesh (fe95.msh), the deformed mesh (fe95.dis), and the
nodal displacement vectors (fe95.vec), respectively.

Program 5.1 Plane or axisymmetric strain analysis of an elastic solid using 3-, 6-,
10-, or 15-node right-angled triangles or 4-, 8-, or 9-node rectangular quadrilaterals.
Mesh numbered in x(r)- or y(z)-direction.

PROGRAM p51
!---
! Program 5.1 Plane or axisymmetric strain analysis of an elastic solid
! using 3-, 6-, 10- or 15-node right-angled triangles or
! 4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered
! in x(r)- or y(z)- direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndim=2,ndof,nels,neq,nip,nn,&
nod,nodof=2,nprops=2,np_types,nr,nst=3,nxe,nye

REAL(iwp)::det,one=1.0_iwp,penalty=1.0e20_iwp,zero=0.0_iwp
CHARACTER(LEN=15)::element,dir,type_2d

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),dee(:,:),der(:,:),deriv(:,:), &
eld(:),fun(:),gc(:),g_coord(:,:),jac(:,:),km(:,:),kv(:),loads(:), &
points(:,:),prop(:,:),sigma(:),value(:),weights(:),x_coords(:), &
y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)type_2d,element,nod,dir,nxe,nye,nip,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); ndof=nod*nodof
IF(type_2d=='axisymmetric')nst=4
ALLOCATE(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn),fun(nod),&
coord(nod,ndim),jac(ndim,ndim),g_num(nod,nels),der(ndim,nod), &
deriv(ndim,nod),bee(nst,ndof),km(ndof,ndof),eld(ndof),weights(nip), &
g_g(ndof,nels),prop(nprops,np_types),num(nod),x_coords(nxe+1), &
y_coords(nye+1),etype(nels),gc(ndim),dee(nst,nst),sigma(nst))

READ(10,*)prop; etype=1; IF(np_types>1)read(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(loads(0:neq),kdiag(neq)); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1
CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------element stiffness integration and assembly--------
CALL sample(element,points,weights); kv=zero; gc=one

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 167

elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
int_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
IF(type_2d=='axisymmetric')THEN
gc=MATMUL(fun,coord); bee(4,1:ndof-1:2)=fun(:)/gc(1)

END IF
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)*gc(1)

END DO int_pts_1
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &

value(fixed_freedoms),no(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
IF(type_2d=='axisymmetric')THEN
WRITE(11,'(/A)')" Node r-disp z-disp"; ELSE
WRITE(11,'(/A)')" Node x-disp y-disp"

END IF
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover stresses at nip integrating points--------
nip=1; DEALLOCATE(points,weights); ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights)
WRITE(11,'(/A,I2,A)')" The integration point (nip=",nip,") stresses are:"
IF(type_2d=='axisymmetric')THEN
WRITE(11,'(A,A)')" Element r-coord z-coord", &
" sig_r sig_z tau_rz sig_t"; ELSE
WRITE(11,'(A,A)')" Element x-coord y-coord", &
" sig_x sig_y tau_xy"

END IF
elements_3: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
int_pts_2: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
IF(type_2d=='axisymmetric')THEN
gc=MATMUL(fun,coord); bee(4,1:ndof-1:2)=fun(:)/gc(1)

END IF
sigma=MATMUL(dee,MATMUL(bee,eld)); WRITE(11,'(I5,6E12.4)')iel,gc,sigma

END DO int_pts_2
END DO elements_3
CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p51

168 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

Scalar integers:
fixed freedoms number of fixed displacements
i simple counter
iel simple counter
iwp SELECTED REAL KIND(15)
k simple counter
loaded nodes number of loaded nodes
ndim number of dimensions
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points per element
nn number of nodes in the mesh
nod number of nodes per element
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes
nst number of stress (strain) terms
nxe number of elements in x(r)-direction
nye number of elements in y(z)-direction

Scalar reals:
det determinant of the Jacobian matrix
one set to 1.0
penalty set to 1 × 1020

zero set to 0.0

Scalar characters:
dir element and node numbering direction
element element type
type 2d type of 2D analysis (‘plane’ or ‘axisymmetry’)

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term location vector
nf nodal freedom matrix
no fixed freedom numbers vector
node fixed nodes vector
num element node numbers vector
sense sense of freedoms to be fixed vector

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 169

Dynamic real arrays:
bee strain-displacement matrix
coord element nodal coordinates
dee stress strain matrix
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
eld element nodal displacements
fun shape functions
gc integrating point coordinates
g coord global nodal coordinates
jac Jacobian matrix
km element stiffness matrix
kv global stiffness matrix
loads nodal loads and displacements
points integrating point local coordinates
prop element properties (E and ν for each element)
sigma stress terms
value fixed vales of displacements
weights weighting coefficients
x coords x(r)-coordinates of mesh layout
y coords y(z)-coordinates of mesh layout

The structure chart in Figure 5.1 illustrates the sequence of calculations for this program.
In fact the same chart is essentially valid for all programs in this chapter which use an
assembly strategy. Several different 2D elements are available for use by Program 5.1
through the input variables element and nod. Similarly, the user can select plane or
axisymmetric analysis by input to type 2d and the numbering direction for nodes and
elements by input to dir.

The first example for use with Program 5.1 illustrates the use of the simplest 2D element,
namely the 3-noded (constant strain) triangle. This is not a very good element, and is
not used much in practice, except when meshes are automatically adapted to improve
accuracy (Hicks and Mar, 1996). In view of its simplicity, however, the first example in
this chapter is devoted to it. As shown in the structure chart, the element stiffness matrices
are formed numerically following the procedures described in Chapter 3 in equation (3.13)
and Section 3.7.4. For such a simple element however, only one integrating point (nip=1)
is required at each element’s centroid.

Figure 5.2 shows a square block of elastic material of unit side length and unit thickness
subjected to an equivalent vertical stress of 1 kN/m2. The boundary conditions imply that
two planes of symmetry exist and that only one quarter of the problem is being considered.
The freedom numbers (non-circled) at each node represent possible displacements in the
x and y directions respectively. Although this information about freedoms is included for
completeness, the programs organise the information by nodes and the user need not be
aware of freedom numbers at all. Figure 5.3 shows the nodal numbering system adopted
for this example and although it does not matter in which direction nodes are numbered for
a small problem such as this, the most efficient numbering system for general rectangular
shapes will count in the direction with the least nodes. The rectangular mesh geometry

170 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

Read data
Allocate arrays

Find problem size
Null global stiffness matrix

For all elements

Find nodal coordinates and steering vector.

For all integrating points

Compute shape functions and derivatives in
local coordinates.

Convert from local to global coordinates.
Form the product [B]T[D][B] and add contribution

into element stiffness.

Assemble element stiffness matrix into global system.

Factorise the global stiffness matrix.
Read the loads and/or displacements.

Complete equation solution.

For all elements

Find nodal coordinates and steering vector.
Retrieve element nodal coordinates.

Retrieve element nodal displacements.

For all integrating points

Compute shape functions and derivatives in
local coordinates.

Convert from local to global coordinates.
Form the [B] matrix.

Compute the strains and stresses.

Figure 5.1 Structure chart for all Chapter 5 programs involving assembly

generated by subroutine geom rect assumes that all elements are right-angled, congruent
and formed by diagonal lines drawn from the bottom left corner to the top right corner of
the surrounding rectangles. Figure 5.3 shows the node and element numbering for this case
assuming dir = ‘x’. Figure 5.4 shows the order of node and freedom numbering at the
element level. Node 1 can be any corner, but subsequent corners and freedoms must follow
in a clockwise sense. Thus, the top left element (iel=1) in Figure 5.2 has a steering vector
g = [0 1 2 3 0 6]T and its neighbour (iel=2) has a steering vector g = [7 8 0 6 2 3]T.

It is expected that, where necessary, users will replace the geometry subroutine geom
rect by more sophisticated versions. It need only be ensured that the coordinates and
node numbers are generated consistently.

Referring to Figure 5.2, the first line of data reads the type of strain conditions type
2d=‘plane’, thus a plane-strain analysis is to be performed. The next line reads ele-
ment=‘triangle’, nod=3, and dir=‘x’, which indicates that 3-noded triangles will
be used with node and element numbering in the x-direction. The next line reads nxe=2,

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 171

type_2d
’plane’

element nod dir
’triangle’ 3 ’x’

nxe nye nip np_types
2 2 1 1

prop(e,v)
1.0e6 0.3

etype(not needed)

x_coords, y_coords
0.0 0.5 1.0
0.0 -0.5 -1.0

nr,(k,nf(:,k),i=1,nr)
5
1 0 1 4 0 1 7 0 0 8 1 0 9 1 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
3
1 0.0 -0.25 2 0.0 -0.50 3 0.0 -0.25

fixed_freedoms
0

0.25 kN 0.5 kN 0.25 kN

1 m

1 2 3

4 5 6

8 97

1 m

cL

0,1 2,3 4,5

0,6 7,8 9,10

0,0 11,0 12,0

E = 106kN/m2

υ = 0.3

1 2 3

Figure 5.2 Mesh and data for first Program 5.1 example

nye=2, which sets the mesh to consist of two columns and two rows of elements respec-
tively, with the diagonals forming triangles as referred to above, nip=1 which sets the
numerical integration to use one integrating point per element and np types which indi-
cates that there is only one property group in this homogeneous example. As usual, since
np types equals 1, the etype data is not required. The next line reads the properties
which in an elastic analysis consist of Young’s modulus and Poisson’s ratio, set respec-
tively to 1 × 106 kN/m2 and 0.3. The next two lines read the x-coordinates (x coords)
and y-coordinates (y coords) of the vertical and horizontal lines that make up the mesh.
Nodal freedom data concerning boundary restraints is read next, consisting of the number
of restrained nodes, nr=5, followed by the restrained node number and a binary “on-off”
switch corresponding to the x- and y-displacement components. For example 1 0 1 means

172 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

x

y

5 6

7 8 9

4

1 2 3

nxe=2
nye=2

dir=’x’

x_coords(1) x_coords(2) x_coords(3)

y_coords(1)

y_coords(2)

y_coords(3)

5 6 7 8

1 2 3 4

Figure 5.3 Global node and element numbering for mesh of 3-node triangles

g(2)

g(1)

g(4)

g(3)

g(6)

g(5)

g(2)

g(1)

g(4)

g(3)

g(6)

g(5)

2

1
2

3 1

3

Figure 5.4 Local node and freedom numbering for different orientations of 3-node
triangles

that at node 1, the x-displacement is equal to zero while the y−displacement remains free,
and 7 0 0 means that node 7 is completely restrained. The final part of the data file refers
to loads and fixed displacement data. In this example, a uniform pressure of 1 kN/m2 is to
be applied to the top surface of the block, which in the data file is replaced by equivalent
nodal loads. In the case of the 3-node triangle, the total force on each element is simply
shared equally between the two nodes (see Appendix A). In this case, loaded nodes is
read as 3, representing the nodes at the top of the block, and this is followed by the node
number and the x- and y-components of load to be applied. There are no fixed non-zero
displacements in this example, so fixed freedoms is read as zero.

After declaration of arrays whose dimensions are known, the program enters the “input
and initialisation” stage. Data concerning the mesh and its properties are now presented
together with the nodal freedom data as given in Figure 5.2. The total number of nodes nn
and equations in the problem neq, are provided by subroutine mesh_size.

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 173

In the section called “loop the elements to find global arrays sizes”, the elements
are looped to generate “global” arrays containing the element node numbers (g num),
the element nodal coordinates (g coord), and the element steering vectors (g g). Also
within this loop, the array kdiag is formed, which holds the addresses of the skyline
storage leading diagonal terms (see Figure 3.18). In larger problems, a bandwidth optimiser
(Cuthill and McKee, 1969) will improve efficiency by re-ordering the nodes. Immediately
following this loop, the subroutine mesh generates a Postscript file of the mesh held in
file fe95.msh.

The section called “element stiffness integration and assembly” is now entered, and
begins with a call to subroutine sample, which forms the quadrature sampling points and
weights. The elements are then looped once more, and the nodal coordinates coord and
the steering vector g for each element are retrieved.

After the stiffness matrix km has been nulled, the integration loop is entered. The local
coordinates of each integrating point (only 1 in this case) are extracted from points, and
the derivatives of the shape functions with respect to those coordinates der are provided
for the 3-node element by the library subroutine shape der. The conversion of these
derivatives to the global system deriv requires a sequence of subroutine calls described
by equations (3.47) to (3.48). The bee matrix is then formed by the subroutine beemat.

The next line adjusts the bee matrix for axisymmetry if needed and then the con-
tribution from each integration point from (3.51) is scaled by the weighting factor from
weights and added into the element stiffness matrix km. Eventually, the completed km is
assembled into the global stiffness kv using the library subroutine fsparv which makes
use of kdiag, as was used extensively in Chapter 4.

When all element stiffnesses have been assembled, the program enters the “equation
solution” stage. The loads and/or fixed displacements are read, and in the case of fixed
displacements, the stiffness matrix kv is modified using the “stiff spring” or “penalty”
technique (Section 3.6) encountered previously in Chapter 4. The equation solution is in
two stages; first the global matrix kv is factorised by subroutine sparin and this is
followed by the forward- and back-substitution stage by subroutine spabac. The solution
vector holding the nodal displacements (still called loads) is printed.

If required, the strains and stresses within the elements can now be computed in the
section called “recover stresses at nip integrating points”. These could be found anywhere
in the elements by computing the bee matrix at the required locations, but it is convenient
and often more accurate to employ the integrating points that were used in the stiffness for-
mulation. In this example only one integrating point at the element centroid was employed
for each element, so it is at this location that strains and stresses will be calculated. Each
element is scanned once more and its nodal displacements eld retrieved from the global
displacement vector loads. The bee matrix for each integrating point is recalculated
and the product of bee and eld yields the strains from equation (3.52). Multiplication
by the stress–strain matrix dee gives the stresses sigma from equation (3.54) which are
printed.

The computed results for the example shown in Figure 5.2 are given in Figure 5.5. For
this simple case the results are seen to be “exact”. The vertical displacements under the
loads (nodes 1, 2, and 3) all equal 0.91 × 10−6 m and the Poisson’s ratio effect has caused
horizontal movement at nodes 3, 6, and 9 to equal 0.39 × 10−6 m. The stress components
give the expected equilibrium values of σy = −1.0 and σx = τxy = 0.

174 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

 There are 12 equations and the skyline storage is 54

 Node x-disp y-disp
 1 0.0000E+00 -0.9100E-06
 2 0.1950E-06 -0.9100E-06
 3 0.3900E-06 -0.9100E-06
 4 0.0000E+00 -0.4550E-06
 5 0.1950E-06 -0.4550E-06
 6 0.3900E-06 -0.4550E-06
 7 0.0000E+00 0.0000E+00
 8 0.1950E-06 0.0000E+00
 9 0.3900E-06 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord sig_x sig_y tau_xy
 1 0.1667E+00 -0.1667E+00 0.0000E+00 -0.1000E+01 -0.8145E-16
 2 0.3333E+00 -0.3333E+00 0.3331E-15 -0.1000E+01 -0.1629E-15
 3 0.6667E+00 -0.1667E+00 0.1110E-15 -0.1000E+01 0.3665E-15
 4 0.8333E+00 -0.3333E+00 0.4441E-15 -0.1000E+01 0.1629E-15
 5 0.1667E+00 -0.6667E+00 0.2220E-15 -0.1000E+01 -0.1222E-15
 6 0.3333E+00 -0.8333E+00 0.5551E-15 -0.1000E+01 -0.1425E-15
 7 0.6667E+00 -0.6667E+00 0.0000E+00 -0.1000E+01 0.1833E-15
 8 0.8333E+00 -0.8333E+00 0.2220E-15 -0.1000E+01 -0.4072E-16

Figure 5.5 Results from first Program 5.1 example

1 2 3 4 5

7

8

15

13 14
6

9

10

11

12

12345

6

7

8

9

10

11

12
1314

Freedoms numbered from 1 to 30 in same order as the nodes

15

Figure 5.6 Local node and freedom numbering for different orientations of 15-node
triangles

Program 5.1 is able to use both 6-node and 10-node triangular elements, but the next
member of the triangular element family to be considered is the 15-node “cubic strain”
triangle (see Appendix B). The node numbering system for all triangles involves starting
at a corner and progressing clockwise. Internal nodes, if present, (e.g. 10- and 15-noded
triangles) are numbered last. The node numbering at the element level for a 15-noded
triangle is shown in Figure 5.6. It is seen that the three internal nodes are also numbered
in a clockwise sense.

The second example and data in Figure 5.7 show half of a flexible footing resting on
a uniform elastic layer supporting a uniform pressure of 1 kN/m2. Because of symmetry,
only half of the layer needs to be analysed and the width has been arbitrarily terminated at

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 175

2

3

4

5
45

1

7

6 21

1 kN/m2
E = 105 kN/m2

u = 0.3

0 m

-2 m

0 m 1 m 6 m

22

41

26 31 36

cL

type_2d
’plane’

element nod dir
’triangle’ 15 ’y’

nxe nye nip np_types
2 1 12 1

prop(e,v)
1.0e5 0.2

etype(not needed)

x_coords, y_coords
0.0 1.0 6.0
0.0 -2.0

nr,(k,nf(:,k),i=1,nr)
17
 1 0 1 2 0 1 3 0 1 4 0 1 5 0 0
10 0 0 15 0 0 20 0 0 25 0 0 30 0 0
35 0 0 40 0 0 41 0 1 42 0 1 43 0 1
44 0 1 45 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
5
 1 0.0 -0.0778 6 0.0 -0.3556 11 0.0 -0.1333
16 0.0 -0.3556 21 0.0 -0.0778

fixed_freedoms
0

Figure 5.7 Mesh and data for second Program 5.1 example

a roller boundary at six times the load width from the centreline. The data indicate that a
15-noded triangle is to be used in a plane strain analysis, with node and element numbering
in the y-direction. The relatively high order of the interpolating polynomials associated with
this element, suggests that fewer elements would be required for a typical boundary value
problem than if working with a lower order element. The mesh shown in Figure 5.7 consists
of two columns of elements (nxe=2) and one row of elements (nye=1). The recommended

176 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

 There are 64 equations and the skyline storage is 1050

 Node x-disp y-disp
 1 0.0000E+00 -0.1591E-04
 2 0.0000E+00 -0.1158E-04
 3 0.0000E+00 -0.7226E-05
 4 0.0000E+00 -0.3354E-05
 5 0.0000E+00 0.0000E+00
 6 -0.9321E-06 -0.1559E-04
 7 0.1493E-06 -0.1128E-04
 8 0.4540E-06 -0.7019E-05
 9 0.3347E-06 -0.3255E-05
 10 0.0000E+00 0.0000E+00
.
.
.
 44 0.0000E+00 -0.1906E-07
 45 0.0000E+00 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord sig_x sig_y tau_xy
 1 0.3333E+00 -0.6667E+00 -0.8302E-01 -0.9098E+00 0.7671E-01
 2 0.6667E+00 -0.1333E+01 -0.4434E-01 -0.6555E+00 0.1123E+00
 3 0.2667E+01 -0.6667E+00 -0.2042E-01 0.3240E-01 -0.1323E-01
 4 0.4333E+01 -0.1333E+01 -0.7382E-02 0.1345E-01 -0.3256E-02

Figure 5.8 Results from second Program 5.1 example

number of integrating points for this element in plane strain is nip=12. The data follow
a similar pattern to the previous example. In this case, the equivalent nodal loads for a
15-noded triangle are not intuitive, and Appendix A gives the required values to reproduce
a unit pressure under the “footing”.

The computed results for this example, given in Figure 5.8, indicate a centreline dis-
placement of −0.1591 × 10−4 m. This is in good agreement with the solution of −0.153 ×
10−4 m given by Poulos and Davis (1974). In order to minimise the volume of output,
Program 5.1 always computes and prints stresses at element centroids. This is easily
achieved in the main program by redefining nip=1, followed by a reallocation of the
points and weights arrays (having first been “deallocated”). Users are of course free
to remove these lines, and print the stresses at other locations if required.

The third example demonstrates the 4-node “linear strain” quadrilateral. Figure 5.9
shows a typical mesh of elements, together with the node and element numbering in the
case of numbering in the y-direction (dir=‘y’). Figure 5.10 gives the node numbering
system adopted for the 4-node quadrilateral and also the order in which the recommended
number of integrating points nip=4 are visited. Consistent with triangular elements, nodal
numbering always starts at a corner and proceeds clockwise.

Figure 5.11 shows the mesh and data for a rigid strip footing resting on a uniform elastic
layer. In this case the footing is given a fixed displacement in the y-direction of −1 ×
10−5 m at nodes 1 and 4 into the layer. Since there are no applied loads, loaded nodes
is read as zero. The two fixed displacements are entered by reading fixed freedoms
as 2, followed by, for each fixed freedom, the node to be fixed (1 and 4), the sense of the
fixity (2), and the magnitude of the fixed displacement (−1 × 10−5 m).

The computed results in Figure 5.12 confirm the fixed y-displacements at nodes 1 and
4 have the expected value of −1 × 10−5 m. Node 7 has moved up by 0.1258 × 10−5 m,

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 177

x

y

1

2

3

4

5

6

1

2

3

7

8

9

10

11

x_coords(1) x_coords(2) x_coords(3) x_coords(4)

y_coords(1)

y_coords(2)

y_coords(3)

4

5

6 12

nxe = 3
nye = 2

dir=’y’

Figure 5.9 Global node and element numbering for mesh of 4-node quadrilaterals num-
bered in the ‘y’ direction

g(8)

g(7)

g(2)

g(1)

g(4)

g(3)

1

g(6)

g(5)

4

2 3

i = 1 i = 2

i = 3 i = 4

Figure 5.10 Local node, freedom and Gauss point numbering for the 4-node quadrilateral
(nip = 4)

and the vertical stress at the centroid of the element immediately beneath the load gives
σy = −1.332 kN/m2. Comparison with closed form or other numerical solutions will show
that, with such a coarse mesh of these elements, these results can be quite inaccurate. Such
discretisation errors are inevitable in finite element work, and it is the user’s responsibil-
ity to experiment with mesh designs to help discover whether the numerical solution is
adequate.

The fourth example, shown in Figure 5.13, illustrates the use of a higher-order ele-
ment, namely the 8-noded quadrilateral, with nodes numbered in the x-direction. The local
node and freedom numbering for this element as shown in Figure 5.14 indicate as usual,
that node 1 is assigned to a corner and the rest follow in a clockwise sense. The general
8-node quadrilateral element stiffness matrix contains fourth order polynomial terms and
thus requires nip to be 9 for “exact” integration. It is often the case, however, that the

178 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

E=106 kN/m2

υ = 0.3

30 m

10 m

1

2

3

4

5

6

7

8

9

10

12

11

rigid footing displaced
vertically by -1 x 10-5m

cL

type_2d
’plane’

element nod dir
’quadrilateral’ 4 ’y’

nxe nye nip np_types
3 2 4 1

prop(e,v)
1.0e6 0.3

etype(not needed)

x_coords, y_coords
0.0 10.0 20.0 30.0
0.0 -5.0 -10.0

nr,(k,nf(:,k),i=1,nr)
8
1 0 1 2 0 1 3 0 0 6 0 0 9 0 0 10 0 1 11 0 1 12 0 0

loaded_nodes
0

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
2
1 2 -1.0e-5 4 2 -1.0e-5

Figure 5.11 Mesh and data for third Program 5.1 example

use of “reduced” integration, by putting nip equal to 4, improves the performance of this
element. This is found to be particularly true of the plasticity applications described in
Chapter 6.

The simple mesh in Figure 5.15 is to be analysed and the consistent nodal loads
(Appendix A) necessary to reproduce a uniform stress field of 1 kN/m2 should be noted
in the data. The computed results given in Figure 5.16, indicate a vertical displacement at
node 1 of −0.5311 × 10−5 m and a vertical centroid stress in the element under the load
of σy = −0.9003 kN/m2.

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 179

 There are 12 equations and the skyline storage is 58

 Node x-disp y-disp
 1 0.0000E+00 -0.1000E-04
 2 0.0000E+00 -0.5152E-05
 3 0.0000E+00 0.0000E+00
 4 0.8101E-07 -0.1000E-04
 5 0.1582E-05 -0.4594E-05
 6 0.0000E+00 0.0000E+00
 7 0.1241E-06 0.1258E-05
 8 0.1472E-05 0.1953E-06
 9 0.0000E+00 0.0000E+00
 10 0.0000E+00 0.2815E-06
 11 0.0000E+00 0.3475E-06
 12 0.0000E+00 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord sig_x sig_y tau_xy
 1 0.5000E+01 -0.2500E+01 -0.4796E+00 -0.1332E+01 -0.4699E-01
 2 0.5000E+01 -0.7500E+01 -0.4558E+00 -0.1266E+01 0.7160E-01
 3 0.1500E+02 -0.2500E+01 -0.2551E+00 -0.5867E+00 0.1990E+00
 4 0.1500E+02 -0.7500E+01 -0.2611E+00 -0.5952E+00 0.2096E+00
 5 0.2500E+02 -0.2500E+01 -0.4995E-01 0.8810E-01 -0.6770E-01
 6 0.2500E+02 -0.7500E+01 -0.6777E-01 0.3061E-01 0.5955E-01

Figure 5.12 Results from third Program 5.1 example

x

1 2

3 4

5 6

nxe=2
nye=3

dir=’x’

2 3 4 5

6 7 8

109 11 1312

18 19 2120

26 27 292825

14 15 16

22 23 24

x_coords(1)x_coords(2) x_coords(3)

y_coords(1)

y_coords(2)

y_coords(3)

y_coords(4)

y

1

17

Figure 5.13 Global node and element numbering for mesh of 8-node quadrilaterals num-
bered in the ‘x’ direction

180 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

g(10)

g(9)

g(2)

g(4)

g(3)

g(6)
g(8)

g(5)
g(7)

g(14)

g(16)

g(15)

2

3

1

4 5

6

78 g(13)g(1)

g(12)

g(11)

Figure 5.14 Local node and freedom numbering for the 8-node quadrilateral

The fifth example and data shown in Figure 5.17 illustrates an axisymmetric foundation
analysis (type 2d=‘axisymmetric’) as opposed to the plane strain analyses used in
the previous examples. The mesh, while still “rectangular”, involves 4-node quadrilateral
elements of variable size. Node and element numbering is in the “depth” or ‘z’ direction.
The mesh size data nxe and nye in an axisymmetric context, should be interpreted as the
number of “columns” in the radial direction and the number of rows in the depth direc-
tion respectively. Axisymmetric integration is never “exact” using conventional Gaussian
quadrature in elastic analysis, due to the 1/r terms that appear in the integrand of the
element stiffness matrix. This example uses nip=9, but slightly different results can be
expected as nip is increased. This example introduces variable properties in which E and
ν are allowed to assume different values in each horizontal layer of elements. In this case
there are two property groups, so np types is read as 2, and two lots of properties are
read into the array prop. Since np types is greater than 1, then etype data is needed
and takes the form of integers 1 or 2 for each element, remembering that the mesh elements
are numbered in the ‘z’ direction.

It should be noted that in axisymmetry, four components of strain and stress are required,
so the main program sets nst to 4, and the appropriate dee matrix (2.77) is returned by
subroutine deemat. Furthermore, axisymmetric conditions require the bee matrix to have
a fourth row (2.76), and integration (2.74) involves the radius of each integrating point held
in gc(1). The main program checks whether type 2d is equal to ‘axisymmetry’
and makes these adjustments as necessary.

The nodal loads imply a uniform stress of 1 kN/m2 is to be applied to a one radian area
of radius 10 m (see Appendix A). The computed results for this problem, including stresses
at the element centroids, are given in Figure 5.18. Thus the centreline z-displacement is
computed to be −0.3176 × 10−1 m and the vertical central stress in the depth direction
within element 1 is σz = −1.073 kN/m2.

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 181

1 kN/m2

6 m

9 m

1 2 3 4 5

6 7 8

9 10 11 1312

14 15 16

17 18 19 2120

22 23 24

25 26 27 2928

type_2d
’plane’

element no d dir
’quadrilateral’ 8 ’x’

nxe nye nip np_t ypes
2 3 4 1

prop(e,v)
1.0e6 0.3

etype(not needed)

x_coords, y_coords
0.0 3.0 6.0
0.0 -3.0 -6.0 -9.0

nr,(k,nf(:,k),i=1,n r)
17
 1 0 1 6 0 1 9 0 1 14 0 1 17 0 1 22 0 1 25 0 0
26 0 0 27 0 0 28 0 0 5 0 1 8 0 1 13 0 1 16 0 1
21 0 1 24 0 1 29 0 0

loaded_nodes,(k,loa ds(nf(:,k)),i=1,loa ded_nodes)
3
1 0.0 -0.5 2 0. 0 -2.0 3 0.0 -0. 5

fixed_freedoms
0

E = 106 kN/m2

u = 0.3

cL

Figure 5.15 Mesh and data for fourth Program 5.1 example

182 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

 There are 36 equations and the skyline storage is 390

 Node x-disp y-disp
 1 0.0000E+00 -0.5311E-05
 2 -0.4211E-06 -0.5041E-05
 3 -0.7222E-06 -0.3343E-05
 4 -0.4211E-06 -0.1644E-05
 5 0.0000E+00 -0.1375E-05
 6 0.0000E+00 -0.4288E-05
 7 0.3774E-06 -0.2786E-05
 8 0.0000E+00 -0.1283E-05
 9 0.0000E+00 -0.3243E-05
 10 0.2708E-06 -0.2873E-05
.
.
.
 25 0.0000E+00 0.0000E+00
 26 0.0000E+00 0.0000E+00
 27 0.0000E+00 0.0000E+00
 28 0.0000E+00 0.0000E+00
 29 0.0000E+00 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord sig_x sig_y tau_xy
 1 0.1500E+01 -0.1500E+01 -0.2476E+00 -0.9003E+00 0.1040E+00
 2 0.4500E+01 -0.1500E+01 -0.1810E+00 -0.9973E-01 0.1040E+00
 3 0.1500E+01 -0.4500E+01 -0.1683E+00 -0.6489E+00 0.8714E-01
 4 0.4500E+01 -0.4500E+01 -0.2602E+00 -0.3511E+00 0.8714E-01
 5 0.1500E+01 -0.7500E+01 -0.1994E+00 -0.5612E+00 0.2888E-01
 6 0.4500E+01 -0.7500E+01 -0.2292E+00 -0.4388E+00 0.2888E-01

Figure 5.16 Results from fourth Program 5.1 example

1 kN/m2

-4m

0m

-10m

0m 4m 10m 30m

radii

1

3

4

6

7

9

10

12

2 5 8 11

Axisymmetric

1

2

3

4

5

6

cLcL

E = 100 kN/m2

u = 0.3

E = 1000 kN/m2

u = 0.45

Figure 5.17 Mesh and data for fifth Program 5.1 example (Continued on page 183)

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 183

type_2d
’axisymmetric’

element nod dir
’quadrilateral’ 4 ’z’

nxe nye nip np_types
3 2 9 2

prop(e,v)
 100.0 0.3
1000.0 0.45

etype
1 2 1 2 1 2

x_coords, y_coords
0.0 4.0 10.0 30.0
0.0 -4.0 -10.0

nr,(k,nf(:,k),i=1,nr)
8
1 0 1 2 0 1 3 0 0 6 0 0 9 0 0 10 0 1 11 0 1 12 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
3
1 0.0 -2.6667 4 0.0 -23.3333 7 0.0 -24.0

fixed_freedoms
0

Figure 5.17 (Continued from page 182)

 There are 12 equations and the skyline storage is 58

 Node r-disp z-disp
 1 0.0000E+00 -0.3176E-01
 2 0.0000E+00 -0.3231E-02
 3 0.0000E+00 0.0000E+00
 4 0.1395E-02 -0.3990E-01
 5 0.1165E-02 -0.2498E-02
 6 0.0000E+00 0.0000E+00
 7 0.1704E-02 -0.6046E-02
 8 0.1330E-02 -0.4421E-03
 9 0.0000E+00 0.0000E+00
 10 0.0000E+00 0.2588E-02
 11 0.0000E+00 0.3091E-03
 12 0.0000E+00 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element r-coord z-coord sig_r sig_z tau_rz sig_t
 1 0.2000E+01 -0.2000E+01 -0.4140E+00 -0.1073E+01 -0.3452E-01 -0.4140E+00
 2 0.2000E+01 -0.7000E+01 -0.4776E+00 -0.9072E+00 0.6508E-01 -0.4776E+00
 3 0.7000E+01 -0.2000E+01 -0.2933E+00 -0.7099E+00 0.1180E+00 -0.2810E+00
 4 0.7000E+01 -0.7000E+01 -0.4316E+00 -0.6101E+00 0.1308E+00 -0.3796E+00
 5 0.2000E+02 -0.2000E+01 -0.3200E-01 -0.5814E-01 0.1082E-01 -0.2325E-01
 6 0.2000E+02 -0.7000E+01 -0.1090E+00 -0.9367E-01 0.4470E-01 -0.7455E-01

Figure 5.18 Results from fifth Program 5.1 example

184 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

Program 5.2 Non-axisymmetric analysis of an axisymmetric elastic solid using 8-
node rectangular quadrilaterals. Mesh numbered in r- or z -direction.

PROGRAM p52
!---
! Program 5.2 Non-axisymmetric analysis of an axisymmetric elastic solid
! using 8-node rectangular quadrilaterals. Mesh numbered in
! r- or z- direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,iflag,k,loaded_nodes,lth,ndim=2,ndof=24,nels,neq,nip=4, &
nod=8,nodof=3,nn,nprops=2,np_types,nr,nre,nst=6,nze

REAL(iwp)::ca,chi,det,one=1.0_iwp,pi,radius,sa,zero=0.0_iwp
CHARACTER(LEN=15)::element='quadrilateral'

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
num(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),dee(:,:),der(:,:),deriv(:,:), &
eld(:),fun(:),gc(:),g_coord(:,:),jac(:,:),km(:,:),kv(:),loads(:), &
points(:,:),prop(:,:),r_coords(:),sigma(:),weights(:),z_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nre,nze,lth,iflag,chi,np_types
CALL mesh_size(element,nod,nels,nn,nre,nze)
ALLOCATE(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn), &
dee(nst,nst),coord(nod,ndim),fun(nod),jac(ndim,ndim),eld(ndof), &
weights(nip),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),km(ndof,ndof),&
sigma(nst),num(nod),g_num(nod,nels),g_g(ndof,nels),gc(ndim), &
r_coords(nre+1),z_coords(nze+1),prop(nprops,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)read(10,*)etype
READ(10,*)r_coords,z_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq))
pi=ACOS(-one); chi=chi*pi/180.0_iwp; ca=COS(chi); sa=SIN(chi); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,r_coords,z_coords,coord,num,'r')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1
CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------element stiffness integration and assembly--------
CALL sample(element,points,weights); kv=zero
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der)
CALL bmat_nonaxi(bee,radius,coord,deriv,fun,iflag,lth)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)*radius

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 185

END DO gauss_pts_1
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)

!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
WRITE(11,'(/A)')" Node r-disp z-disp t-disp"
DO k=1,nn; WRITE(11,'(I5,3E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover stresses at nip integrating points--------
nip=1; DEALLOCATE(points,weights); ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights)
WRITE(11,'(/A,I2,A)')" The integration point (nip=",nip,") stresses are:"
WRITE(11,'(A,A)')" Element r-coord z-coord", &
" sig_r sig_z sig_t"

WRITE(11,'(A,A)')" ", &
" tau_rz tau_zt tau_tr"

elements_3: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
int_pts_2: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der)
CALL bmat_nonaxi(bee,radius,coord,deriv,fun,iflag,lth)
bee(1:4,:)=bee(1:4,:)*ca; bee(5:6,:)=bee(5:6,:)*sa
sigma=MATMUL(dee,MATMUL(bee,eld))
WRITE(11,'(I5,5X,5E12.4)')iel,gc,sigma(:3)
WRITE(11,'(34X,3E12.4)')sigma(4:6)

END DO int_pts_2
END DO elements_3
CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p52

New scalar integers:
iflag 1 for “symmetry”, -1 for “antisymmetry”
lth harmonic on which loads are to be applied
nre number of elements in r-direction
nze number of elements in z-direction

New scalar reals:
ca set to cos(chi)
chi angle for stress output
pi set to π

radius r-coordinate of Gauss point
sa set to sin(chi)

New dynamic real arrays:
r coords r-coordinates of mesh layout
z coords z-coordinates of mesh layout

186 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

This program allows analysis of axisymmetric solids subjected to non-axisymmetric
loads. Variations in displacements, and hence strains and stresses, tangentially are described
by Fourier series (Wilson, 1965; Zienkiewicz and Taylor, 1989). Although the analysis is
genuinely three dimensional, with 3 degrees of freedom at each node, it is only necessary
to discretise the problem in a radial plane. The integrals in radial planes are performed
using Gaussian quadrature in the usual way. Orthogonality relationships between typical
terms in the tangential direction enable the integrals in the third direction to be stated
explicitly. The problem therefore takes on the appearance of a two-dimensional analysis
with the obvious benefits in terms of storage requirements. The disadvantages of the method
over conventional three-dimensional finite element analysis are that, (1) the method is
restricted to axisymmetric solids, and (2) for complicated loading distributions, several
loading harmonic terms may be required, and a global stiffness matrix must be stored for
each. Several harmonic terms may be required for elastic–plastic analysis (Griffiths, 1986),
but for most elastic analyses such as the one described here, one harmonic will often be
sufficient.

It is important to realise that the basic stiffness relationships relate amplitudes of load to
amplitudes of displacement. Once the amplitudes of a displacement are known, the actual
displacement at a particular circumferential location is easily found.

For simplicity, consider only the components of nodal load which are symmetric about
the θ = 0 axis of the axisymmetric body. In this case a general loading distribution may
be given by

R = 1
2R

o + R
1

cos θ + R
2

cos 2θ + · · ·
Z = 1

2Z
o + Z

1
cos θ + Z

2
cos 2θ + · · · (5.1)

T = T
1

sin θ + T
2

sin 2θ + · · ·

where R, Z and T represent the load per radian in the radial, depth, and tangential directions.
The bar terms with their superscripts, represent amplitudes of these quantities on the various
harmonics.

For antisymmetric loading, symmetrical about the θ = π/2 axis, these expressions
become

R = R
1

sin θ + R
2

sin 2θ + · · ·
Z = Z

1
sin θ + Z

2
sin 2θ + · · · (5.2)

T = 1
2T

o + T
1

cos θ + T
2

cos 2θ + · · ·

Corresponding to these quantities are amplitudes of displacement in the radial, depth, and
tangential directions. Since there are now three displacements per node, there are six strains
at any point taken in the order,

eps = [
εr εz εθ γrz γzθ γθr

]T

and six corresponding stresses, thus the 6 × 6 stress–strain matrix dee (2.84) is formed by
the subroutine deemat as usual. Using the notation of equation (2.79), the [A] matrix now

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 187

becomes,

[A] ==

∂
∂r

0 0

0
∂
∂z

0

1
r

0
1
r

∂
∂θ

∂
∂z

∂
∂r

0

0
1
r

∂
∂θ

∂
∂z

1
r

∂
∂θ

0
∂
∂r

− 1
r

(5.3)

For each harmonic i, the strain-displacement relationship provided by the library subroutine
bmat nonaxi is of the form,

Bi =
[

Bi
1 Bi

2 Bi
3 Bi

4 · · · Bi
j · · · Bi

nod

]

where nod is the number of nodes in an element.
A typical submatrix from the above expression for symmetric loading is given by

[B]ij =

∂Nj

∂r
cos iθ 0 0

0
∂Nj

∂z
cos iθ 0

Nj

r
cos iθ 0

iNj

r
cos iθ

∂Nj

∂z
cos iθ

∂Nj

∂r
cos iθ 0

0 − iNj

r
sin iθ

∂Nj

∂z
sin iθ

− iNj

r
sin iθ 0

(
∂Nj

∂r
− Nj

r

)
sin iθ

(5.4)

The equivalent expression for antisymmetry is similar to equation (5.6) but with the
sine and cosine terms interchanged and the signs of elements (3,3), (5,2) and (6,1) reversed.
Additional INTEGER variables required by this subroutine are iflag and lth. The vari-
able iflag is set to 1 or -1 for symmetry or antisymmetry respectively, and the variable
lth gives the harmonic on which loads are to be applied. An additional variable input
to this program is the angle chi (in degrees in the range 0◦ to 360◦). This is the angle
at which stresses are evaluated and printed. Naturally, stresses could be printed at other
locations if required. It should be noted that if lth=0 and iflag=1, the analysis reduces
to ordinary axisymmetry as demonstrated by the fifth example with Program 5.1.

The program uses 8-node quadrilateral elements and can be considered a variant of
Program 5.1 with nodes and elements numbered in the dir=‘r’ direction. Each element has
24 degrees of freedom, as shown in Figure 5.19 and reduced integration (nip=4) is assumed.

188 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

g(14)

g(13)

g(2)

g(5)

g(4)

g(8)
g(11)

g(7)
g(10)

g(23)

g(22)

2

3

1

4 5

6

78g(1) g(19)

g(20)
g(3)

g(6)

g(9)
g(12)

g(15)

g(24)

g(16)
g(18)

g(21)

g(17)

Figure 5.19 Local node and freedom numbering for the 8-node quadrilateral (three free-
doms per node)

0.3138 kN

1 2 3

7

12

17

22

27

5

10

15

20

25

8

13

18

23

28

10 m

0.5 m

not to scale

E = 105kN/m2

4

9

14

19

24

26

υ = 0.3

cL

Figure 5.20 Mesh and data for Program 5.2 example (Continued on page 189)

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 189

nre nze
1 5

lth iflag chi np_types
1 1 0.0 1

prop(e,v)
1.0e5 0.3

etype(not needed)

r_coords, z_coords
 0.0 0.5
10.0 8.0 6.0 4.0 2.0 0.0

nr,(k,nf(:,k),i=1,nr)
13
 1 1 0 1 4 1 0 1 6 1 0 1 9 1 0 1 11 1 0 1
14 1 0 1 16 1 0 1 19 1 0 1 21 1 0 1 24 1 0 1
26 0 0 0 27 0 0 0 28 0 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
1
3 0.3183 0.0 0.0

Figure 5.20 (Continued from page 188)

The example shown in Figure 5.20 represents a homogeneous cylindrical cantilever
subjected to a transverse force of 1 kN at its tip. The nature of harmonic loading is such that
a radial load amplitude of 1 unit on the first harmonic (lth=1) in symmetry (iflag=1)
results in a net thrust in the θ = 0◦ direction of π . Thus the load amplitude applied at the
first freedom of node 3 equals 1/π . Along the neutral axis, the nodal freedom data takes
account of the fact that there can be no vertical movement along the centreline; hence
these freedoms are restrained. The computed displacements in Figure 5.21 give the end

 There are 65 equations and the skyline storage is 871

 Node r-disp z-disp t-disp
 1 0.6755E-01 0.0000E+00 -0.6755E-01
 2 0.6755E-01 -0.2528E-02 -0.6755E-01
 3 0.6755E-01 -0.5063E-02 -0.6754E-01
 4 0.5743E-01 0.0000E+00 -0.5743E-01
 5 0.5744E-01 -0.5006E-02 -0.5743E-01
 6 0.4753E-01 0.0000E+00 -0.4752E-01
 7 0.4753E-01 -0.2426E-02 -0.4752E-01
 8 0.4753E-01 -0.4858E-02 -0.4750E-01
 9 0.3801E-01 0.0000E+00 -0.3801E-01
 10 0.3804E-01 -0.4598E-02 -0.3799E-01
.
.
.
 24 0.9378E-03 0.0000E+00 -0.9620E-03
 25 0.1052E-02 -0.9219E-03 -0.8806E-03
 26 0.0000E+00 0.0000E+00 0.0000E+00
 27 0.0000E+00 0.0000E+00 0.0000E+00
 28 0.0000E+00 0.0000E+00 0.0000E+00

Figure 5.21 Results from Program 5.2 example (Continued on page 190)

190 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

 The integration point (nip= 1) stresses are:
 Element r-coord z-coord sig_r sig_z sig_t
 tau_rz tau_zt tau_tr
 1 0.2500E+00 0.9000E+01 0.6441E+00 -0.5036E+01 -0.4726E+00
 0.8638E-01 0.0000E+00 0.0000E+00
 2 0.2500E+00 0.7000E+01 0.2661E+01 -0.1413E+02 0.1144E+01
 0.6800E-01 0.0000E+00 0.0000E+00
 3 0.2500E+00 0.5000E+01 0.5441E+01 -0.2274E+02 0.3341E+01
 0.1484E+00 0.0000E+00 0.0000E+00
 4 0.2500E+00 0.3000E+01 0.8040E+01 -0.3164E+02 0.5250E+01
 0.3627E+00 0.0000E+00 0.0000E+00
 5 0.2500E+00 0.1000E+01 0.1700E+02 -0.3521E+02 0.1580E+02
 0.9873E+00 0.0000E+00 0.0000E+00

Figure 5.21 (Continued from page 189)

deflection of the cantilever to be 6.755 × 10−2 m, compared with the slender beam value
of 6.791 × 10−2 m. If the same load amplitude was applied to the second freedom of node 3,
it would correspond to a net moment of 0.5 kNm. The computed displacement in this case
would be −5.063 × 10−3 m, compared with the slender beam value of −5.093 × 10−3 m.
It should be noted that the current version of Program 5.2 is restricted to load control only.

Program 5.3 Three-dimensional analysis of an elastic solid using 8-, 14-, or 20-node
brick hexahedra. Mesh numbered in x -z planes then in the y-direction.

PROGRAM p53
!---
! Program 5.3 Three-dimensional analysis of an elastic solid using
! 8-, 14- or 20-node brick hexahedra. Mesh numbered in x-z
! planes then in the y-direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndim=3,ndof,nels,neq,nip,nn,&
nprops=2,np_types,nod,nodof=3,nr,nst=6,nxe,nye,nze

REAL(iwp)::det,penalty=1.0e20_iwp,zero=0.0_iwp
CHARACTER(LEN=15)::element='hexahedron'

!-----------------------dynamic arrays-----------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),dee(:,:),der(:,:),deriv(:,:), &
eld(:),fun(:),gc(:),g_coord(:,:),jac(:,:),km(:,:),kv(:),loads(:), &
points(:,:),prop(:,:),sigma(:),value(:),weights(:),x_coords(:), &
y_coords(:),z_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nod,nxe,nye,nze,nip,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye,nze); ndof=nod*nodof
ALLOCATE(nf(nodof,nn),points(nip,ndim),dee(nst,nst),coord(nod,ndim), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g(ndof),bee(nst,ndof), &
km(ndof,ndof),eld(ndof),sigma(nst),g_g(ndof,nels),g_coord(ndim,nn), &
g_num(nod,nels),weights(nip),num(nod),prop(nprops,np_types), &
x_coords(nxe+1),y_coords(nye+1),z_coords(nze+1),etype(nels),fun(nod), &
gc(ndim))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords,z_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(loads(0:neq),kdiag(neq)); kdiag=0

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 191

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL hexahedron_xz(iel,x_coords,y_coords,z_coords,coord,num)
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------element stiffness integration and assembly--------
CALL sample(element,points,weights); kv=zero
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); g=g_g(:,iel); coord=TRANSPOSE(g_coord(:,num)); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); jac=MATMUL(der,coord)
det=determinant(jac); CALL invert(jac); deriv=MATMUL(jac,der)
CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1
CALL fsparv(kv,km,g,kdiag)

END DO elements_2
loads=zero; READ(10,*)loaded_nodes
IF(loaded_nodes/=0)READ(10,*)(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &

value(fixed_freedoms),no(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
WRITE(11,'(/A)')" Node x-disp y-disp z-disp"
DO k=1,nn; WRITE(11,'(I5,3E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover stresses at nip integrating points--------
nip=1; DEALLOCATE(points,weights); ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights)
WRITE(11,'(/A,I2,A)')" The integration point (nip=",nip,") stresses are:"
WRITE(11,'(A,/,A)')" Element x-coord y-coord z-coord", &
" sig_x sig_y sig_z tau_xy tau_yz tau_zx"

elements_3: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
sigma=MATMUL(dee,MATMUL(bee,eld)); WRITE(11,'(I8,4X,3E12.4)')iel,gc
WRITE(11,'(6E12.4)')sigma

END DO gauss_pts_2
END DO elements_3

STOP
END PROGRAM p53

In cases where many Fourier harmonics are required to define a loading pattern, it
becomes more efficient and certainly simpler, to solve the full three-dimensional problem.

192 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

Program 5.3 is the 3D counterpart of Program 5.1, and is capable of performing elastic
analysis of 3D cuboid meshes consisting of hexahedral brick-shaped elements. The program
can incorporate 8-, 14-, or 20-node hexahedra and includes a geometry subroutine called
hexahedron xz for generating meshes in which nodes and elements are counted in
xz-planes moving in the y-direction as illustrated in Figure 5.22.

x

1

2

4

5

6

7

8

9

3

10

11

12 13

14

15

17

19
32

34

36

38

40

41

46

48

53

55

57

60
33

51

58

52

39

59

65

67

70

20
21

22

24

27

29

z

y

1

2

3

4

5

6

y_coords(1)

y_coords(2)

y_coords(3)

y_coords(4)

x_coords(1)
x_coords(2)

z_coords(1)

z_coords(2)

z_coords(3)

nxe=1
nye=3
nze=2

numbering order
x-z-y

43

62

Figure 5.22 Global node and element numbering for mesh of 20-node hexahedra

x

y

z

1

2

3
4

5

8

13

20

Freedoms numbered from 1 to 60 in same order as the nodes

15 16 17

18

19

12

7

6
9

14

11
10

Figure 5.23 Local node and freedom numbering for the 20-node hexahedral element

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 193

A widely used three-dimensional element, the 20-node hexahedron, is the subject of
the example that goes with this program. The element is the three-dimensional analogue
of the 8-noded quadrilateral in plane problems with the element node numbering indicated
in Figure 5.23.

The example and data of Figure 5.24 are for a simple boundary value problem where
an elastic block carries a unit uniform load over part of its top surface. The block has

nod
20

nxe nye nze nip np_types
1 3 2 8 2

prop(e,v)
100.0 0.3
 50.0 0.3

etype
1 2 1 2 1 2

x_coords, y_coords, z_coords
 0.0 0.5
 0.0 1.0 2.0 3.0
 0.0 -1.0 -2.0

nr,(k,nf(:,k),i=1,nr)
46
 1 0 0 1 2 1 0 1 3 1 0 1 4 0 0 1 5 1 0 1 6 0 0 1
 7 1 0 1 8 1 0 1 9 0 0 1 10 1 0 1 11 0 0 0 12 0 0 0
13 0 0 0 14 0 1 1 16 0 1 1 18 0 0 0 19 0 0 0 20 0 1 1
23 0 1 1 25 0 1 1 28 0 1 1 30 0 0 0 31 0 0 0 32 0 0 0
33 0 1 1 35 0 1 1 37 0 0 0 38 0 0 0 39 0 1 1 42 0 1 1
44 0 1 1 47 0 1 1 49 0 0 0 50 0 0 0 51 0 0 0 52 0 1 1
54 0 1 1 56 0 0 0 57 0 0 0 58 0 1 1 61 0 1 1 63 0 1 1
66 0 1 1 68 0 0 0 69 0 0 0 70 0 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
8
 1 0.0 0.0 0.0417 2 0.0 0.0 -0.1667 3 0.0 0.0 0.0417
14 0.0 0.0 -0.1667 15 0.0 0.0 -0.1667 20 0.0 0.0 0.0417
21 0.0 0.0 -0.1667 22 0.0 0.0 0.0417

fixed_freedoms
0

x

1

2

4

5

6

7

8

9

3

10

11

12 13

14

15

17

19
32

34

36

38

40

41

46

48

53

55

57

60

62

33

51

58

52

39

59

65

67

70

20
21

22

24

27

29

cL

z

2m

3m

UDL of 1.0
applied to top
of element 1

1

2

3

4

5

6

0.5m

y

43E = 100kN/m2
u = 0.3

E =50kN/m2
u = 0.3

Figure 5.24 Mesh and data for Program 5.3 example

194 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

layered properties, with the upper and lower halves assigned Young’s moduli values of 100
and 50 respectively. Poisson’s ratio is fixed at 0.3.

An exact integration scheme for 20-node cuboid elements would need nip=27, how-
ever “reduced integration” is recommended for this element, thus nip=8 in the present
analysis. The reader can also experiment with Irons’s (1971) approximate integration rules,
for example nip can be set to 6, 14, and 15. The nodal forces to simulate a unit uniform
stress field for this element are certainly not intuitive, and involve corner loads which act
in the opposite direction to the mid-side loads (Appendix A).

The computed displacements and centroid stresses are given in Figure 5.25. For example
the z-deflection at the origin of the coordinate system (node 1) is computed as −0.2246 ×
10−1.

Program 5.3 uses conventional storage and solution strategies, however storage require-
ments for 3D analysis rapidly become substantial. It can be noted that even in a simple
example such as this, the skyline stiffness vector kv still requires 4388 locations. For this

 There are 124 equations and the skyline storage is 4388

 Node x-disp y-disp z-disp
 1 0.0000E+00 0.0000E+00 -0.2246E-01
 2 0.1584E-02 0.0000E+00 -0.2255E-01
 3 0.3220E-02 0.0000E+00 -0.2333E-01
 4 0.0000E+00 0.0000E+00 -0.1849E-01
 5 0.1544E-02 0.0000E+00 -0.1884E-01
 6 0.0000E+00 0.0000E+00 -0.1443E-01
 7 0.7581E-03 0.0000E+00 -0.1435E-01
 8 0.1511E-02 0.0000E+00 -0.1411E-01
 9 0.0000E+00 0.0000E+00 -0.6164E-02
 10 0.2792E-02 0.0000E+00 -0.6430E-02
.
.
.
 66 0.0000E+00 0.1572E-02 -0.1028E-03
 67 -0.7448E-04 0.1716E-02 -0.5846E-04
 68 0.0000E+00 0.0000E+00 0.0000E+00
 69 0.0000E+00 0.0000E+00 0.0000E+00
 70 0.0000E+00 0.0000E+00 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord z-coord
 sig_x sig_y sig_z tau_xy tau_yz tau_zx
 1 0.2500E+00 0.5000E+00 -0.5000E+00
 -0.2672E-01 -0.1647E+00 -0.9088E+00 0.6145E-02 0.9597E-01 0.4352E-02
 2 0.2500E+00 0.5000E+00 -0.1500E+01
 0.3985E-01 -0.5316E-01 -0.6298E+00 -0.2140E-02 0.7614E-01 0.4169E-02
 3 0.2500E+00 0.1500E+01 -0.5000E+00
 -0.2482E-01 -0.1260E+00 -0.1052E+00 0.4840E-02 0.9399E-01 -0.2814E-02
 4 0.2500E+00 0.1500E+01 -0.1500E+01
 0.2477E-01 -0.8240E-01 -0.2822E+00 -0.3179E-02 0.1214E+00 0.2939E-02
 5 0.2500E+00 0.2500E+01 -0.5000E+00
 0.3767E-02 0.8619E-02 -0.1469E-01 -0.9006E-03 -0.8733E-02 0.8652E-03
 6 0.2500E+00 0.2500E+01 -0.1500E+01
 0.7407E-02 -0.4390E-01 -0.2831E-01 -0.5639E-03 0.6083E-01 0.5078E-04

Figure 5.25 Results from Program 5.3 example

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 195

reason, later programs in this Chapter, Programs 5.5 and 5.6, introduce solution methods
in which assembly of the global stiffness matrix is avoided entirely.

Program 5.4 General two- (plane strain) or three-dimensional analysis of elastic
solids.

PROGRAM p54
!---
! Program 5.4 General two- (plane strain) or three-dimensional analysis
! of elastic solids (optional gravity loading).
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,ndim,ndof,nels,neq,nip,nn, &
nod,nodof,nprops=3,np_types,nr,nst

REAL(iwp)::det,penalty=1.0e20_iwp,zero=0.0_iwp
CHARACTER(len=15)::element

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),dee(:,:),der(:,:),deriv(:,:), &
eld(:),fun(:),gc(:),gravlo(:),g_coord(:,:),jac(:,:),km(:,:),kv(:), &
loads(:),points(:,:),prop(:,:),sigma(:),value(:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)element,nod,nels,nn,nip,nodof,nst,ndim,np_types; ndof=nod*nodof
ALLOCATE(nf(nodof,nn),points(nip,ndim),dee(nst,nst),g_coord(ndim,nn), &
coord(nod,ndim),jac(ndim,ndim),weights(nip),num(nod),g_num(nod,nels), &
der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
sigma(nst),g(ndof),g_g(ndof,nels),gc(ndim),fun(nod),etype(nels), &
prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)g_coord; READ(10,*)g_num
IF(ndim==2)CALL mesh(g_coord,g_num,12)
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),gravlo(0:neq)); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
num=g_num(:,iel); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------element stiffness integration and assembly--------
CALL sample(element,points,weights); kv=zero; gravlo=zero
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; eld=zero
int_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(transpose(bee),dee),bee)*det*weights(i)
eld(nodof:ndof:nodof)=eld(nodof:ndof:nodof)+fun(:)*det*weights(i)

196 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

END DO int_pts_1
CALL fsparv(kv,km,g,kdiag); gravlo(g)=gravlo(g)-eld*prop(3,etype(iel))

END DO elements_2
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
loads=loads+gravlo; READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &

value(fixed_freedoms),no(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; loads(no)=kv(kdiag(no))*value

END IF
!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag); loads(0)=zero
IF(ndim==3)THEN; WRITE(11,'(/A)')" Node x-disp y-disp z-disp"
ELSE; WRITE(11,'(/A)')" Node x-disp y-disp"
END IF
DO k=1,nn; WRITE(11,'(I5,3E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover stresses at element Gauss-points----------
!nip=1; DEALLOCATE(points,weights); ALLOCATE(points(nip,ndim),weights(nip))
!CALL sample(element,points,weights)
WRITE(11,'(/A,I2,A)')" The integration point (nip=",nip,") stresses are:"
IF(ndim==3)THEN
WRITE(11,'(A,/,A)')" Element x-coord y-coord z-coord", &
" sig_x sig_y sig_z tau_xy tau_yz tau_zx"

ELSE; WRITE(11,'(A,A)') " Element x-coord y-coord", &
" sig_x sig_y tau_xy"

END IF
elements_3: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
int_pts_2: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
sigma=MATMUL(dee,MATMUL(bee,eld))
IF(ndim==3)THEN; WRITE(11,'(I8,4X,3E12.4)')iel,gc
WRITE(11,'(6E12.4)')sigma

ELSE; WRITE(11,'(I8,2E12.4,5X,3E12.4)')iel,gc,sigma
END IF

END DO int_pts_2
END DO elements_3
IF(ndim==2)THEN; CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

END IF
STOP
END PROGRAM p54

New dynamic real arrays:
gravlo loads generated by gravity

Perusal of Programs 5.1 and 5.3 in this chapter will show that they are essentially
identical. The shape function and derivative subroutines shape fun and shape der,
and the [B] and [D] subroutines beemat and deemat can all generate the appropriate

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 197

terms once the 2 or 3D element type has been identified through the data. Program 5.4
utilises this identity of programs to create a single general program. Of course such a
program will expect to read the nodal geometry g_coord and connectivity g_num details
from a file which would usually be provided by a mesh-generation pre-processor. The
element types available in the library are, for plane strain or axisymmetry:

3, 6, 10, and 15-node triangles
4, 8, and 9-node quadrilaterals

and for 3D:
4-node tetrahedra
8, 14, and 20-node hexahedra.

The local numbering of all these elements which is needed for input to Program 5.4 is
given in Appendix B. In addition to the usual two elastic parameters of Young’s modulus
and Poisson’s ratio, this program also allows the option of gravity load generation through
the unit weight, which must be read in as a third property (nprops=3) for each property
group. If gravity loading is not required, the unit weight should be read as zero.

The global gravity loading vector (called gravlo in the program) for a material with
unit weight γ is accumulated from each element by integration of the shape functions [N]
as follows,

gravlo =
all∑

elements

γ

∫∫
[N]T dx dy (5.5)

and these calculations are performed in the same part of the program that forms the global
stiffness matrix. It may be noted that only those freedoms corresponding to vertical move-
ment are incorporated in the integrals. At the element level, the one-dimensional array eld
is used to gather the contributions from each Gauss point. The global gravity loads vector
gravlo accumulates eld from each element after multiplication by the unit weight γ

held in the prop array.
The first example uses a 9-node “Lagrangian” element with numbering shown in

Figure 5.26. The example problem in plane strain shown in Figure 5.27 is deliberately
chosen to allow a comparison with a similar problem previously analysed by Program 5.1
using 8-node elements (Figures 5.15 and 5.16). No gravitational loading has been included
in this example, and “exact” integration has been used by setting nip equal to 9. This
version of Program 5.4 elects to print stresses at all the integrating points used in the stiff-
ness integration, thus the output file prints stresses at 9 locations per element. The results
given in Figure 5.28 indicate a centreline displacement of −0.5299 × 10−5 m, and a cen-
troid stress σy in the first element (also located at the central node) of −0.8766 kN/m2.
This could be compared with the centreline displacement of −0.5311 × 10−5 and centroid
stress of −0.9003 from Figure 5.16 using the 8-node element. Users can experiment with
the influence of gravity. In this example, if the third property representing the unit weight
is set to 1.0, and loaded nodes is set to zero (gravity loading only), the vertical stress
σy is computed to be identical to the depth of each integrating point.

The second example illustrates the use of the simplest 3D element, namely the 4-
node tetrahedron with numbering given in Figure 5.29. This “constant-strain” element is

198 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

g(10)

g(9)

g(2)

g(4)

g(3)

g(6)
g(8)

g(5)
g(7)

g(14)

g(16)

g(15)

2

3

1

4 5

6

78 g(13)g(1)

g(12)

g(11)

g(18)

9

g(17)

Figure 5.26 Local node and freedom numbering for the 9-node quadrilateral

analogous to the 3-noded triangle for plane problems described in Program 5.1 and, like
the triangle, is not recommended for practical calculations unless adaptive mesh refinement
has been implemented. Like the 3-node triangle, this element is exactly integrated using
nip=1. The example in Figure 5.30 represents a homogeneous cube made up of six tetra-
hedra. One corner of the cube is fixed and the three adjacent faces are restrained to move
only in their own planes. The four nodal forces applied are equivalent to a uniform vertical

1 kN/m2

14

16 18 20

22 24

26 28 30

32 34

12

3331 35

17 19

27 29

cL

9 m

6 m

E = 106kN/m2

υ = 0.3

3 42 51

6 8 10

11 13 15

7 9

23 2521

Figure 5.27 Mesh and data for first Program 5.4 example (Continued on page 199)

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 199

element nod
’quadrilateral’ 9

nels nn nip nodof nst ndim np_types
6 35 9 2 3 2 1

prop(e,v,g)
1.0e6 0.3 0.0

etype(not needed)

g_coord
0.0 0.0 1.5 0.0 3.0 0.0 4.5 0.0 6.0 0.0 0.0 -1.5
1.5 -1.5 3.0 -1.5 4.5 -1.5 6.0 -1.5 0.0 -3.0 1.5 -3.0
3.0 -3.0 4.5 -3.0 6.0 -3.0 0.0 -4.5 1.5 -4.5 3.0 -4.5
4.5 -4.5 6.0 -4.5 0.0 -6.0 1.5 -6.0 3.0 -6.0 4.5 -6.0
6.0 -6.0 0.0 -7.5 1.5 -7.5 3.0 -7.5 4.5 -7.5 6.0 -7.5
0.0 -9.0 1.5 -9.0 3.0 -9.0 4.5 -9.0 6.0 -9.0

g_num
11 6 1 2 3 8 13 12 7
21 16 11 12 13 18 23 22 17
31 26 21 22 23 28 33 32 27
13 8 3 4 5 10 15 14 9
23 18 13 14 15 20 25 24 19
33 28 23 24 25 30 35 34 29

nr,(k,nf(:,k),i=1,nr)
17
 1 0 1 5 0 1 6 0 1 10 0 1 11 0 1 15 0 1
16 0 1 20 0 1 21 0 1 25 0 1 26 0 1 30 0 1
31 0 0 32 0 0 33 0 0 34 0 0 35 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
3
1 0.0 -0.5 2 0.0 -2.0 3 0.0 -0.5

fixed_freedoms
0

Figure 5.27 (Continued from page 198)

compressive stress of 1 kN/m2 (Appendix A). The computed results given in Figure 5.31
show that the cube compresses uniformly and that the vertical stress σz, at the centroid is
equal to unity, and in equilibrium with the applied loads.

The simplest member of the hexahedral or “brick” element family has 8 nodes, situated
at the corners, however the element is quite “stiff” in certain deformation modes and a
more commonly available element in commercial programs is the 20-node brick. Both
of these elements are available in Programs 5.3 and 5.4, as is an intermediate 14-node
element proposed by Smith and Kidger (1992). This intermediate element has 8 corner
nodes, supplemented by 6 mid-face nodes with a numbering system given in Figure 5.32.
There are several versions of this element, and one of them (“Type 6”) is illustrated in the
next example (See Section 3.7.9).

The analysis shown in Figure 5.33 is of a “patch” mesh suggested by Peano (1987)
for testing the admissibility of solid elements. The outer cube has smooth, rigid boundary

200 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

 There are 48 equations and the skyline storage is 610

 Node x-disp y-disp
 1 0.0000E+00 -0.5299E-05
 2 -0.4004E-06 -0.4988E-05
 3 -0.6190E-06 -0.3343E-05
 4 -0.4004E-06 -0.1697E-05
 5 0.0000E+00 -0.1387E-05
 6 0.0000E+00 -0.4307E-05
 7 0.1856E-06 -0.3911E-05
 8 0.3167E-06 -0.2786E-05
 9 0.1856E-06 -0.1661E-05
 10 0.0000E+00 -0.1264E-05
.
.
.
 31 0.0000E+00 0.0000E+00
 32 0.0000E+00 0.0000E+00
 33 0.0000E+00 0.0000E+00
 34 0.0000E+00 0.0000E+00
 35 0.0000E+00 0.0000E+00

 The integration point (nip= 9) stresses are:
 Element x-coord y-coord sig_x sig_y tau_xy
 1 0.3381E+00 -0.3381E+00 -0.6323E+00 -0.1035E+01 -0.4108E-01
 1 0.1500E+01 -0.3381E+00 -0.5703E+00 -0.1047E+01 0.5463E-01
 1 0.2662E+01 -0.3381E+00 -0.3507E+00 -0.6910E+00 0.1917E+00
 1 0.3381E+00 -0.1500E+01 -0.2434E+00 -0.9108E+00 0.2695E-01
 1 0.1500E+01 -0.1500E+01 -0.2597E+00 -0.8766E+00 0.1085E+00
 1 0.2662E+01 -0.1500E+01 -0.1681E+00 -0.5906E+00 0.2173E+00
 1 0.3381E+00 -0.2662E+01 -0.1395E+00 -0.9083E+00 0.5062E-01
 1 0.1500E+01 -0.2662E+01 -0.1846E+00 -0.8070E+00 0.1512E+00
 1 0.2662E+01 -0.2662E+01 -0.1714E+00 -0.5698E+00 0.2648E+00
.
.
.
 6 0.4500E+01 -0.6338E+01 -0.2436E+00 -0.4162E+00 0.4191E-01
 6 0.5662E+01 -0.6338E+01 -0.2740E+00 -0.3928E+00 0.1298E-01
 6 0.3338E+01 -0.7500E+01 -0.2245E+00 -0.4855E+00 0.4446E-01
 6 0.4500E+01 -0.7500E+01 -0.2283E+00 -0.4382E+00 0.2936E-01
 6 0.5662E+01 -0.7500E+01 -0.2449E+00 -0.4208E+00 0.8179E-02
 6 0.3338E+01 -0.8662E+01 -0.2137E+00 -0.4886E+00 0.3231E-01
 6 0.4500E+01 -0.8662E+01 -0.2059E+00 -0.4572E+00 0.2255E-01
 6 0.5662E+01 -0.8662E+01 -0.2063E+00 -0.4448E+00 0.6023E-02

Figure 5.28 Results from first Program 5.4 example

x

y

z

1

2

3

4

Freedoms numbered from 1 to 12 in same order as the nodes

Figure 5.29 Local node and freedom numbering for the 4-node tetrahedral element

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 201

1

3

7

5 6

8

4

2

1/6 kN

1/3 kN 1/6 kN

1/3 kN

cL

x

y

z

unit cube

E = 100 kN/m2

u = 0.3

element nod
’tetrahedron’ 4

nels nn nip nodof nst ndim np_types
6 8 1 3 6 3 1

prop(e,v,g)
100.0 0.3 0.0

etype(not needed)

g_coord
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 1.0 0.0 -1.0
0.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 -1.0 1.0 1.0 -1.0

g_num
1 3 4 7 1 4 2 7 1 2 5 7
6 4 8 7 6 2 4 7 6 5 2 7

nr,(k,nf(:,k),i=1,nr)
7
1 0 0 1 2 1 0 1 3 0 0 0 4 1 0 0
5 0 1 1 7 0 1 0 8 1 1 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
4
1 0.0 0.0 -0.1667 2 0.0 0.0 -0.3333
5 0.0 0.0 -0.3333 6 0.0 0.0 -0.1667

fixed_freedoms
0

Figure 5.30 Mesh and data for second Program 5.4 example

 There are 12 equations and the skyline storage is 69

 Node x-disp y-disp z-disp
 1 0.0000E+00 0.0000E+00 -0.1000E-01
 2 0.3000E-02 0.0000E+00 -0.1000E-01
 3 0.0000E+00 0.0000E+00 0.0000E+00
 4 0.3000E-02 0.0000E+00 0.0000E+00
 5 0.0000E+00 0.3000E-02 -0.9999E-02
 6 0.3000E-02 0.3000E-02 -0.1000E-01
 7 0.0000E+00 0.3000E-02 0.0000E+00
 8 0.3000E-02 0.3000E-02 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord z-coord
 sig_x sig_y sig_z tau_xy tau_yz tau_zx
 1 0.2500E+00 0.2500E+00 -0.7500E+00
 -0.1965E-04 -0.2100E-04 -0.1000E+01 0.0000E+00 0.0000E+00 0.0000E+00
 2 0.5000E+00 0.2500E+00 -0.5000E+00
 0.2302E-05 0.1389E-04 -0.1000E+01 -0.6475E-05 0.2974E-04 0.2326E-04
 3 0.2500E+00 0.5000E+00 -0.2500E+00
 0.1230E-04 0.2075E-05 -0.9999E+00 0.0000E+00 0.3641E-04 0.2974E-04
 4 0.7500E+00 0.7500E+00 -0.7500E+00
 -0.1087E-04 -0.9023E-05 -0.1000E+01 0.1556E-05 -0.7467E-05 -0.9316E-05
 5 0.7500E+00 0.5000E+00 -0.5000E+00
 0.6102E-05 -0.1297E-05 -0.1000E+01 -0.8752E-05 -0.2541E-04 -0.3189E-04
 6 0.5000E+00 0.7500E+00 -0.2500E+00
 0.9809E-05 0.1536E-04 -0.9999E+00 0.2158E-05 -0.3632E-04 -0.4299E-04

Figure 5.31 Results from second Program 5.4 example

202 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

1

2
3

11 12

13

4

Freedoms numbered from 1 to 42 in same order as the nodes

10

5

6

7

8

9

14

x

y

z

Figure 5.32 Local node and freedom numbering for the 14-node hexahedral element

conditions to the left (x = 0) and bottom (z = −1), and the 5 nodes on the front face
of the exterior box are given a uniform y-displacement of 0.01. The results are shown in
Figure 5.34 where it can be seen that a completely homogeneous strain field has resulted in
a stress of σy = −0.01 kN/m2 at all integrating points within the mesh. Thus, the element
passes the patch test. The current example used nip=27, but users could experiment with
different orders of integration.

5

3

1

7

22

11
15

13
9

16

62

8

18

19

10 14

x

y

z

Figure shows visible
nodes on the surface,
plus corner nodes only
of inner element.
Outer "box" is
a unit cube

element nod
’hexahedron’ 14

Figure 5.33 Mesh and data for third Program 5.4 example (Continued on page 203)

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 203

nels nn nip nodof nst ndim np_types
7 40 27 3 6 3 1

prop(e,v,g)
1.0 0.49 0.0

etype(not needed)

g_coord
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 -1.0000 0.0000 1.0000 -1.0000
.
. (g_coord data for nodes 5-36 omitted here)
.
0.1423 0.5412 -0.8680 0.5187 0.8800 -0.8425
0.8758 0.5072 -0.8518 0.4992 0.1685 -0.8773

g_num
11 9 13 15 25 23 24 28 27 12 10 14 16 26
 3 1 9 11 33 17 29 23 37 4 2 10 12 34
 9 1 5 13 32 29 18 31 24 10 2 6 14 30
15 13 5 7 36 28 31 22 39 16 14 6 8 35
 3 11 15 7 40 37 27 39 21 4 12 16 8 38
12 10 14 16 26 34 30 35 38 4 2 6 8 20
 3 1 5 7 19 33 32 36 40 11 9 13 15 25

nr,(k,nf(:,k),i=1,nr)
10
1 0 1 1 2 0 0 1 3 0 1 0 4 0 0 0 6 1 0 1
7 1 1 0 8 1 0 0 17 0 1 1 20 1 0 1 21 1 1 0

loaded_nodes
0

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
5
1 2 0.01 3 2 0.01 5 2 0.01 7 2 0.01 19 2 0.01

Figure 5.33 (Continued from page 202)

 There are 105 equations and the skyline storage is 5487

 Node x-disp y-disp z-disp
 1 0.0000E+00 0.1000E-01 0.4900E-02
 2 0.0000E+00 0.0000E+00 0.4900E-02
 3 0.0000E+00 0.1000E-01 0.0000E+00
 4 0.0000E+00 0.0000E+00 0.0000E+00
 5 0.4900E-02 0.1000E-01 0.4900E-02
 6 0.4900E-02 0.0000E+00 0.4900E-02
 7 0.4900E-02 0.1000E-01 0.0000E+00
 8 0.4900E-02 0.0000E+00 0.0000E+00
 9 0.8085E-03 0.7020E-02 0.3651E-02
 10 0.1333E-02 0.2300E-02 0.3675E-02
.
.
.
 37 0.6973E-03 0.4588E-02 0.6468E-03
 38 0.2542E-02 0.1200E-02 0.7718E-03
 39 0.4291E-02 0.4928E-02 0.7262E-03
 40 0.2446E-02 0.8315E-02 0.6012E-03

Figure 5.34 Results from third Program 5.4 example (Continued on page 204)

204 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

 The integration point (nip=27) stresses are:
 Element x-coord y-coord z-coord
 sig_x sig_y sig_z tau_xy tau_yz tau_zx
 1 0.2589E+00 0.3618E+00 -0.3200E+00
 -0.1793E-07 -0.1000E-01 -0.1827E-07 0.1618E-09 -0.1391E-08 -0.2100E-09
 1 0.4879E+00 0.3762E+00 -0.3354E+00
 -0.5606E-08 -0.1000E-01 -0.6012E-08 -0.4430E-09 -0.1763E-08 -0.1400E-09
 1 0.7170E+00 0.3905E+00 -0.3508E+00
 0.1582E-08 -0.1000E-01 -0.7704E-10 -0.4557E-09 -0.8293E-09 -0.1176E-09
.
.
.
 7 0.4889E+00 0.2946E+00 -0.5157E+00
 -0.8196E-07 -0.1000E-01 -0.8207E-07 -0.2538E-09 -0.8485E-09 -0.2121E-09
 7 0.7010E+00 0.2977E+00 -0.5042E+00
 -0.3727E-08 -0.1000E-01 -0.3632E-08 -0.7091E-09 0.5663E-09 -0.1256E-09
 7 0.3198E+00 0.3080E+00 -0.7564E+00
 0.3311E-07 -0.1000E-01 0.3315E-07 0.1318E-08 0.7962E-09 -0.1938E-09
 7 0.4965E+00 0.2980E+00 -0.7221E+00
 0.1311E-07 -0.1000E-01 0.1332E-07 0.1924E-09 0.1619E-08 0.1072E-09
 7 0.6731E+00 0.2881E+00 -0.6878E+00
 -0.1021E-07 -0.1000E-01 -0.1057E-07 0.8205E-10 0.1063E-08 0.5315E-10

Figure 5.34 (Continued from page 203)

Program 5.5 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-node
brick hexahedra. Mesh numbered in x -z planes then in the y-direction. No global
stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

PROGRAM p55
!---
! Program 5.5 Three-dimensional strain of an elastic solid using
! 8-, 14- or 20-node brick hexahedra. Mesh numbered in x-z
! planes then in the y-direction. No global stiffness matrix
! assembly. Diagonally preconditioned conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,fixed_freedoms,i,iel,k,loaded_nodes,ndim=3, &
ndof,nels,neq,nip,nn,nprops=2,np_types,nod,nodof=3,nr,nst=6,nxe,nye,nze

REAL(iwp)::alpha,beta,cg_tol,det,one=1.0_iwp,penalty=1.0e20_iwp,up, &
zero=0.0_iwp

CHARACTER(LEN=15)::element='hexahedron'; LOGICAL::cg_converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),no(:), &
node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),d(:),dee(:,:),der(:,:), &
deriv(:,:),diag_precon(:),eld(:),fun(:),gc(:),g_coord(:,:),jac(:,:), &
km(:,:),loads(:),p(:),points(:,:),prop(:,:),sigma(:),store(:), &
storkm(:,:,:),u(:),value(:),weights(:),x(:),xnew(:),x_coords(:), &
y_coords(:),z_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nod,nxe,nye,nze,nip,cg_tol,cg_limit,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye,nze); ndof=nod*nodof
ALLOCATE(nf(nodof,nn),points(nip,ndim),dee(nst,nst),coord(nod,ndim), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),fun(nod),gc(ndim), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),sigma(nst),g_coord(ndim,nn), &
g_num(nod,nels),weights(nip),num(nod),g_g(ndof,nels),x_coords(nxe+1), &
g(ndof),y_coords(nye+1),z_coords(nze+1),etype(nels), &
prop(nprops,np_types),storkm(ndof,ndof,nels))

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 205

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords,z_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
WRITE(11,'(A,I5,A)')" There are",neq," equations"
ALLOCATE(p(0:neq),loads(0:neq),x(0:neq),xnew(0:neq),u(0:neq), &
diag_precon(0:neq),d(0:neq))

CALL sample(element,points,weights); diag_precon=zero
!----------element stiffness integration, storage and preconditioner------
elements_1: DO iel=1,nels
CALL hexahedron_xz(iel,x_coords,y_coords,z_coords,coord,num)
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); g=g_g(:,iel); coord=TRANSPOSE(g_coord(:,num)); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1
storkm(:,:,iel)=km
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); END DO

END DO elements_1
!-----------------------invert the preconditioner and get starting loads--
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &

value(fixed_freedoms),no(fixed_freedoms),store(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
diag_precon(no)=diag_precon(no)+penalty; loads(no)=diag_precon(no)*value
store=diag_precon(no)

END IF
diag_precon(1:)=one/diag_precon(1:); diag_precon(0)=zero
d=diag_precon*loads; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO
cg_iters=cg_iters+1; u=zero
elements_2: DO iel=1,nels

g=g_g(:,iel); km=storkm(:,:,iel); u(g)=u(g)+MATMUL(km,p(g))
END DO elements_2
IF(fixed_freedoms/=0)u(no)=p(no)*store; up=DOT_PRODUCT(loads,d)
alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha; loads=loads-u*alpha
d=diag_precon*loads; beta=DOT_PRODUCT(loads,d)/up; p=d+p*beta
CALL checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg
WRITE(11,'(A,I5)')" Number of cg iterations to convergence was",cg_iters
WRITE(11,'(/A)')" Node x-disp y-disp z-disp"; loads=xnew
DO k=1,nn; WRITE(11,'(I5,3E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover stresses at nip integrating point---------
nip=1; DEALLOCATE(points,weights); ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights); loads(0)=zero
WRITE(11,'(/A,I2,A)')" The integration point (nip=",nip,") stresses are:"
WRITE(11,'(A,/,A)')" Element x-coord y-coord z-coord", &
" sig_x sig_y sig_z tau_xy tau_yz tau_zx"

elements_3: DO iel=1,nels

206 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
sigma=MATMUL(dee,MATMUL(bee,eld)); WRITE(11,'(I8,4X,3E12.4)')iel,gc
WRITE(11,'(6E12.4)')sigma

END DO gauss_pts_2
END DO elements_3

STOP
END PROGRAM p55

New scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling

New scalar reals:
alpha α from equations (3.22)
beta β from equations (3.22)
cg tol pcg convergence tolerance
up holds dot product {R}T

k {R}k from equations (3.22)

Scalar logical:
cg converged set to .TRUE. if pcg process has converged

New dynamic real arrays:
d preconditioned rhs vector
diag precon diagonal preconditioner vector
p “descent” vector used in equations (3.22)
store stores augmented diagonal terms
storkm holds element stiffness matrices
u vector used in equations (3.22)
x “old” solution vector
xnew “new” solution vector

Section 3.5 described a “mesh-free” approach to the solution of linear static equilibrium
problems in which the equation solution process could be carried out by the precondi-
tioned conjugate gradient (pcg) technique without ever assembling element matrices into a
global (stiffness) matrix. The essential process was described by equations (3.20) to (3.23).
Program 5.5 will now be used to solve once more the problem illustrated in Figure 5.24
and previously solved using an assembly technique by Program 5.3. A structure chart for
the pcg algorithm is shown in Figure 5.35.

All of the elements are looped in order to compute their stiffness matrices, which are
stored in the array storkm for use later in the pcg solution algorithm. This loop (called

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 207

Read data
Allocate arrays

For all elements

Calculate geometry and connectivity.
Compute element stiffness matrix and store.

Find preconditioner.

Invert the preconditioner.

For all pcg iterations

Gather.
Matrix*vector multiplication.

Scatter.

Complete pcg operations.
Check convergence.

 For all elements

Find nodal coordinates and steering vector.
Retrieve element nodal coordinates.

Retrieve element nodal displacements.

For all integrating points

Compute shape functions and derivatives in
local coordinates.

Convert from local to global coordinates.
Form the [B] matrix.

Compute the strains and stresses.

Figure 5.35 Structure chart for pcg algorithm as used in Program 5.5. No global matrix
assembly

elements 2) also builds the preconditioning matrix which is simply the inverse of the
diagonal terms in what would have been in the assembled global stiffness matrix. The pre-
conditioning matrix (stored as a vector) is called diag precon. The section commented
“pcg equation solution” carries out the vector operations described in equations (3.22)
within the iterative loop labelled pcg. The matrix–vector multiply needed in the first of
(3.22) is done using (3.23). The steering vector g “gathers” the appropriate components of
p, to be multiplied by the element stiffness matrix km retrieved from storkm. Similarly,
the vector g “scatters” the result of the matrix–vector multiply to appropriate locations in
u. A tolerance pcg tol enables the iterations to be stopped when successive solutions

208 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

nod
20

nxe nye nze nip cg_tol cg_limit np_types
1 3 2 8 1.0e-5 200 2

prop(e,v)
100.0 0.3
 50.0 0.3

etype
1 2 1 2 1 2

x_coords, y_coords, z_coords
 0.0 0.5
 0.0 1.0 2.0 3.0
 0.0 -1.0 -2.0

nr,(k,nf(:,k),i=1,nr)
46
 1 0 0 1 2 1 0 1 3 1 0 1 4 0 0 1 5 1 0 1 6 0 0 1
 7 1 0 1 8 1 0 1 9 0 0 1 10 1 0 1 11 0 0 0 12 0 0 0
13 0 0 0 14 0 1 1 16 0 1 1 18 0 0 0 19 0 0 0 20 0 1 1
23 0 1 1 25 0 1 1 28 0 1 1 30 0 0 0 31 0 0 0 32 0 0 0
33 0 1 1 35 0 1 1 37 0 0 0 38 0 0 0 39 0 1 1 42 0 1 1
44 0 1 1 47 0 1 1 49 0 0 0 50 0 0 0 51 0 0 0 52 0 1 1
54 0 1 1 56 0 0 0 57 0 0 0 58 0 1 1 61 0 1 1 63 0 1 1
66 0 1 1 68 0 0 0 69 0 0 0 70 0 0 0

loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
8
 1 0.0 0.0 0.0417 2 0.0 0.0 -0.1667 3 0.0 0.0 0.0417
14 0.0 0.0 -0.1667 15 0.0 0.0 -0.1667 20 0.0 0.0 0.0417
21 0.0 0.0 -0.1667 22 0.0 0.0 0.0417

fixed_freedoms
0

Figure 5.36 Data for Programs 5.5 and 5.6 example

are “close enough”, but since pcg is a loop which might carry on “forever”, an iteration
ceiling, cg limit, is specified also. Strains and stresses can then be recovered from the
displacements in the usual manner.

The data for the program are shown in Figure 5.36. The only changes from Figure 5.24,
which used an assembly strategy, are the two additional data values read in for cg tol
and cg limit, which are set to be 1 × 10−5 and 200 respectively.

Figure 5.37 shows the results which may be compared with those listed in Figure 5.25.
The specified accuracy of solution took 64 iterations in this case. Since, in perfect arithmetic,
the conjugate gradient process should converge in at most neq iterations (124 in this case)
the amount of computational effort in large problems may seem to be daunting. Fortunately,
as the set of equations to be solved grows larger, the proportion of iterations to converge
to number of equations (cg iters/neq) usually decreases dramatically. It does however
depend crucially on the “condition number” (nature of the eigenvalue spectrum) of the
assembled stiffness matrix. With no diagonal preconditioning (diag precon=1.0), the
number of iterations for convergence rises to 70.

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 209

 There are 124 equations
 Number of cg iterations to convergence was 64

 Node x-disp y-disp z-disp
 1 0.0000E+00 0.0000E+00 -0.2246E-01
 2 0.1584E-02 0.0000E+00 -0.2255E-01
 3 0.3220E-02 0.0000E+00 -0.2333E-01
 4 0.0000E+00 0.0000E+00 -0.1849E-01
 5 0.1544E-02 0.0000E+00 -0.1884E-01
 6 0.0000E+00 0.0000E+00 -0.1443E-01
 7 0.7580E-03 0.0000E+00 -0.1435E-01
 8 0.1511E-02 0.0000E+00 -0.1411E-01
 9 0.0000E+00 0.0000E+00 -0.6164E-02
 10 0.2792E-02 0.0000E+00 -0.6430E-02
.
.
.
 66 0.0000E+00 0.1572E-02 -0.1028E-03
 67 -0.7437E-04 0.1716E-02 -0.5845E-04
 68 0.0000E+00 0.0000E+00 0.0000E+00
 69 0.0000E+00 0.0000E+00 0.0000E+00
 70 0.0000E+00 0.0000E+00 0.0000E+00

 The integration point (nip= 1) stresses are:
 Element x-coord y-coord z-coord
 sig_x sig_y sig_z tau_xy tau_yz tau_zx
 1 0.2500E+00 0.5000E+00 -0.5000E+00
 -0.2671E-01 -0.1647E+00 -0.9088E+00 0.6148E-02 0.9598E-01 0.4352E-02
 2 0.2500E+00 0.5000E+00 -0.1500E+01
 0.3986E-01 -0.5316E-01 -0.6298E+00 -0.2139E-02 0.7613E-01 0.4169E-02
 3 0.2500E+00 0.1500E+01 -0.5000E+00
 -0.2481E-01 -0.1260E+00 -0.1052E+00 0.4842E-02 0.9398E-01 -0.2812E-02
 4 0.2500E+00 0.1500E+01 -0.1500E+01
 0.2477E-01 -0.8240E-01 -0.2822E+00 -0.3176E-02 0.1214E+00 0.2938E-02
 5 0.2500E+00 0.2500E+01 -0.5000E+00
 0.3756E-02 0.8610E-02 -0.1470E-01 -0.9130E-03 -0.8730E-02 0.8741E-03
 6 0.2500E+00 0.2500E+01 -0.1500E+01
 0.7401E-02 -0.4390E-01 -0.2832E-01 -0.5657E-03 0.6083E-01 0.4901E-04

Figure 5.37 Results from Programs 5.5 and 5.6 example

Program 5.6 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-node
brick hexahedra. Mesh numbered in x -z planes then in the y-direction. No global stiff-
ness matrix assembly. Diagonally preconditioned conjugate gradient solver. Vectorised
version.

PROGRAM p56
!---
! Program 5.6 Three-dimensional strain of an elastic solid using
! 8-, 14- or 20-node brick hexahedra. Mesh numbered in x-z
! planes then in the y-direction. No global stiffness matrix
! assembly. Diagonally preconditioned conjugate gradient solver.
! Vectorised version.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,fixed_freedoms,i,iel,k,loaded_nodes,ndim=3, &
ndof,nels,neq,nip,nn,nprops=2,np_types,nod,nodof=3,nr,nst=6,nxe,nye,nze

REAL(iwp)::alpha,beta,big,cg_tol,det,one=1.0_iwp,penalty=1.0e20_iwp,up, &
zero=0.0_iwp

CHARACTER(LEN=15)::element='hexahedron'; LOGICAL::cg_converged

210 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),no(:), &
node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),d(:),dee(:,:),der(:,:), &
deriv(:,:),diag_precon(:),eld(:),fun(:),gc(:),g_coord(:,:),g_pmul(:,:),&
g_utemp(:,:),jac(:,:),km(:,:),loads(:),p(:),points(:,:),prop(:,:), &
sigma(:),store(:),storkm(:,:,:),u(:),value(:),weights(:),x(:),xnew(:), &
x_coords(:),y_coords(:),z_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
read(10,*)nod,nxe,nye,nze,nip,cg_tol,cg_limit,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye,nze); ndof=nod*nodof
ALLOCATE(nf(nodof,nn),points(nip,ndim),dee(nst,nst),coord(nod,ndim), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),fun(nod),gc(ndim), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),sigma(nst),g_coord(ndim,nn), &
g_num(nod,nels),weights(nip),num(nod),g_g(ndof,nels),x_coords(nxe+1), &
g(ndof),y_coords(nye+1),z_coords(nze+1),etype(nels),g_pmul(ndof,nels), &
prop(nprops,np_types),storkm(ndof,ndof,nels),g_utemp(ndof,nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords,z_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
WRITE(11,'(A,I5,A)')" There are",neq," equations"
ALLOCATE(p(0:neq),loads(0:neq),x(0:neq),xnew(0:neq),u(0:neq), &
diag_precon(0:neq),d(0:neq))

CALL sample(element,points,weights); diag_precon=zero
!----------element stiffness integration, storage and preconditioner------
elements_1: DO iel=1,nels
CALL hexahedron_xz(iel,x_coords,y_coords,z_coords,coord,num)
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); g=g_g(:,iel); coord=TRANSPOSE(g_coord(:,num)); km=zero

gauss_pts_1: DO i=1,nip
CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(matmul(transpose(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1
storkm(:,:,iel)=km
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); END DO

END DO elements_1
!-----------------------invert the preconditioner and get starting loads--
loads=zero; READ(10,*)loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &

value(fixed_freedoms),no(fixed_freedoms),store(fixed_freedoms))
READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
diag_precon(no)=diag_precon(no)+penalty; loads(no)=diag_precon(no)*value
store=diag_precon(no)

END IF
diag_precon(1:)=one/diag_precon(1:); diag_precon(0)=zero
d=diag_precon*loads; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO
cg_iters=cg_iters+1; u=zero
elements_2: DO iel=1,nels; g_pmul(:,iel)=p(g_g(:,iel)); END DO elements_2

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 211

!dir$ ivdep
elements_2a: DO iel=1,nels

km=storkm(:,:,iel); g_utemp=MATMUL(km,g_pmul)
u(g_g(:,iel))=u(g_g(:,iel))+g_utemp(:,iel)

END DO elements_2a
IF(fixed_freedoms/=0)u(no)=p(no)*store; up=DOT_PRODUCT(loads,d)
alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha; loads=loads-u*alpha
d=diag_precon*loads; beta=DOT_PRODUCT(loads,d)/up; p=d+p*beta
big=zero; cg_converged=.TRUE.
DO i=1,neq; IF(ABS(xnew(i))>big)big=ABS(xnew(i)); END DO
DO i=1,neq; IF(ABS(xnew(i)-x(i))/big>cg_tol)cg_converged=.FALSE.; END DO
x=xnew; IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg
WRITE(11,'(A,I5)')" Number of cg iterations to convergence was",cg_iters
WRITE(11,'(/A)')" Node x-disp y-disp z-disp"; loads=xnew
DO k=1,nn; WRITE(11,'(I5,3E12.4)')k,loads(nf(:,k)); END DO

!-----------------------recover stresses at nip integrating point---------
nip=1; DEALLOCATE(points,weights); ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights); loads(0)=zero
WRITE(11,'(/A,I2,A)')" The integration point (nip=",nip,") stresses are:"
WRITE(11,'(A,/,A)')" Element x-coord y-coord z-coord", &
" sig_x sig_y sig_z tau_xy tau_yz tau_zx"

elements_4: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
sigma=MATMUL(dee,MATMUL(bee,eld)); WRITE(11,'(I8,4X,3E12.4)')iel,gc
WRITE(11,'(6E12.4)')sigma

END DO gauss_pts_2
END DO elements_4

STOP
END PROGRAM p56

New dynamic real arrays:
g pmul “gathers” the p vectors for all elements
g utemp holds all the products of km and p

This program is used to solve exactly the same problem as was detailed for Programs 5.3
and 5.5, using the mesh-free strategy of Program 5.5. However, it is used as an example of
some of the issues which arise when programming for vector computers (see Section 1.4).

All practical vector computers enable code to be analysed to see where most time is
being used and where there are features of the program inhibiting most effective use of
vectorising compilers.

When Program 5.5 was run through such an analysis program, three main points arose:

a) There is potential “dependency” in the scatter operation

u(g)=u(g)+MATMUL(km,p(g))

and the compiler does not know whether there may be repeated entries in g and so
does not vectorise this statement.

212 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

b) A surprising amount of time was spent in the Fortran 95 intrinsic MAXVAL (for testing
convergence in subroutine checon).

c) The most time-consuming operation is the Fortran 95 intrinsic MATMUL, and on
the particular vector computer, it was running considerably slower than the peak
machine speed.

Program 5.6 addresses all of these issues. First, unless freedoms are “tied” together (a
device not used in this book) we can be sure that entries in g are not duplicated and so the
scatter operation can be vectorised. A “compiler directive” (!dir$ ivdep in this case)
is therefore inserted before the loop elements 2a: enabling the loop to be vectorised.
Second, MAXVAL is replaced by its longhand equivalent. This is obviously a problem with
the particular vendor whose implementation of MAXVAL could be much improved. Third,
and this is probably also a vendor problem, the MATMUL operation is changed from matrix–
vector to matrix–matrix by collecting all the p(g) vectors into a global matrix g pmul in
the loop elements 2:. Otherwise the program is the same as Program 5.5 and of course
produces the same results. However, Table 5.1 shows the progressive effects of making
changes to the coding in Program 5.5.

Table 5.1 Timings of vectorised programs

Original code (Program 5.5) 44.7 seconds
No dependency 25.3 seconds
Replace MAXVAL 21.6 seconds
Matrix–matrix (Program 5.6) 9.3 seconds

The speed-up of Program 5.6 over Program 5.5 on this particular vector computer
was by a factor of about 5, and illustrates the importance of code analysis when using
such machines.

Glossary of variable names used in Chapter 5

Scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling
fixed freedoms number of fixed displacements
i simple counter
iel simple counter
iflag 1 for “symmetry”, −1 for “antisymmetry”
iwp SELECTED REAL KIND(15)
k simple counter
loaded nodes number of loaded nodes
lth harmonic on which loads are to be applied
ndim number of dimensions
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 213

nip number of integrating points per element
nn number of nodes in the mesh
nod number of nodes per element
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes
nre number of elements in r-direction
nst number of stress (strain) terms (3, 4, or 6)
nxe number of elements in x-direction
nye number of elements in y-direction
nze number of elements in z-direction

Scalar reals:
alpha α from equations (3.22)
beta β from equations (3.22)
ca set to cos(chi)
chi angle for stress output
cg tol pcg convergence tolerance
det determinant of the Jacobian matrix
one set to 1.0
penalty set to 1 × 1020

pi set to π

radius r-coordinate of Gauss point
sa set to sin(chi)
up holds dot product (Rk)T(Rk) from equations (3.22)
zero set to 0.0

Scalar characters:
dir element and node numbering direction
element element type
type 2d type of 2D analysis (‘plane’ or ‘axisymmetric’)

Scalar logical:
cg converged set to .TRUE. if pcg process has converged

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term location vector
nf nodal freedom matrix
no fixed freedom numbers vector
node fixed nodes vector

214 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

num element node numbers vector
sense sense of freedoms to be fixed vector

Dynamic real arrays:
bee strain-displacement matrix
coord element nodal coordinates
d preconditioned rhs vector
dee stress–strain matrix
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
diag precon diagonal preconditioner vector
eld element nodal displacements
fun shape functions
gc integrating point coordinates
gravlo loads generated by gravity
g coord global nodal coordinates
g pmul “gathers” the p vectors for all elements
g utemp holds all the products of km and p
jac Jacobian matrix
km element stiffness matrix
kv global stiffness matrix
loads nodal loads and displacements
p “descent” vector used in equations (3.22)
points integrating point local coordinates
prop element properties
r coords r-coordinates of mesh layout
sigma stress terms
store stores augmented diagonal terms
storkm holds element stiffness matrices
u vector used in equations (3.22)
value fixed values of displacements
weights weighting coefficients
x “old” solution vector
xnew “new” solution vector
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout
z coords z-coordinates of mesh layout

5.2 Exercises

1. Derive in terms of local coordinates, any shape function of the following elements:

(a) 6-node triangle

(b) 8-node quadrilateral

(c) 9-node quadrilateral

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 215

2. Given that the “first” shape function of a 4-node plane stress rectangular element of
width a and height b is:

N1 =
(

1 − x

a

) (
1 − y

b

)

use analytical integration to show that the element stiffness and mass matrices include
the following terms:

k11 = E

1 − ν2

(
b

3a
+ 1 − ν

2

a

3b

)

m11 = ρab

9

3. For the problem shown in Figure 5.38, estimate the force necessary to displace the
loaded node horizontally by 0.015 units.

Ans: 0.8

1

1

P

4-node element
plane strain
E = 100
u = 0.25

Figure 5.38

4. Derive the vertical nodal forces that are equivalent to the triangular stress distribution
acting on the 4-node element shown in Figure 5.39. Given that the stiffness matrix
of this element (assuming local freedom numbering in the order u1 v1 u2 v2 u3 v3
u4 v4) is:

57.69 24.04 9.62 −4.81 −28.85 −24.04 −38.46 4.81
57.69 4.81 −38.46 −24.04 −28.85 −4.81 9.62

57.69 −24.04 −38.46 −4.81 −28.85 24.04
57.69 4.81 9.62 24.04 −28.85

57.69 24.04 9.62 −4.81
57.69 4.81 −38.46

57.69 −24.04
57.69

compute the vertical displacement of the top two nodes.

Ans: 0.55, 0.19

216 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

10

10

10

Figure 5.39

5. Derive the equivalent nodal force F5 that is one of the equivalent nodal forces
required to model a linear triangular distributed load varying from one to zero as
shown in Figure 5.40. Given that F4 = L/3 what must F3 be equal to?

Ans: F3 = 0, F4 = L/3, F5 = L/6

F3 F4 F5

1.0

L

L

Figure 5.40

6. The 4-node element shown in Figure 5.41 is fixed on three sides and subjected to the
indicated fixed displacement at the free node. Estimate the stresses at the centroid of
the element assuming plane strain conditions.

Ans:

σx

σy

τxy

 =

6.66
4.96

−3.50

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 217

1.5

1.0

Plane strain

20°

Centroid

y

1 4

Displacement
 = 0.015

x

2 3

E = 1000.
u = 0.25

Figure 5.41

7. The rectangular 8-node element shown in Figure 5.42 has a unit weight of γ and is
subjected to gravitational loading. Compute the equivalent vertical nodal load Fcorner
at node 1.
If it can be assumed that the equivalent loads due to gravity result in all corner loads
equalling Fcorner and all mid-side loads equaling Fmid−side, deduce also the value
of Fmid−side.
(Ans: Fcorner = abγ/12, Fmid−side = −abγ/3)

gravitational
body load

Fcorner Fcorner

FcornerFcorner

Fmid-side

Fmid-side

Fmid-side

b

Node 1

x

h

Fmid-side

a

γ

Figure 5.42

218 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

8. The global stiffness matrix for the problem shown in Figure 5.43 is given by

[K]m =
[

α 12.5
12.5 75

]

Derive the missing term α and hence compute the displacement of the loaded node.

Ans: α = 50, δx = −0.017, δy = −0.010

45o

11

2

Plane strain

E =100
u =0

P=√2

1,2

1,2 0,0

0,0

Figure 5.43

9. Compute the equivalent nodal loads for the uniform distributed loading applied over
one half of one side of the 8-node quadrilateral element shown in Figure 5.44.

Ans: F5 = −6, F6 = 48, F7 = 30,

q=24

8

6

1

2

3
4

5

78

6

Figure 5.44

10. The third member of the triangular family has 10 nodes as shown in Figure 5.45.
Set up the system of simultaneous equations that would enable you to derive the
shape function N10 in local coordinates for this element. Do not attempt to solve the
equations.

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 219

Ans: N10 = c1 + c2L1 + c3L2 + c4L
2
1 + c5L1L2 + c6L

2
2 + c7L

3
1 + c8L

2
1L2

+c9L1L
2
2 + c10L

3
2

27 27 0 27 0 0 27 0 0 0
27 0 27 0 0 27 0 0 0 27
27 0 0 0 0 0 0 0 0 0
27 18 9 12 6 3 8 4 2 1
27 9 18 3 6 12 1 2 4 8
27 0 18 0 0 12 0 0 0 8
27 0 9 0 0 3 0 0 0 1
27 9 0 3 0 0 1 0 0 0
27 18 0 12 0 0 8 0 0 0
27 9 9 3 3 3 1 1 1 1

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10

=

0
0
0
0
0
0
0
0
0

27

4

5

10

267

1

8

9

3

Figure 5.45

11. Figure 5.46 shows a cubic, 8-node, 3D finite element with side length 2 units. The
origin of the coordinate system is at the centroid of the element, so all nodal coordi-
nates are ±1 (e.g. node 1 is at (−1, −1, −1) etc.). Choose suitable terms for the shape
functions of this element, and hence set up the system of simultaneous equations that
would enable you to derive shape function N7. Do not attempt to solve the equations.

Ans: N7 = c1 + c2x + c3y + c4z + c5xy + c6yz + c7zx + c8xyz

1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 −1 1 −1
1 1 −1 −1 −1 1 −1 1
1 −1 1 −1 −1 −1 1 1
1 −1 1 1 −1 1 −1 −1
1 1 1 1 1 1 1 1
1 1 1 −1 1 −1 −1 −1

c1
c2
c3
c4
c5
c6
c7
c8

=

0
0
0
0
0
0
1
0

220 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

x

yz

1

2 3

4

5

6 7

8

Figure 5.46

12. Assuming “small” strains, derive the partial differential equations of 2D elastic equi-
librium under conditions of plane stress. For the square element shown in Figure 5.47
show that the stiffness matrix contains the term,

k12 = Eν

6(1 − ν2)

u5

u1

u2
u3

u4

u6 u7

u8

Figure 5.47

13. Selective reduced integration (SRI) is a way of improving the performance of 4-node
plane elements as Poisson’s ratio approaches 0.5 (incompressibility). The [D] matrix
is split into volumetric and deviatoric components, and the element stiffness matrix

STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS 221

is integrated in two stages, namely

[km] =
∫∫

[B]T[D]v[B] dx dy +
∫∫

[B]T[D]d [B] dx dy

where

[D]d = E

2(1 + ν)

 2 0 0

0 2 0
0 0 1

and

[D]v = Eν

(1 + ν)(1 − 2ν)

 1 1 0

1 1 0
0 0 0

The SRI approach involves “exact” integration (nip = 4) of the [D]d term, and
“reduced” integration (nip = 1) of the [D]v term.

Use this technique to estimate the displacement of the loaded node in Figure 5.48.
You may use analytical integration for the [D]d term.

Ans: δx = 0.2, δx = −0.2

10

E =100
u =0.49999

Figure 5.48

14. A planar square 8-node quadrilateral of unit side length and unit mass density has
the following shape functions at node 1:

N1 = 0.25(1 − ξ)(1 − η)(−η − ξ − 1)

Compute m11 of the element consistent mass matrix using (a) nip=4 and (b) nip=9

Ans: (a) m11 = 0.0185, (b) m11 = 0.0333

15. Use Program 5.1 to compute the vertical deflection at the edge of the flexible footing
shown in Figure 5.49. You should use symmetry to reduce the number of elements
in the discretisation.

222 STATIC EQUILIBRIUM OF LINEAR ELASTIC SOLIDS

100 kPa

6 m

E = 1000 kPa
u =0.0.2

2 m

1 m

Rollers Rollers

Figure 5.49

References

Cuthill E and McKee J 1969 Reducing the bandwidth of sparse symmetric matrices. ACM Proceedings
of the 24th National Conference, New York.

Griffiths DV 1986 HARMONY - A program for predicting the response of axisymmetric bodies sub-
jected to non-axisymmetric loading. Technical Report GRC-96-44, Arthur Lakes Library, Colorado
School of Mines, Geomechanics Research Center.

Hicks MA and Mar A 1996 A benchmark computational study of finite element error estimation. Int
J Numer Methods Eng 39(23), 3969–3983.

Irons BM 1971 Quadrature rules for brick-based finite elements. Int J Numer Methods Eng 3, 293–294.
Peano A 1987 Inadmissible distortion of solid elements and patch tests results. Commun Appl Numer

Methods 5, 97–101.
Poulos HG and Davis EH 1974 Elastic Solutions for Soil and Rock Mechanics. John Wiley & Sons,

Chichester, New York.
Smith IM and Kidger DJ 1992 Elastoplastic analysis using the 14-node brick element family. Int J

Numer Methods Eng 35, 1263–1275.
Wilson EL 1965 Structural analysis of axisymmetric solids. J Am Inst Aeronaut Astronaut 3, 2269–

2274.
Zienkiewicz OC and Taylor RL 1989 The Finite Element Method, vol. 1, 4th edn. McGraw-Hill,

London, New York.

6

Material Non-linearity

6.1 Introduction

Non-linear processes pose very much greater analytical problems than do the linear pro-
cesses so far considered in this book. The non-linearity may be found in the dependence of
the equation coefficients on the solution itself or in the appearance of powers and products
of the unknowns or their derivatives.

Two main types of non-linearity can manifest themselves in finite element analysis
of solids: material non-linearity, in which the relationship between stresses and strains (or
other material properties) are complicated functions, which result in the equation coefficients
depending on the solution, and geometric non-linearity (otherwise known as “large strain”
or “large displacement” analysis), which leads to products of the unknowns in the equations.

In order to keep the present book to a manageable size, the 11 programs described in
this chapter deal only with material non-linearity. As far as the organisation of computer
programs is concerned, material non-linearity is simpler to implement than geometric non-
linearity. However, readers will appreciate how programs could be adapted to cope with
geometric non-linearity as well (see e.g. Smith, 1997).

In practical finite element analysis two main types of solution procedure can be
adopted to model material non-linearity. The first approach, which has already been seen
in Program 4.5, involves “constant stiffness” iterations in which non-linearity is introduced
by iteratively modifying the right hand side “loads” vector. The (usually elastic) global
stiffness matrix in such an analysis is formed once only. Each iteration thus represents
an elastic analysis of the type described in Chapter 5. Convergence is said to occur when
stresses generated by the loads satisfy some stress–strain law or yield or failure criterion
within prescribed tolerances. The loads vector at each iteration consists of externally applied
loads and self-equilibrating “body loads”. The body loads have the effect of redistributing
stresses (or moments) within the system, but as they are self-equilibrating, they do not
alter the net loading on the system. The “constant stiffness” method is shown diagram-
matically in Figure 6.1. For load-controlled problems, many iterations may be required as

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

224 MATERIAL NON-LINEARITY

Stress

Strain

∆s1

∆s2

∆s3

∆e1 ∆e2 ∆e3

Stress—strain curve

Arrows indicate
iterations

Figure 6.1 Constant stiffness method

Stress

Strain

∆σ1

∆σ2

∆ε1 ∆ε2 ∆ε3

Stress strain curve
∆σ3

Arrows indicate
iterations

Figure 6.2 Variable (tangent) stiffness method

failure is approached, because the elastic (constant) global stiffness matrix starts to seriously
overestimate the actual material stiffness.

Less iterations per load step are required if the second approach, the “variable” or
“tangent” stiffness method is adopted. This method, shown in Figure 6.2, takes account
of the reduction in stiffness of the material as failure is approached. If small enough load

MATERIAL NON-LINEARITY 225

steps are taken, the method can become equivalent to a simple Euler “explicit” method.
In practice, the global stiffness matrix may be updated periodically and “body loads”
iterations employed to achieve convergence. In contrasting the two methods, the extra cost
of reforming and factorising the global stiffness matrix in the “variable stiffness” method
is offset by reduced numbers of iterations, especially as failure is approached.

A further possibility, introduced in later programs, is “implicit” integration of the rate
equations rather than the “explicit” methods just described. This helps to further reduce the
number of iterations to convergence.

Programs 6.1 to 6.4 employ the “constant stiffness” approach and explicit integration,
and are similar in structure to Program 4.5 described previously for plastic analysis of
frames. Both the viscoplastic method and the simple initial stress method are implemented.
Programs 6.5 and 6.6 introduce tangent stiffness algorithms, and Programs 6.7 and 6.8
describe procedures for embanking and excavation in which construction sequences can be
realistically modelled. Program 6.9 introduces a simple technique for modelling pore pres-
sures in a saturated soil, and Programs 6.10 and 6.11 complete the chapter with 3D elasto-
plastic analyses of slopes. Mesh-free solution strategies are described in Programs 6.2, 6.6,
and 6.11. Many of the examples are chosen because they have closed-form solutions for
comparison.

Before describing the programs, some discussion is necessary regarding the form of the
stress–strain laws that are to be adopted. In addition, two popular methods of generating
body loads for “constant stiffness” methods, namely “viscoplasticity” and “initial stress”
are described.

6.2 Stress–strain behaviour

Although non-linear elastic constitutive relations have been applied in finite element anal-
yses and especially soil mechanics applications (e.g. Duncan and Chang, 1970), the main
physical feature of non-linear material behaviour is usually the irrecoverability of strain.
A convenient mathematical framework for describing this phenomenon is to be found in
the theory of plasticity (e.g. Hill, 1950). The simplest stress–strain law of this type that
could be implemented in a finite element analysis involves elastic-perfectly plastic material
behaviour (Figure 6.3). Although a simple law of this type was described in Chapter 4
(Figure 4.28), it is convenient in solid mechanics to introduce a “yield” surface in principal
stress space which separates stress states that give rise to elastic and to plastic (irrecover-
able) strains. To take account of complicated processes like cyclic loading, the yield surface
may move in stress space “kinematically” (e.g. Molenkamp, 1987) but in this book only
immovable surfaces are considered. An additional simplification introduced here is that the
yield and ultimate “failure” surfaces are identical.

Algebraically, the surfaces are expressed in terms of a yield or failure function F .
This function, which has units of stress, depends on the material strength and invariant
combinations of the stress components. The function is designed such that it is negative
within the yield or failure surface and zero on the yield or failure surface. Positive values
of F imply stresses lying outside the yield or failure surface which are illegal and which
must be redistributed via the iterative process described previously.

226 MATERIAL NON-LINEARITY

Stress

Strain

F>0

F<0

F = 0

F = f(stress, material properties)

Figure 6.3 Elastic-perfectly plastic stress–strain law

During plastic straining, the material may flow in an “associated” manner, that is the
vector of plastic strain increment may be normal to the yield or failure surface. Alterna-
tively, normality may not exist and the flow may be “non-associated”. Associated flow
leads to various mathematically attractive simplifications and, when allied to the von Mises
or Tresca failure criterion, correctly predicts zero plastic volume change during yield for
undrained clays. For frictional materials, whose ultimate state is described by the Mohr–
Coulomb criterion, associated flow leads to physically unrealistic volumetric expansion or
dilation during yield. In such cases, non-associated flow rules are preferred in which plastic
straining is described by a plastic potential function Q. This function may be geometri-
cally similar to the failure function F but with the friction angle φ replaced by a dilation
angle ψ . The implementation of the plastic potential function will be described further in
Sections 6.6 and 6.7.

Before outlining some commonly used failure criteria and their representations in prin-
cipal stress space, some useful stress invariant expressions are reviewed briefly.

6.3 Stress invariants

The Cartesian stress tensor defining the stress conditions at a point within a loaded body
is given by:

[
σx σy σz τxy τyz τzx

]T (6.1)

which can be shown to be equivalent to three principal stresses acting on orthogonal planes:

[σ1 σ2 σ3]T (6.2)

Principal stress space is obtained by treating the principal stresses as three-dimensional
coordinates and is a useful way of representing a stress state at a point. It may be noted
that although principal stress space defines the magnitudes of the principal stresses, it gives
no indication of their orientation in physical space.

MATERIAL NON-LINEARITY 227

Instead of defining a point in principal stress space with coordinates (σ1, σ2, σ3) it is
often more convenient to use invariants (s, t, θ), defined as:

s = 1√
3

(
σx + σy + σz

)

t = 1√
3

[
(σx − σy)2 + (σy − σz)

2 + (σz − σx)
2 + 6τ 2

xy + 6τ 2
yz + 6τ 2

zx

]1/2

θ = 1

3
arcsin

(
−3

√
6J3

t3

)
(6.3)

where

J3 = sxsysz − sxτ
2
yz − syτ

2
zx − szτ

2
xy + 2τxyτyzτzx

and

sx = (2σx − σy − σz)

3
etc.

These expressions assume a compression-negative sign convention.
As shown in Figure 6.4, s gives the distance from the origin to the π -plane in which

the stress point lies, and t represents the perpendicular distance of the stress point from the
space diagonal. The Lode angle θ (called lode theta in the programs) is a measure of
the angular position of the stress point within the π -plane.

It may be noted that in some geotechnical applications, plane strain conditions apply and
equations (6.3) are simplified because τyz = τzx = 0.

Space
diagonal

A

P (s1, s2, s3)

s1

s2

O

Invariants s = OA, t = AP

s3

s3s2

0 Π plane

s1

q

P

q =
3
0°

q = -30°

q = 0°

Figure 6.4 Representation of stress in principal stress space

228 MATERIAL NON-LINEARITY

In the programs described later in this chapter, the invariants that are used are slightly
different to those defined in (6.3) whence:

σm = 1√
3

s

σ =
√

3

2
t (6.4)

These expressions, called sigm and dsbar in program terminology, have more physical
meaning than s and t in that they represent respectively the “mean stress” and “deviator
stress” in a triaxial test. The relationship between principal stresses and invariants is given
as follows:

σ1 = σm + 2

3
σ sin

(
θ − 2π

3

)

σ2 = σm + 2

3
σ sin θ (6.5)

σ3 = σm + 2

3
σ sin

(
θ + 2π

3

)

which ensures that σ1 is the most compressive and σ3 is the least compressive. The
Lode angle θ varies in the range −π/6 ≤ θ ≤ π/6 (−30◦ ≤ θ ≤ 30◦), where θ = 30◦
corresponds to “triaxial compression” (σ2 = σ3), and θ = −30◦ corresponds to “triaxial
extension” (σ1 = σ2).

6.4 Failure criteria

Several failure criteria have been proposed for representing the strength of soils as engi-
neering materials. For soils with both frictional and cohesive components of shear strength,
conical failure criteria are appropriate, the best known of which is undoubtedly the Mohr–
Coulomb criterion. For metals or undrained clays which behave in a “frictionless” (φu = 0)
manner, cylindrical failure criteria are appropriate and are discussed first.

6.4.1 Von Mises

As shown in Figure 6.5(a), this criterion takes the form of a right circular cylinder lying
along the space diagonal. Only one of the three invariants, namely t (or σ), is of any signif-
icance when determining whether a stress state has reached the limit of elastic behaviour.
The onset of yield in a von Mises material is not dependent upon invariants s or θ .

The symmetry of the von Mises criterion when viewed in the π -plane indicates why it
is not ideally suited to correlations with traditional soil mechanics concepts of strength. The
criterion gives equal weighting to all three principal stresses, so if it is to be used to model
undrained clay behaviour, consideration must be given to the value of the intermediate
principal stress, σ2, at failure.

MATERIAL NON-LINEARITY 229

Space
diagonal
s1 = s2 = s3

s1

s2

O

s3

s3s2

s1

Π plane

Von Mises

Fvm = s −√3cu
(plane strain)

Fvm = s −2cu
(triaxial)

Ft = s cosθ/√3−cu

Figure 6.5 Von Mises and Tresca failure criteria

For plane strain applications assuming no plastic volume change, it can be shown that
at failure

σ2 = σ1 + σ3

2
(6.6)

hence the von Mises criterion given by:

Fvm = σ −
√

3cu (6.7)

should be used, where cu is the undrained “cohesion” or shear strength of the soil.
On the other hand, under triaxial conditions, where:

σ2 = σ3 (6.8)

the required von Mises criterion is given by

Fvm = σ − 2cu (6.9)

Both of these expressions when applied to the appropriate stress condition, ensure that
at failure, ∣∣∣∣σ1 − σ3

2

∣∣∣∣ = cu (6.10)

6.4.2 Mohr–Coulomb and Tresca

In principal stress space, this criterion takes the form of an irregular hexagonal cone, as
shown in Figure 6.6. The irregularity is due to the fact that σ2 is not taken into account.
In order to derive the invariant form of this criterion, it should first be written in terms

230 MATERIAL NON-LINEARITY

s1

s2

s3

s3s2

s1

Π plane

Fmc (6.12)Space
diagonal

Figure 6.6 Mohr–Coulomb failure criterion

of principal stresses from the geometry of Mohr’s circle, thus (assuming compression-
negative):

Fmc = σ1 + σ3

2
sin φ − σ1 − σ3

2
− c cos φ (6.11)

Substituting for σ1 and σ3 from (6.5) gives the function:

Fmc = σm sin φ + σ

(
cos θ√

3
− sin θ sin φ

3

)
− c cos φ (6.12)

which shows that the Mohr–Coulomb criterion depends on all three invariants (σm, σ , θ).
The Tresca criterion is obtained from (6.12) by putting φu = 0 to give:

Ft = σ cos θ√
3

− cu (6.13)

This criterion is preferred to von Mises for applications involving undrained clays because
(6.10) is always satisfied at failure, regardless of the value of σ2. In principal stress space
the Tresca criterion is a regular hexagonal cylinder tangential to the von Mises cylinder
defined by (6.7) and circumscribed by the one defined in (6.9) as shown in Figure 6.5.

6.5 Generation of body loads

Constant stiffness methods of the type described in this chapter use repeated elastic solutions
to achieve convergence by iteratively varying the loads on the system. Within each load
increment, the system of equations

[Km] {U}i = {F}i (6.14)

MATERIAL NON-LINEARITY 231

must be solved for the global displacement increments {U}i , where i represents the iter-
ation number, [Km] the global stiffness matrix, and {F}i the global external and internal
(body)loads.

The element displacement increments {u}i are extracted from {U}i , and these lead to
strain increments via the element strain-displacement relationships:

{�ε}i = [B] {u}i (6.15)

Assuming the material is yielding, the strains will contain both elastic and (visco) plastic
components, thus

{�ε}i = {
�εe

}i + {
�εp

}i (6.16)

It is only the elastic strain increments
{
�εe

}i
that generate stresses through the elastic

stress–strain matrix, hence

{�σ }i = [De]
{
�εe

}i
(6.17)

These stress increments are added to stresses already existing from the previous load
step and the updated stresses substituted into the failure criterion (e.g. 6.12). If stress
redistribution is necessary (F > 0), this is done by altering the load increment vector {F}i
in equation (6.14). In general, this vector holds two types of load, as given by

{F}i = {Fa} + {Fb}i (6.18)

where {Fa} is the actual applied external load increment and {Fb}i is the body loads vector
that varies from one iteration to the next. The {Fb}i vector must be self-equilibrating so
that the net loading on the system is not affected by it. Two simple methods for generating
body loads are now described briefly.

6.6 Viscoplasticity

In this method (Zienkiewicz and Cormeau, 1974) , the material is allowed to sustain stresses
outside the failure criterion for finite “periods”. Overshoot of the failure criterion, as sig-
nified by a positive value of F , is an integral part of the method and is actually used to
drive the algorithm.

Instead of plastic strains, we now refer to viscoplastic strains and these are generated at
a rate that is related to the amount by which yield has been violated through the expression

{
ε̇vp
} = F

{
∂Q

∂σ

}
(6.19)

where F is the yield function and Q is the plastic potential function.
It should be noted that a pseudo-viscosity property equal to unity is implied on the right

hand side of equation (6.19) from dimensional considerations.

232 MATERIAL NON-LINEARITY

Multiplication of the viscoplastic strain rate by a pseudo-time step gives an increment
of viscoplastic strain which is accumulated from one “time step” or iteration to the next;
thus {

δεvp
}i = �t

{
ε̇vp
}i (6.20)

and {
�εvp

}i = {
�εvp

}i−1 + {
δεvp

}i (6.21)

The “time step” for unconditional numerical stability has been derived by Cormeau
(1975) and depends on the assumed failure criterion. Thus, for von Mises materials:

�t = 4(1 + ν)

3E
(6.22)

and for Mohr–Coulomb materials:

�t = 4(1 + ν)(1 − 2ν)

E(1 − 2ν + sin2 φ)
(6.23)

The derivatives of the plastic potential function Q with respect to stresses are conve-
niently expressed through the Chain Rule, thus{

∂Q

∂σ

}
= ∂Q

∂σm

{
∂σm

∂σ

}
+ ∂Q

∂J2

{
∂J2

∂σ

}
+ ∂Q

∂J3

{
∂J3

∂σ

}
(6.24)

where J2 = t2/2 and the viscoplastic strain rate given by equation (6.19) is evaluated
numerically by an expression of the form,

{
ε̇vp
} = F

(
∂Q

∂σm

[M1] + ∂Q

∂J2
[M2] + ∂Q

∂J3
[M3]

)
{σ } (6.25)

where ∂Q/∂σm, ∂Q/∂J2, and ∂Q/∂J3 are represented by variables dq1, dq2, and dq3 in
the computer programs, and {∂σm/∂σ }, {∂J2/∂σ }, and {∂J3/∂σ } by the matrix–vector prod-
ucts [M1] {σ }, [M2] {σ }, and [M3] {σ }. This is essentially the notation used by Zienkiewicz
and Taylor (1989), and these quantities are given in more detail in Appendix C.

The body loads {Fb}i are accumulated at each “time step” within each load step by
summing the following integrals for all elements containing a yielding (F > 0) Gauss point:

{Fb}i = {Fb}i−1 +
all∑

elements

∫∫
[B]T[De]

{
�εvp

}i
dx dy (6.26)

This process is repeated at each “time step” iteration until no integrating point stresses
violate the failure criterion within a certain tolerance. The convergence criterion is based
on a dimensionless measure of the amount by which the displacement increment vector
{U}i changes from one iteration to the next. The convergence checking process is identical
to that used in Program 4.5.

MATERIAL NON-LINEARITY 233

6.7 Initial stress

The viscoplastic algorithm is often referred to as an initial strain method to distinguish it
from the more widely used “initial stress” approaches (e.g. Zienkiewicz et al., 1969).

Initial stress methods involve an explicit relationship between increments of stress and
increments of strain. Thus, whereas linear elasticity was described by

{�σ } = [De]
{
�εe

}
(6.27)

elasto-plasticity is described by

{�σ } = [Dpl]
{
�εe

}
(6.28)

where

[Dpl] = [De] − [Dp] (6.29)

For perfect plasticity in the absence of hardening or softening it is assumed that once a
stress state reaches a failure surface, subsequent changes in stress may shift the stress state
to a different position on the failure surface, but not outside it, thus{

∂F

∂σ

}T

{�σ } = 0 (6.30)

Allowing for the possibility of non-associated flow, plastic strain increments occur
normal to a plastic potential surface, thus

{
�εp

} = λ

{
∂Q

∂σ

}
(6.31)

Assuming stress changes are generated by elastic strain components only gives

{�σ } = [De]

(
{�ε} − λ

{
∂Q

∂σ

})
(6.32)

Substitution of equation (6.32) into (6.30) leads to

[Dp] =
[De]

{
∂Q
∂σ

} {
∂F
∂σ

}T
[De]{

∂F
∂σ

}T
[De]

{
∂Q
∂σ

} (6.33)

Explicit versions of [Dp] may be obtained for simple failure and potential functions
and these are given for von Mises (Yamada et al., 1968) and Mohr–Coulomb (Griffiths and
Willson, 1986). See Appendix C for a detailed derivation of (6.33)

The body loads {Fb}i in the stress redistribution process are reformed at each iteration
by summing the following integral for all elements that possess yielding Gauss points, thus

{Fb}i =
all∑

elements

∫∫
[B]T[Dp] {�ε}i dx dy (6.34)

234 MATERIAL NON-LINEARITY

F

Strain

A

B

C

f = AB = Fnew
AC Fnew-Fold

Fnew

Fold

O

Figure 6.7 Factoring process for “just yielded” elements

In the event of a loading increment causing a Gauss point to go plastic for the first time,
it may be necessary to factor the matrix [Dp] in (6.34). A linear interpolation can be used
as indicated in Figure 6.7. Thus, instead of using [Dp] we use f [Dp], where

f = Fnew

Fnew − Fold
(6.35)

This simple method represents a forward Euler approach to integrating the elasto-plastic
rate equations, extrapolating from the point at which the yield surface is crossed. More
complicated integrations, which are mainly relevant to tangent stiffness methods, are given
later in Section 6.9.

Although overshoot of the yield function F is an integral part of the viscoplastic algo-
rithm, a similar interpolation method to that described by (6.35) can be used if required
to compute the plastic potential derivatives in equation (6.19) using stresses corresponding
to F ≈ 0.

6.8 Corners on the failure and potential surfaces

For failure and potential surfaces that include “corners” as in Mohr–Coulomb (see
Figure 6.6) the derivatives required in equations (6.19) and (6.33) become indeterminate. In
the case of the Mohr–Coulomb (or Tresca) surface, this occurs when the angular invariant
θ = ±30◦. The method used in the programs to overcome this difficulty is to replace the
hexagonal surface by a smooth conical surface if

|sin θ | > 0.49 (6.36)

The conical surfaces are those obtained by substituting either θ = 30◦ or θ = −30◦
into (6.12), depending upon the sign of θ as it approaches ±30◦ (see Appendix C). It
should be noted that in the initial stress approach, both the F and Q functions must

MATERIAL NON-LINEARITY 235

be approximated in this way due to the inclusion of both {∂Q/∂σ } and {∂F/∂σ } terms
in (6.33). In the viscoplastic algorithm however, only the potential function derivatives
{∂Q/∂σ } are approximated since {∂F/∂σ } are not needed by equation (6.19).

All the programs in this chapter for solving two-dimensional problems have been based
on the 8-node quadrilateral element, together with reduced integration (four Gauss points
per element). This particular combination has been chosen for its simplicity, and also its
well-known ability to compute collapse loads accurately (e.g. Zienkiewicz et al., 1975;
Griffiths, 1980, 1982). Of course, other element types could be used if required, by making
similar changes to those described in Chapter 5. To alleviate “locking” problems with
lower order elements, “reduced integration” could be used selectively on the volumetric
components of the stiffness matrix (see e.g. Hughes, 1987; Griffiths and Mustoe, 1995).

Program 6.1 Plane strain bearing capacity analysis of an elastic–plastic (von Mises)
material using 8-node rectangular quadrilaterals. Viscoplastic strain method.

PROGRAM p61
!---
! Program 6.1 Plane strain bearing capacity analysis of an elastic-plastic
! (von Mises) material using 8-node rectangular
! quadrilaterals. Viscoplastic strain method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,incs,iters,iy,k,limit,loaded_nodes,ndim=2,ndof=16,nels, &
neq,nip=4,nn,nod=8,nodof=2,nprops=3,np_types,nr,nst=4,nxe,nye

REAL(iwp)::ddt,det,dq1,dq2,dq3,dsbar,dt=1.0e15_iwp,d3=3.0_iwp,d4=4.0_iwp,&
f,lode_theta,one=1.0_iwp,ptot,sigm,tol,two=2.0_iwp,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
node(:),num(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),devp(:),eld(:),eload(:),eps(:),erate(:),evp(:), &
evpt(:,:,:),flow(:,:),g_coord(:,:),jac(:,:),km(:,:),kv(:),loads(:), &
m1(:,:),m2(:,:),m3(:,:),oldis(:),points(:,:),prop(:,:),qinc(:), &
sigma(:),stress(:),tensor(:,:,:),totd(:),val(:,:),weights(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
x_coords(nxe+1),y_coords(nye+1),num(nod),dee(nst,nst),g_g(ndof,nels), &
prop(nprops,np_types),etype(nels),evpt(nst,nip,nels),stress(nst), &
tensor(nst,nip,nels),coord(nod,ndim),jac(ndim,ndim),der(ndim,nod), &
deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
eps(nst),sigma(nst),bload(ndof),eload(ndof),erate(nst),evp(nst), &
devp(nst),g(ndof),m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq))

!-----------------------loop the elements to find global arrays sizes-----
kdiag=0
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')

236 MATERIAL NON-LINEARITY

CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,i7))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); kv=zero
!-----------------------element stiffness integration and assembly--------
elements_2: DO iel=1,nels
ddt=d4*(one+prop(3,etype(iel)))/(d3*prop(2,etype(iel)))
IF(ddt<dt)dt=ddt; CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1; CALL fsparv(kv,km,g,kdiag)
END DO elements_2

!-----------------------read load weightings and factorise equations------
READ(10,*)loaded_nodes; ALLOCATE(node(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes); CALL sparin(kv,kdiag)

!-----------------------load increment loop-------------------------------
READ(10,*)tol,limit,incs; ALLOCATE(qinc(incs)); READ(10,*)qinc
WRITE(11,'(/A)')" step load disp iters"
oldis=zero; totd=zero; tensor=zero; ptot=zero
load_incs: DO iy=1,incs
ptot=ptot+qinc(iy); iters=0; bdylds=zero; evpt=zero

!-----------------------plastic iteration loop----------------------------
its: DO

iters=iters+1; loads=zero
WRITE(*,'(A,F8.2,A,I4)')" load",ptot," iteration",iters
DO i=1,loaded_nodes; loads(nf(:,node(i)))=val(i,:)*qinc(iy); END DO
loads=loads+bdylds; CALL spabac(kv,loads,kdiag)

!-----------------------check plastic convergence-------------------------
CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points ------------------------
elements_3: DO iel=1,nels
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
g=g_g(:,iel); eld=loads(g); bload=zero
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel)
sigma=MATMUL(dee,eps); stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
f=dsbar-SQRT(d3)*prop(1,etype(iel))
IF(converged.OR.iters==limit)THEN; devp=stress; ELSE
IF(f>=zero)THEN

dq1=zero; dq2=d3/two/dsbar; dq3=zero
CALL formm(stress,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,stress); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF

MATERIAL NON-LINEARITY 237

END IF
IF(f>=zero.OR.(converged.OR.iters==limit))THEN
eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)

END IF
!-----------------------update the Gauss Point stresses-------------------

IF(converged.OR.iters==limit)tensor(:,i,iel)=stress
END DO gauss_pts_2

!-----------------------compute the total bodyloads vector----------------
bdylds(g)=bdylds(g)+bload; bdylds(0)=zero

END DO elements_3; IF(converged.OR.iters==limit)EXIT
END DO its; totd=totd+loads
WRITE(11,'(I5,2E12.4,I5)')iy,ptot,totd(nf(2,node(1))),iters
IF(iters==limit)EXIT

END DO load_incs
CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p61

Scalar integers:
i simple counter
iel simple counter
incs number of load increments
iters counts plastic iterations
iwp SELECTED REAL KIND(15)
iy counts load increments
k node number
limit plastic iteration ceiling
loaded nodes number of loaded nodes
ndim number of dimensions
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points per element
nn number of nodes in the mesh
nod number of nodes per element
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes
nst number of stress (strain) terms
nxe number of elements in x-direction
nye number of elements in y-direction

Scalar reals:
ddt used to find the critical time step
det determinant of the Jacobian matrix
dq1 plastic potential derivative, ∂Q/∂σm

dq2 plastic potential derivative, ∂Q/∂J2

238 MATERIAL NON-LINEARITY

dq3 plastic potential derivative, ∂Q/∂J3
dsbar invariant, σ

dt critical viscoplastic time step (set initially to 1015)
d3 set to 3.0
d4 set to 4.0
f value of yield function
load theta Lode angle, θ

one set to 1.0
ptot holds running total of applied pressure
sigm mean stress, σm

tol plastic convergence tolerance
two set to 2.0
zero set to 0.0

Scalar character:
element element type

Scalar logical:
converged set to .TRUE. if plastic iterations have converged

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term location vector
nf nodal freedom matrix
node loaded nodes vector
num element node numbers vector

Dynamic real arrays:
bdylds self-equilibrating global body loads
bee strain-displacement matrix
bload self-equilibrating element body loads
coord element nodal coordinates
dee stress–strain matrix
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
devp product [De]

{
�εvp

}
eld element nodal displacements
eload integrating point contribution to bload
eps strain terms
erate viscoplastic strain rate,

{
ε̇vp
}

evp viscoplastic strain rate increment,
{
δεvp

}
evpt holds running total of viscoplastic strains,

{
�εvp

}
flow holds {∂Q/∂σ }

MATERIAL NON-LINEARITY 239

g coord nodal coordinates for all elements
jac Jacobian matrix
km element stiffness matrix
kv global stiffness matrix
loads nodal loads and displacements
m1 used to compute {∂σm/∂σ }
m2 used to compute {∂J2/∂σ }
m3 used to compute {∂J3/∂σ }
oldis nodal displacements from previous iteration
points integrating point local coordinates
prop element properties
qinc holds applied pressure increments
sigma stress terms
stress stress term increments
tensor holds running total of all integrating point stress terms
totd holds running total of nodal displacement
val applied nodal load weightings
weights weighting coefficients
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

Program 6.1 employs the viscoplastic method to compute the response to loading of an
elastic-perfectly plastic von Mises (6.7) material. Plane strain conditions are enforced and,
in order to monitor the load-displacement response, the loads are applied incrementally.
As in Program 4.5, the method uses constant stiffness iterations, thus the relatively time-
consuming subroutine sparin is called just once, while the subroutine spabac is called
at each iteration. An outline of the viscoplastic algorithm which comes after the stiffness
matrix formation is given in the structure chart in Figure 6.8.

This program uses 8-node quadrilateral elements with numbering in the y-direction. The
familiar subroutine geom rect, produces the mesh of rectangular 8-node elements, with
the numbering direction, in this case, entered explicitly in the argument list as ’y’. Sub-
routines not seen previously include invar, which forms the three invariants (σm, σ , θ)
(6.3) to (6.4) from the four Cartesian stress components held in stress. It should be
noted that in plane strain plasticity applications, it is necessary to retain four components
of stress and strain. Although, by definition, εz must equal zero, the elastic strain in that
direction may be non-zero provided,

εe
z = −ε

vp
z (6.37)

is satisfied. For this reason, the 4 × 4 (2.77) elastic stress–strain matrix [De] is provided
by the subroutine deemat with nst = 4.

The only other subroutine not encountered before is formm, which creates arrays m1,
m2, and m3 used in the calculation of the viscoplastic strain rate from equation (6.25).

The example shown in Figure 6.9 is of a flexible strip footing at the surface of a
layer of uniform undrained clay. The footing supports a uniform stress, q, which is
increased incrementally to failure. The elasto-plastic soil is described by three parame-
ters (nprops=3), namely the undrained “cohesion” cu, followed by the elastic properties,

240 MATERIAL NON-LINEARITY

Form and factorise the global stiffness matrix

For all load (displacement) increments

Read applied load increment

For all iterations

Solve equations to give displacement increments
Set converged to .TRUE. if displacements hardly changed

from last iteration

For all elements

For all Gauss points

Compute elastic strain increments
Compute elastic stress increments and add to
stresses left over from last load increment

Failure criterion exceeded?

Yes No

Accumulate viscoplastic strains Go to next
Form integrals for element bodyloads Gauss point

Assemble global bodyloads

Convergence?

Yes, converged=.TRUE. No, converged=.FALSE.

 Update element stresses Iterate again
 ready for next load step

Update and print displacements.

Figure 6.8 Structure chart for viscoplastic algorithm

E and v. Theoretically, bearing failure in this problem occurs when q reaches the “Prandtl”
load given by

qult = (2 + π)cu (6.38)

Apart from the variables, type 2d=’plane’, element=’quadrilateral’,
nod=8 and dir=’y’, which are built into the program, the data follows the familiar
pattern established in Chapter 5. The “loads” in this case are the nodal forces which would
deliver a uniform stress of 1 kN/m2 across the footing semi-width of 2 m (Appendix A).
These “weightings” are then increased proportionally by the load increment values held
in the vector qinc. In order to capture failure in a load-controlled problem such as this,
the increments need to made smaller as failure is approached. This may involve some trial

MATERIAL NON-LINEARITY 241

cu = 100 kN/m
2

E = 105 kN/m2

υ = 0.3

5 m

q

2410 291

2

4

6

8

121

15

12 m

cL

nxe nye np_types
8 4 1

prop(cu,e,v)
100.0 1.0e5 0.3

etype(not needed)

x_coords, y_coords
0.0 1.0 2.0 3.0 4.0 5.5 7.0 9.0 12.0
0.0 -1.25 -2.5 -3.75 -5.0

nr,(k,nf(:,k),i=1,nr)
33
 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1
 7 0 1 8 0 1 9 0 0 14 0 0 23 0 0 28 0 0
 37 0 0 42 0 0 51 0 0 56 0 0 65 0 0 70 0 0
 79 0 0 84 0 0 93 0 0 98 0 0 107 0 0 112 0 0
113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0
119 0 0 120 0 0 121 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
5
1 0.0 -0.166667 10 0.0 -0.666667 15 0.0 -0.333333
24 0.0 -0.666667 29 0.0 -0.166667

tol limit
0.001 250

incs,(qinc(i),i=1,incs)
10
200.0 100.0 50.0 50.0 50.0 30.0 20.0 10.0 5.0 5.0

Figure 6.9 Mesh and data for Program 6.1 example

and error on the part of the user in an unfamiliar problem. New input variables involve
tol, the convergence tolerance (set to 0.001), and limit, the iteration ceiling, set to 250,
representing the maximum number of iterations (iters) that will be allowed within any
load increment. If iters ever becomes equal to limit, the algorithm stops and no more
load increments are applied.

242 MATERIAL NON-LINEARITY

There are 184 equations and the skyline storage is 4130

 step load disp iters
 1 0.2000E+03 -0.6592E-02 2
 2 0.3000E+03 -0.1155E-01 11
 3 0.3500E+03 -0.1630E-01 20
 4 0.4000E+03 -0.2316E-01 33
 5 0.4500E+03 -0.3317E-01 45
 6 0.4800E+03 -0.4227E-01 65
 7 0.5000E+03 -0.5084E-01 81
 8 0.5100E+03 -0.5665E-01 99
 9 0.5150E+03 -0.6093E-01 159
 10 0.5200E+03 -0.7459E-01 250

Figure 6.10 Results from Program 6.1 example

0 1 2 3 4 5 6−0
.0

8
−0

.0
6

−0
.0

4
−0

.0
2

0

q/cu

d

2

11

20

33

45

65

81

95

250+

159

Prandtl
5.14

Iterations

Figure 6.11 Plot of bearing stress versus centreline displacement

At load levels well below failure, convergence should occur in relatively few iterations.
As failure is approached, the algorithm has to work harder and requires more iterations to
converge. The computed results for this example are given in Figure 6.10, and show the
applied stress, the vertical displacement under the centreline and the number of iterations for
convergence. These results have been plotted in Figure 6.11 in the form of a dimensionless
bearing capacity factor q/cu versus centreline displacement. The number of iterations to
achieve convergence for each load increment is also shown. It is seen that convergence
was achieved in 159 iterations when q/cu = 5.1, but convergence could not be achieved
within the upper limit of 250 when q/cu = 5.2. In addition, the displacements are also
increasing rapidly at this level of loading, indicating that bearing failure is taking place at
a value very close to the “Prandtl” load of 5.14.

Program 6.1 creates the graphical output files fe95.msh (undeformed mesh),
fe95.dis (deformed mesh), and fe95.vec (nodal displacement vectors) first
encountered in Chapter 5. Although the relatively crude mesh of Figures 6.9 gave an

MATERIAL NON-LINEARITY 243

(a)

(b)

Figure 6.12 Graphical output from Program 6.1. (a) Deformed mesh and (b) nodal dis-
placement vectors at bearing failure

accurate estimate of the failure loading, Figures 6.12(a) and (b) show the deformed mesh
and displacement vectors corresponding to the unconverged “solution” at failure using a
rather more refined mesh. The displacements are uniformly magnified to emphasise the
deformations. Although the finite element mesh is constrained to remain a continuum, the
figures are still able to give a good indication of the form of the failure mechanism.

Program 6.2 Plane strain bearing capacity analysis of an elastic–plastic (von Mises)
material using 8-node rectangular quadrilaterals. Viscoplastic strain method. No
global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

PROGRAM p62
!---
! Program 6.2 Plane strain bearing capacity analysis of an elastic-plastic
! (von Mises) material using 8-node rectangular
! quadrilaterals. Viscoplastic strain method. No global
! stiffness matrix assembly. Diagonally preconditioned
! conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,cg_tot,i,iel,incs,iters,iy,k,limit, &
loaded_nodes,ndim=2,ndof=16,nels,neq,nip=4,nn,nod=8,nodof=2,nprops=3, &
np_types,nr,nst=4,nxe,nye

244 MATERIAL NON-LINEARITY

REAL(iwp)::alpha,beta,cg_tol,ddt,det,dq1,dq2,dq3,dsbar,dt=1.0e15_iwp, &
d3=3.0_iwp,d4=4.0_iwp,f,lode_theta,one=1.0_iwp,ptot,sigm,tol, &
two=2.0_iwp,up,zero=0.0_iwp; CHARACTER(LEN=15)::element='quadrilateral'

LOGICAL::converged,cg_converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),node(:), &
num(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),d(:), &
dee(:,:),der(:,:),deriv(:,:),devp(:),diag_precon(:),eld(:),eload(:), &
eps(:),erate(:),evp(:),evpt(:,:,:),flow(:,:),g_coord(:,:),jac(:,:), &
km(:,:),kv(:),loads(:),m1(:,:),m2(:,:),m3(:,:),oldis(:),p(:), &
points(:,:),prop(:,:),qinc(:),sigma(:),storkm(:,:,:),stress(:), &
tensor(:,:,:),totd(:),u(:),val(:,:),weights(:),x(:),xnew(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,cg_tol,cg_limit,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
x_coords(nxe+1),y_coords(nye+1),num(nod),dee(nst,nst),coord(nod,ndim), &
evpt(nst,nip,nels),tensor(nst,nip,nels),etype(nels),jac(ndim,ndim), &
der(ndim,nod),deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof), &
km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),bload(ndof),eload(ndof), &
erate(nst),evp(nst),devp(nst),g(ndof),m1(nst,nst),m2(nst,nst), &
m3(nst,nst),flow(nst,nst),stress(nst),g_g(ndof,nels), &
storkm(ndof,ndof,nels),prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
WRITE(11,'(A,I7,A)')"There are",neq," equations"
ALLOCATE(loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq),p(0:neq), &
x(0:neq),xnew(0:neq),u(0:neq),diag_precon(0:neq),d(0:neq))

!-----------------------loop the elements to set up element data----------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1; CALL mesh(g_coord,g_num,12)
CALL sample(element,points,weights); diag_precon=zero

!----------element stiffness integration, storage and preconditioner------
elements_2: DO iel=1,nels
ddt=d4*(one+prop(3,etype(iel)))/(d3*prop(2,etype(iel)))
if(ddt<dt)dt=ddt; CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(matmul(transpose(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1; storkm(:,:,iel)=km
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); END DO

END DO elements_2; diag_precon(1:)=one/diag_precon(1:)
!-----------------------read load weightings------------------------------
READ(10,*)loaded_nodes; ALLOCATE(node(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes)

!-----------------------load increment loop-------------------------------
READ(10,*)tol,limit,incs; ALLOCATE(qinc(incs)); READ(10,*)qinc
WRITE(11,'(/A)') &

MATERIAL NON-LINEARITY 245

" step load disp iters cg iters/plastic iter"
oldis=zero; totd=zero; tensor=zero; ptot=zero; diag_precon(0)=zero
load_incs: DO iy=1,incs
ptot=ptot+qinc(iy); iters=0; bdylds=zero; evpt=zero; cg_tot=0

!-----------------------plastic iteration loop----------------------------
its: DO

iters=iters+1; loads=zero
WRITE(*,'(A,F8.2,A,I4)')" load",ptot," iteration",iters
DO i=1,loaded_nodes; loads(nf(:,node(i)))=val(i,:)*qinc(iy); END DO
loads=loads+bdylds; d=diag_precon*loads; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO
cg_iters=cg_iters+1; u=zero
elements_3 : DO iel=1,nels

g=g_g(:,iel); km=storkm(:,:,iel); u(g)=u(g)+MATMUL(km,p(g))
END DO elements_3
up=DOT_PRODUCT(loads,d); alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha
loads=loads-u*alpha; d=diag_precon*loads
beta=DOT_PRODUCT(loads,d)/up; p=d+p*beta
call checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg; cg_tot=cg_tot+cg_iters; loads=xnew; loads(0)=zero
!-----------------------check plastic convergence-------------------------

CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points-------------------------
elements_4: DO iel=1,nels
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
g=g_g(:,iel); eld=loads(g); bload=zero
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel)
sigma=MATMUL(dee,eps); stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
f=dsbar-SQRT(d3)*prop(1,etype(iel))
IF(converged.OR.iters==limit)THEN; devp=stress; ELSE
IF(f>=zero)THEN

dq1=zero; dq2=d3/two/dsbar; dq3=zero
CALL formm(stress,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,stress); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero)THEN
eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)

END IF
!-----------------------update the Gauss Point stresses-------------------

IF(converged.OR.iters==limit)tensor(:,i,iel)=stress
END DO gauss_pts_2

!-----------------------compute the total bodyloads vector----------------
bdylds(g)=bdylds(g)+bload; bdylds(0)=zero

END DO elements_4; IF(converged.OR.iters==limit)EXIT
END DO its; totd=totd+loads
WRITE(11,'(I5,2E12.4,I5,F17.2)') &

246 MATERIAL NON-LINEARITY

iy,ptot,totd(nf(2,node(1))),iters,REAL(cg_tot)/REAL(iters)
IF(iters==limit)THEN

CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)
STOP

END IF
END DO load_incs

STOP
END PROGRAM p62

New scalar integers:
cg iters conjugate gradient iteration counter
cg limit conjugate gradient iteration ceiling
cg tot keeps running total of cg iters

New scalar reals:
alpha α from equations (3.22)
beta β from equations (3.22)
cg tol pcg convergence tolerance
up holds dot product {R}T

k {R}k from equations (3.22)

New Scalar logical:
cg converged set to .TRUE. if pcg process has converged

New dynamic real arrays:
d preconditioned rhs vector
diag precon diagonal preconditioner vector
p “descent” vector used in equations (3.22)
storkm holds element stiffness matrices
u vector used in equations (3.22)
x “old” solution vector
xnew “new” solution vector

For non-linear problems, computation times are now more demanding. For example
Program 6.1 required some 765 linear elastic solutions to reach the failure load. Clearly
vectorised and parallelised algorithms will become essential for much larger problems.
The mesh-free approach first demonstrated in Program 5.5 will be attractive for large non-
linear problems and is implemented in Program 6.2. The data in Figure 6.13 are identical to
those used in Program 6.1 with the addition of a conjugate gradient convergence tolerance
cg tol set to 0.0001, and conjugate gradient iteration ceiling cg limit set to 100. The
results are shown in Figure 6.14, and are nearly identical to those in Figure 6.10. The results
table in Figure 6.14 also indicates that approximately 50 conjugate gradient iterations were
needed on average for each plastic iteration. In scalar computations, therefore, this algorithm
will not be attractive, but it does have some strong attractions for parallel computation.
Because a “constant stiffness” approach is being used, groups of elements in Figure 6.9 have

MATERIAL NON-LINEARITY 247

nxe nye cg_tol cg_limit np_types
8 4 0.0001 100 1

prop(cu,e,v)

100.0 1.0e5 0.3

etype(not needed)

x_coords, y_coords
0.0 1.0 2.0 3.0 4.0 5.5 7.0 9.0 12.0
0.0 -1.25 -2.5 -3.75 -5.0

nr,(k,nf(:,k),i=1,nr)
33
 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1
 7 0 1 8 0 1 9 0 0 14 0 0 23 0 0 28 0 0
 37 0 0 42 0 0 51 0 0 56 0 0 65 0 0 70 0 0
 79 0 0 84 0 0 93 0 0 98 0 0 107 0 0 112 0 0
113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0
119 0 0 120 0 0 121 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
5
1 0.0 -0.166667 10 0.0 -0.666667 15 0.0 -0.333333
24 0.0 -0.666667 29 0.0 -0.166667

tol limit
0.001 250

incs,(qinc(i),i=1,incs)
10
200.0 100.0 50.0 50.0 50.0 30.0 20.0 10.0 5.0 5.0

Figure 6.13 Data for Program 6.2 example

There are 184 equations

 step load disp iters cg iters/plastic iter
 1 0.2000E+03 -0.6593E-02 2 46.00
 2 0.3000E+03 -0.1155E-01 11 46.82
 3 0.3500E+03 -0.1629E-01 20 50.70
 4 0.4000E+03 -0.2316E-01 33 51.21
 5 0.4500E+03 -0.3317E-01 45 52.60
 6 0.4800E+03 -0.4228E-01 65 53.23
 7 0.5000E+03 -0.5086E-01 82 54.05
 8 0.5100E+03 -0.5667E-01 98 53.54
 9 0.5150E+03 -0.6091E-01 147 52.39
 10 0.5200E+03 -0.7473E-01 250 53.77

Figure 6.14 Results from Program 6.2 example

constant properties throughout the calculation (there are only 4 distinct element types in this
case). This feature can also be exploited in the parallel algorithms described in Chapter 12.
Also, computation costs can be approximately halved by using the previously computed
bdylds rather than setting bdylds to zero at the beginning of each load increment.

248 MATERIAL NON-LINEARITY

Program 6.3 Plane strain slope stability analysis of an elastic–plastic (Mohr–
Coulomb) material using 8-node rectangular quadrilaterals. Viscoplastic strain
method.

PROGRAM p63
!---
! Program 6.3 Plane strain slope stability analysis of an elastic-plastic
! (Mohr-Coulomb) material using 8-node rectangular
! quadrilaterals. Viscoplastic strain method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,iters,iy,limit,ndim=2,ndof=16,nels,neq,nip=4,nn,nod=8, &
nodof=2,nprops=6,np_types,nsrf,nst=4,nx1,nx2,nye,ny1,ny2

REAL(iwp)::cf,ddt,det,dq1,dq2,dq3,dsbar,dt=1.0e15_iwp,d4=4.0_iwp, &
d180=180.0_iwp,e,f,fmax,h1,h2,lode_theta,one=1.0_iwp,phi,phif,pi,psi, &
psif,sigm,snph,start_dt=1.e15_iwp,s1,tnph,tnps,tol,two=2.0_iwp,v,w1,w2,&
zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
num(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
devp(:),elastic(:),eld(:),eload(:),eps(:),erate(:),evp(:),evpt(:,:,:), &
flow(:,:),fun(:),gravlo(:),g_coord(:,:),km(:,:),kv(:),loads(:),m1(:,:),&
m2(:,:),m3(:,:),oldis(:),points(:,:),prop(:,:),sigma(:),srf(:), &
weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)w1,s1,w2,h1,h2,nx1,nx2,ny1,ny2,np_types; nye=ny1+ny2
nels=nx1*nye+ny2*nx2; nn=(3*nye+2)*nx1+2*nye+1+(3*ny2+2)*nx2
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
num(nod),dee(nst,nst),evpt(nst,nip,nels),coord(nod,ndim),fun(nod), &
g_g(ndof,nels),g_num(nod,nels),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
eps(nst),sigma(nst),bload(ndof),eload(ndof),erate(nst),evp(nst), &
devp(nst),g(ndof),m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst), &
prop(nprops,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
CALL emb_2d_bc(nx1,nx2,ny1,ny2,nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),bdylds(0:neq),oldis(0:neq), &
gravlo(0:neq),elastic(0:neq)); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL emb_2d_geom(iel,nx1,nx2,ny1,ny2,w1,s1,w2,h1,h2,coord,num)
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,i7))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); kv=zero; gravlo=zero
!-----------------------element stiffness integration and assembly--------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(5,etype(iel)),prop(6,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; eld=zero
gauss_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i)
CALL bee8(bee,coord,points(i,1),points(i,2),det)

MATERIAL NON-LINEARITY 249

km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
eld(nodof:ndof:nodof)=eld(nodof:ndof:nodof)+fun(:)*det*weights(i)

END DO gauss_pts_1
CALL fsparv(kv,km,g,kdiag); gravlo(g)=gravlo(g)-eld*prop(4,etype(iel))

END DO elements_2
!-----------------------factorise equations-------------------------------
CALL sparin(kv,kdiag); pi=ACOS(-one)

!-----------------------trial strength reduction factor loop--------------
READ(10,*)tol,limit,nsrf; ALLOCATE(srf(nsrf)); READ(10,*)srf
WRITE(11,'(/A)')" srf max disp iters"
srf_trials: DO iy=1,nsrf
dt=start_dt
DO i=1,np_types

phi=prop(1,i); tnph=TAN(phi*pi/d180); phif=ATAN(tnph/srf(iy))
snph=SIN(phif); e=prop(5,i); v=prop(6,i)
ddt=d4*(one+v)*(one-two*v)/(e*(one-two*v+snph**2)); IF(ddt<dt)dt=ddt

END DO; iters=0; bdylds=zero; evpt=zero; oldis=zero
!-----------------------plastic iteration loop----------------------------

its: DO
fmax=zero; iters=iters+1; loads=gravlo+bdylds
CALL spabac(kv,loads,kdiag); loads(0)=zero
IF(iy==1.AND.iters==1)elastic=loads

!-----------------------check plastic convergence-------------------------
CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points ------------------------
elements_3: DO iel=1,nels
bload=zero; phi=prop(1,etype(iel)); tnph=TAN(phi*pi/d180)
phif=ATAN(tnph/srf(iy))*d180/pi; psi=prop(3,etype(iel))
tnps=TAN(psi*pi/d180); psif=ATAN(tnps/srf(iy))*d180/pi
cf=prop(2,etype(iel))/srf(iy); e=prop(5,etype(iel))
v=prop(6,etype(iel)); CALL deemat(dee,e,v); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip

CALL bee8(bee,coord,points(i,1),points(i,2),det)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel); sigma=MATMUL(dee,eps)
CALL invar(sigma,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phif,cf,sigm,dsbar,lode_theta,f); IF(f>fmax)fmax=f
IF(converged.OR.iters==limit)THEN; devp=sigma; ELSE
IF(f>=zero.OR.(converged.OR.iters==limit))THEN

CALL mocouq(psif,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(sigma,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,sigma); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero)THEN
eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)

END IF
END DO gauss_pts_2

!-----------------------compute the total bodyloads vector----------------
bdylds(g)=bdylds(g)+bload; bdylds(0)=zero

END DO elements_3
WRITE(*,'(A,F7.2,A,I4,A,F8.3)') &
" srf",srf(iy)," iteration",iters," F_max",fmax

IF(converged.OR.iters==limit)EXIT
END DO its; WRITE(11,'(F7.2,E12.4,I5)')srf(iy),MAXVAL(ABS(loads)),iters

250 MATERIAL NON-LINEARITY

IF(iters==limit)EXIT
END DO srf_trials
CALL dismsh(loads-elastic,nf,0.1_iwp,g_coord,g_num,13)
CALL vecmsh(loads-elastic,nf,0.1_iwp,0.25_iwp,g_coord,g_num,14)

STOP
END PROGRAM p63

New scalar integers:
nsrf number of trial strength reduction factors
nx1 number of “columns” of elements in embankment
nx2 number of columns of elements to right of toe
ny1 number of rows of elements in embankment
ny2 number of rows of elements in foundation

New scalar reals:
cf factored cohesion
d180 set to 180.0
e Young’s modulus
fmax maximum value of F
h1 height of embankment
h2 height of foundation
phi friction angle (degrees)
phif factored friction angle
pi set to π

psi dilation angle (degrees)
psif factored dilation angle
snph sin of phi
start dt starting value of dt
s1 width of top of embankment
tnph tangent of phi
tnps tangent of psi
v Poisson’s ratio
w1 width of sloping section of embankment
w2 distance foundation extends beyond the toe

New dynamic real arrays:
elastic elastic nodal displacements
fun shape functions
gravlo loads generated by gravity
srf trial strength reduction factors

This program is, in many ways, similar to Program 6.1. The problem to be analysed is
a slope of Mohr–Coulomb material subjected to gravity loading. The factor of safety (FS)
of the slope is to be assessed, and this quantity is defined as the proportion by which tan φ

and c must be reduced in order to cause failure with the gravity loading held constant.
This is in contrast to the previous programs in this chapter in which failure was induced
by increasing the loads with the material properties remaining constant.

MATERIAL NON-LINEARITY 251

Gravity loads are generated in the manner described in Chapter 5 (5.7) and applied to the
slope in a single increment. A trial strength reduction factor loop gradually weakens the soil
until the algorithm fails to converge. Each entry of this loop implements a different strength
reduction factor SRF . The factored soil strength parameters that go into the elasto-plastic
analysis are obtained from,

φf = arctan(tan φ/SRF)

cf = c/SRF (6.39)

Several (usually increasing) values of the SRF factor are attempted until the algorithm
fails to converge, at which point SRF is then interpreted as the factor of safety FS . For a
detailed description of the algorithm, the reader is referred to Griffiths and Lane (1999)

Subroutines new to this program include emb 2d geom and emb 2d bc. These sub-
routines generate the mesh and boundary conditions for a standard slope cross-section of
the type shown in Figure 6.15, with dimensions and mesh density controlled through the

r
o
l
l
e
r
s

fixed

w1=20.0
nx1=20

h1 = 10.0
ny1 = 10

h2 = 5.0
ny2 = 5

s1=20.0
w2=20.0
nx2=10

2

1

f = 20°
c = 15
g = 20

units in m and kPa

r
o
l
l
e
r
s

8-node quadrilaterals

w1 s1 w2 h1 h2
20.0 20.0 20.0 10.0 5.0

nx1 nx2 ny1 ny2
20 10 10 5

np_types
1

prop(phi,c,psi,gamma,e,v)
20.0 15.0 0.0 20.0 1.0e5 0.3

etype(not needed)

tol limit
0.0001 500

nsrf,(srf(i),i=1,nsrf)
6
1.0 1.2 1.4 1.5 1.55 1.6

Element numbering goes from left to right
starting at the top left corner

Figure 6.15 Mesh and data for Program 6.3 example

252 MATERIAL NON-LINEARITY

input data. The boundary conditions are rollers on the left and right vertical boundaries,
and full fixity at the base.

Subroutine mocouf computes the Mohr–Coulomb failure function F from the cur-
rent stress state and the factored shear strength parameters (6.12). Subroutine mocouq
forms the derivatives of the Mohr–Coulomb potential function Q with respect to the three
stress invariants and these values are held in dq1, dq2, and dq3. In Programs 6.1 and
6.2, similar subroutines corresponding to the von Mises criterion could have been used,
but the required expressions were so trivial that they were written directly into the main
program.

For each material type, six properties must be read in (nprops=6); the friction angle
φ, the cohesion c, the dilation angle ψ , the total unit weight γ , Young’s modulus E, and
Poisson’s ratio ν.

Figure 6.15 shows the mesh and data for an analysis of a homogeneous 2:1 slope with
φ = 20◦ and c = 15 kN/m2. The dilation angle ψ is set to zero and the unit weight is given

There are 2120 equations and the skyline storage is 151000

 srf max disp iters
 1.00 0.1711E-01 10
 1.20 0.1889E-01 17
 1.40 0.2115E-01 33
 1.50 0.2283E-01 67
 1.55 0.2446E-01 244
 1.60 0.3761E-01 500

Figure 6.16 Results from Program 6.3 example

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.
04

0.
03

0.
02

0.
01

SRF

dmax

Bishop and Morgenst
FS = 1.593

ern (1960)

10
17

33

67

244

500+

Iterations

Figure 6.17 Plot of maximum displacement versus Strength Reduction Factor from
Program 6.3 example

MATERIAL NON-LINEARITY 253

FS ≈ 1.6

Figure 6.18 Deformed mesh and displacement vectors at failure from Program 6.3
example

as γ = 20 kN/m3. The elastic parameters are given nominal values of E = 1 × 105 kN/m2

and ν = 0.3 since they have little influence on the computed factor of safety. The conver-
gence tolerance and iteration ceiling are set to tol=0.0001 and limit=500 respec-
tively. Six trial strength reduction factors (nsrf=6) are input, ranging from 1.0 to 1.6.

No etype data is required in this homogeneous example, but if it is required, the user
needs to know that element numbering proceeds in the x-direction, starting at the top-left
corner of the mesh.

The output in Figure 6.16 gives the strength reduction factor, the maximum nodal
displacement at convergence, and the number of iterations to achieve convergence. It can
be seen that when srf=1.6, the iteration ceiling of 500 was reached. A plot of these
results in Figure 6.17 shows that the displacements increase rapidly at this level of strength
reduction, indicating a factor of safety of about 1.6. Bishop and Morgenstern’s charts
(1960) give a factor of safety of 1.593 for the slope under consideration. Figure 6.18
displays the PostScript files fe95.dis and fe95.vec, which show the deformed mesh
and displacement vectors corresponding to slope failure. The mechanism of failure is clearly
shown to be of the “toe” type.

Program 6.4 Plane strain earth pressure analysis of an elastic–plastic (Mohr–
Coulomb) material using 8-node rectangular quadrilaterals. Initial stress method.

PROGRAM p64
!---
! Program 6.4 Plane strain earth pressure analysis of an elastic-plastic
! (Mohr-Coulomb) material using 8-node rectangular
! quadrilaterals. Initial stress method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,incs,iters,iy,k,limit,ndim=2,ndof=16,nels, &
neq,nip=4,nn,nod=8,nodof=2,nprops=7,np_types,nr,nst=4,nxe,nye

REAL(iwp)::c,det,dsbar,e,f,fac,fnew,gamma,k0,lode_theta,one=1.0_iwp,ot, &
pav,phi,psi,pr,presc,pt5=0.5_iwp,sigm,penalty=1.0e20_iwp,tol,v, &
zero=0.0_iwp

254 MATERIAL NON-LINEARITY

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),eld(:),eload(:),elso(:),eps(:),fun(:),gc(:), &
g_coord(:,:),jac(:,:),km(:,:),kv(:),loads(:),oldis(:),pl(:,:), &
points(:,:),prop(:,:),react(:),rload(:),sigma(:),storkv(:),stress(:), &
tensor(:,:,:),totd(:),weights(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
x_coords(nxe+1),y_coords(nye+1),num(nod),dee(nst,nst),fun(nod), &
tensor(nst,nip,nels),g_g(ndof,nels),coord(nod,ndim),stress(nst), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),bload(ndof), &
eload(ndof),pl(nst,nst),elso(nst),g(ndof),gc(ndim),rload(ndof), &
prop(nprops,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq), &
react(0:neq)); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I7))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); tensor=zero; kv=zero
!-----------------------element stiffness integration and assembly--------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(6,etype(iel)),prop(7,etype(iel)))
gamma=prop(4,etype(iel)); k0=prop(5,etype(iel))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); gc=MATMUL(fun,coord)
tensor(2,i,iel)=(gc(2)-y_coords(1))*gamma
tensor(1,i,iel)=(gc(2)-y_coords(1))*gamma*k0
tensor(4,i,iel)=tensor(1,i,iel); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(matmul(transpose(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1; CALL fsparv(kv,km,g,kdiag)
END DO elements_2

!-----------------------read displacement data and factorise equations----
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms),no(fixed_freedoms),&

storkv(fixed_freedoms))
READ(10,*)(node(i),sense(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; storkv=kv(kdiag(no))

END IF; CALL sparin(kv,kdiag)

MATERIAL NON-LINEARITY 255

!-----------------------displacement increment loop-----------------------
READ(10,*)tol,limit,incs,presc
WRITE(11,'(/A)') &

" step disp load(av) load(react) moment iters"
oldis=zero; totd=zero; bdylds=zero
disp_incs: DO iy=1,incs
iters=0; react=zero

!-----------------------plastic iteration loop----------------------------
its: DO

iters=iters+1; loads=bdylds
WRITE(*,'(A,E11.3,A,I4)')" disp",iy*presc," iteration",iters
DO i=1,fixed_freedoms; loads(nf(1,node(i)))=storkv(i)*presc; END DO
CALL spabac(kv,loads,kdiag); bdylds=zero

!-----------------------check plastic convergence-------------------------
CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.

!-----------------------go round the Gauss Points ------------------------
elements_3: DO iel=1,nels
phi=prop(1,etype(iel)); c=prop(2,etype(iel)); psi=prop(3,etype(iel))
e=prop(6,etype(iel)); v=prop(7,etype(iel)); CALL deemat(dee,e,v)
bload=zero; rload=zero; num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv); eps=MATMUL(bee,eld)
sigma=MATMUL(dee,eps); stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phi,c,sigm,dsbar,lode_theta,fnew); elso=zero
IF(fnew>zero)THEN
stress=tensor(:,i,iel); CALL invar(stress,sigm,dsbar,lode_theta)
CALL mocouf(phi,c,sigm,dsbar,lode_theta,f); fac=fnew/(fnew-f)
stress=(one-fac)*sigma+tensor(:,i,iel)
CALL mcdpl(phi,psi,dee,stress,pl); pl=fac*pl
elso=MATMUL(pl,eps); eload=MATMUL(elso,bee)
bload=bload+eload*det*weights(i)

END IF
!-----------------------update the Gauss Point stresses-------------------

IF(converged.OR.iters==limit)THEN
tensor(:,i,iel)=tensor(:,i,iel)+sigma-elso
rload=rload+MATMUL(tensor(:,i,iel),bee)*det*weights(i)

END IF
END DO gauss_pts_2

!-----------------------compute the total bodyloads vector ---------------
bdylds(g)=bdylds(g)+bload; react(g)=react(g)+rload
bdylds(0)=zero; react(0)=zero

END DO elements_3; IF(converged.OR.iters==limit)EXIT
END DO its; totd=totd+loads; pr=zero; ot=zero; pav=zero
DO i=1,fixed_freedoms

pr=pr+react(no(i)); ot=ot+react(no(i))*g_coord(2,node(i))
END DO
DO i=1,4

pav=pav+(y_coords(i)-y_coords(i+1))*(tensor(1,1,i)+tensor(1,3,i))*pt5
END DO
WRITE(11,'(I5,4E12.4,I5)')iy,iy*presc,-pav,pr,ot,iters
IF(iters==limit)EXIT

END DO disp_incs
CALL dismsh(totd,nf,0.05_iwp,g_coord,g_num,13)

256 MATERIAL NON-LINEARITY

CALL vecmsh(totd,nf,0.05_iwp,0.5_iwp,g_coord,g_num,14)
STOP
END PROGRAM p64

New scalar integers:
fixed freedoms number of fixed displacements

New scalar reals:
c cohesion
fac measure of yield surface overshoot (f from 6.35)
fnew value of yield function after stress increment
gamma soil unit weight
k0 “at rest” earth pressure coefficient, Ko

ot overturning moment
pav earth force based on stress averaging
pr earth force based on nodal reactions
presc wall displacement increment
pt5 set to 0.5
penalty set to 1 × 1020

New dynamic integer arrays:
no fixed freedom numbers vector
node fixed nodes vector
sense sense of freedoms to be fixed vector

New dynamic real arrays:
elso “plastic” stresses
gc integrating point coordinates
pl plastic [Dp] matrix
react global nodal reaction forces
rload element nodal reaction forces
storkv holds augmented stiffness diagonal terms

The initial stress method of stress redistribution is demonstrated in a problem of passive
earth pressure, in which a smooth wall is translated into a bed of “sand”. As in Program 6.1,
a rectangular mesh of 8-noded elements is generated with nodes and freedoms counted
in the y-direction. An additional feature of this program which appears in the element
integration and assembly section is the generation of starting self-weight “at rest” stresses.
The coordinates of each Gauss point are calculated using the isoparametric property,

x =
8∑

i=1

Ni xi

y =
8∑

i=1

Ni yi (6.40)

MATERIAL NON-LINEARITY 257

with the x and y coordinates that result held in the one-dimensional array gc(1) and
gc(2) respectively. Only the y coordinate is required in this case, and the vertical stress
σy is obtained after multiplication by the unit weight held in gamma. The horizontal
effective stresses σx and σz are obtained by multiplying σy by the “at rest” earth pressure
coefficient Ko held in k0.

Data relating to the geometry and boundary conditions follow a familiar course. After
the stiffness matrix formulation, the nodes and senses of the freedoms, which are to receive
prescribed displacements are read, followed by the plastic convergence tolerance tol, the
iteration ceiling limit, the number of constant displacement increments that are to be
applied incs and the magnitude of the displacement increment held in presc. It may
be noted that the iteration ceiling does not need to be as high as when using load control.
Convergence is quicker when using displacement control, especially as failure conditions
are approached, since unconfined flow cannot occur. The “penalty” technique is used to
implement the prescribed displacements, as described in Section 3.6.

The program follows familiar lines until the calculation of the failure function. Initially,
the failure function fnew is obtained after adding the full elastic stress increment to
those stresses existing previously. If fnew is positive, indicating a yielding Gauss point,
then the failure function f is obtained using just those stresses existing previously. The
scaling parameter fac is then calculated as described in equation (6.35). The plastic stress–
strain matrix [Dp] for a Mohr–Coulomb material is formed by the subroutine mcdpl (if
implementing the von Mises criterion, the subroutine vmdpl should be substituted) using
stresses that have been factored to ensure they lie on the failure surface. The resulting matrix
pl is multiplied by the scaling parameter fac and then by the total strain increment array
eps to yield the “plastic” stress increment array elso. This is simple “forward Euler”
integration of the “rate” equations. “Implicit” versions are described in the next sections.
Integrals of the type described by equation (6.34) then follow and the array bdylds is
accumulated from each element. It may be noted that in the algorithm presented here,
the body loads vector is completely reformed at each iteration. This is in contrast to the
viscoplasticity algorithm presented in Programs 6.1, 6.2, and 6.3, in which the body loads
vector was accumulated at each iteration.

At convergence, the stresses must be updated ready for the next displacement (load)
increment. This involves adding, to the stresses remaining from the previous increment, the
one-dimensional array of total stress increments sigma minus the one-dimensional array
of corrective “plastic” stresses elso.

The example problem shown in Figure 6.19 represents a “sand” with strength param-
eters φ = 30◦, c = 0, and dilation angle ψ = 30◦, subjected to prescribed displacements
along the left face. The displacement increments are applied to the x-components of dis-
placement at the nine nodes adjacent to the hypothetical smooth, rigid wall shown hatched.
The initial stresses in the ground are calculated assuming the unit weight γ = 20 kN/m3

and “at rest” earth pressure coefficient Ko = 1.
Following each displacement increment, and after numerical convergence, the resultant

force on the wall is calculated in two ways. Firstly, the force on the wall is computed
by averaging the σx stresses at the eight Gauss points closest to the wall, and this result
is held in pav. Secondly, the nodal reactions are back-figured from the converged stress

258 MATERIAL NON-LINEARITY

5 m

1 m

1 m

1

15 176

162

13

f = 30°, c = 0
y = 0°, g = 20kN/m3

K0 = 1.0

nxe nye np_types
7 7 1

prop(phi,c,psi,gamma,ko,e,v)
30.0 0.0 30.0 20.0 1.0 1.0e5 0.3

etype(not needed)

x_coords, y_coords
0.0 0.25 0.5 1.0 1.5 2.5 3.5 5.0
1.0 0.75 0.5 0.25 0.0 -0.25 -0.625 -1.0

nr,(k,nf(:,k),i=1,nr)
29
 15 0 0 23 0 0 38 0 0 46 0 0 61 0 0 69 0 0
 84 0 0 92 0 0 107 0 0 115 0 0 130 0 0 138 0 0
153 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0
166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0
172 0 0 173 0 0 174 0 0 175 0 0 176 0 0

fixed_freedoms,(node(i),sense(i),i=1,fixed_freedoms)
9
1 1 2 1 3 1 4 1 5 1 6 1
7 1 8 1 9 1

tol limit incs presc
0.001 75 35 2.0e-5

Figure 6.19 Mesh and data for Program 6.4 example

field using,

{P}r =
all∑

elements

∫∫
[B]T {σ } dx dy (6.41)

and this is held in pr. By multiplying the nodal reaction forces about their distance from
the base of the wall, the overturning moment can also be estimated, held in ot.

The output shown in Figure 6.20 gives the step number, the accumulated wall dis-
placement, the resultant force (averaging and reactions), the overturning moment and the
number of iterations to convergence. These results are plotted in Figure 6.21 and show that

MATERIAL NON-LINEARITY 259

There are 294 equations and the skyline storage is 10521

 step disp load(av) load(react) moment iters
 1 0.2000E-04 0.1097E+02 0.1197E+02 0.3678E+01 2
 2 0.4000E-04 0.1194E+02 0.1311E+02 0.4023E+01 2
 3 0.6000E-04 0.1292E+02 0.1425E+02 0.4368E+01 4
 4 0.8000E-04 0.1385E+02 0.1535E+02 0.4676E+01 31
 5 0.1000E-03 0.1477E+02 0.1644E+02 0.4971E+01 19
 6 0.1200E-03 0.1569E+02 0.1752E+02 0.5262E+01 10
 7 0.1400E-03 0.1660E+02 0.1860E+02 0.5548E+01 14
 8 0.1600E-03 0.1751E+02 0.1968E+02 0.5833E+01 8
 9 0.1800E-03 0.1842E+02 0.2076E+02 0.6115E+01 13
 10 0.2000E-03 0.1933E+02 0.2183E+02 0.6397E+01 4
 11 0.2200E-03 0.2021E+02 0.2288E+02 0.6656E+01 32
 12 0.2400E-03 0.2107E+02 0.2392E+02 0.6904E+01 23
 13 0.2600E-03 0.2193E+02 0.2495E+02 0.7148E+01 13
 14 0.2800E-03 0.2279E+02 0.2597E+02 0.7384E+01 22
 15 0.3000E-03 0.2363E+02 0.2698E+02 0.7614E+01 16
 16 0.3200E-03 0.2444E+02 0.2796E+02 0.7819E+01 30
 17 0.3400E-03 0.2523E+02 0.2884E+02 0.8004E+01 32
 18 0.3600E-03 0.2601E+02 0.2970E+02 0.8186E+01 13
 19 0.3800E-03 0.2675E+02 0.3048E+02 0.8355E+01 40
 20 0.4000E-03 0.2744E+02 0.3120E+02 0.8519E+01 44
 21 0.4200E-03 0.2810E+02 0.3187E+02 0.8676E+01 28
 22 0.4400E-03 0.2866E+02 0.3243E+02 0.8815E+01 40
 23 0.4600E-03 0.2918E+02 0.3293E+02 0.8945E+01 29
 24 0.4800E-03 0.2961E+02 0.3330E+02 0.9068E+01 64
 25 0.5000E-03 0.3001E+02 0.3363E+02 0.9180E+01 29
 26 0.5200E-03 0.3029E+02 0.3387E+02 0.9264E+01 44
 27 0.5400E-03 0.3043E+02 0.3403E+02 0.9313E+01 45
 28 0.5600E-03 0.3056E+02 0.3416E+02 0.9353E+01 18
 29 0.5800E-03 0.3067E+02 0.3427E+02 0.9387E+01 11
 30 0.6000E-03 0.3076E+02 0.3437E+02 0.9414E+01 13
 31 0.6200E-03 0.3085E+02 0.3447E+02 0.9439E+01 7
 32 0.6400E-03 0.3092E+02 0.3455E+02 0.9459E+01 11
 33 0.6600E-03 0.3099E+02 0.3463E+02 0.9474E+01 14
 34 0.6800E-03 0.3105E+02 0.3468E+02 0.9486E+01 12
 35 0.7000E-03 0.3110E+02 0.3474E+02 0.9497E+01 3

Figure 6.20 Results from Program 6.4 example

the force builds up to a maximum value of around 31 kN/m when using average stresses.
This is in close agreement with the closed form Rankine solution of 30 kN/m, despite the
relatively crude mesh. The higher result obtained by nodal reactions is commonly observed
in analyses of this type, due in part to the high shear stress concentration at the bottom
edge of the wall. The displacement vectors of the mesh corresponding to passive failure
of the soil behind the wall are shown in Figure 6.22. The Rankine passive mechanism
outcropping at an angle of 30◦ to the horizontal is reproduced.

The initial stress algorithm presented in this program will tend to overestimate collapse
loads, especially if the displacement (load) steps are made too big. Users are recommended
to try one or two different increment sizes to test the sensitivity of the solutions. The
problem is caused by incremental “drift” of the stress state at individual Gauss points into
illegal stress space, in spite of apparent numerical convergence. Although not included
in the present work, various strategies are available (e.g. Nayak and Zienkiewicz, 1972)
for drift correction. In the next section, more complicated “stress-return” procedures are
illustrated which ensure stresses at each Gauss point return accurately to the yield surface.

260 MATERIAL NON-LINEARITY

0 1 2 3 4 5 6 7
×10−4

0
10

20
30

40
Pp

dh

Rankine
Pp = 30 kN/m

Figure 6.21 Passive force (based on stress averaging) versus horizontal displacement from
Program 6.4 example

30°

Figure 6.22 Displacement vectors at passive failure from Program 6.4 example

6.9 Elasto-plastic rate integration

For the purposes of this description, we return to elastic-perfectly plastic materials obeying
the von Mises failure criterion. Similar, if more complicated arguments apply to Mohr–
Coulomb materials.

MATERIAL NON-LINEARITY 261

Using the notation previously developed in Sections 6.3 and 6.4, if F is the yield
function and J2 the second invariant of the deviatoric stress tensor, from (6.7),

F = σ −
√

3cu

=
√

3J2 −
√

3cu (6.42)

where

J2 = t2

2
= 1

6

[
(σx − σy)

2 + (σy − σz)
2 + (σz − σx)2 + 6τ 2

xy + 6τ 2
yz + 6τ 2

zx

]
(6.43)

The first derivative of F with respect to the stresses is{
∂F

∂σ

}
= {a} = ∂F

∂J2

{
∂J2

∂σ

}
(6.44)

which can be written as,

{a} = 1.5√
3J2

sx
sy
sz

2τxy

2τyz

2τzx

(6.45)

where sx and so on, represent the deviatoric components from equations (6.3).
The second derivative of F with respect to stress is

[
∂2F

∂σ 2

]
=
[

∂a
∂σ

]
= 1

2
√

3J2
[A] − 1√

3J2
{a} {a}T (6.46)

where

[A] =

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

(6.47)

Ortiz and Popov (1985) described various methods of elasto-plastic rate integration,
which essentially consist of an (elastic) predictor, followed by a plastic corrector to ensure
the final stress is (nearly) on the yield surface.

Referring to Figure 6.23 let {σX} refer to the unyielded stress at the start of a step and{
�σ e

}
the (elastic) increment. The stress crosses the yield surface at {σA} while the elastic

increment ends up at {σB} We wish to return to the “correct” stresses on the yield surface
at {σC}.

262 MATERIAL NON-LINEARITY

s1

s2

s3

C

A

B

X

F(sA)= 0

F(sB)>0 (inadmissible)

O

Figure 6.23 Stress correction

If {�ε} is the total incremental strain,
{
�εp

}
the incremental plastic strain, and λ the

scalar multiplier (6.31) an elastic stress–strain matrix [De] will lead to

{σC} = {σA} + [De]
({�ε} − {

�εp
})

(6.48)

where {
�εp

} = λ {a} (6.49)

The derivative {a} in the above equation is evaluated at (1 − β) {σA} + β {σC}, and the
scalar interpolating parameter β (similar to θ in Chapters 8 and 9) can vary in the range 0 ≤
β ≤ 1.

6.9.1 Forward Euler method

Here β = 0 and the rate equation is integrated at the point at which the yield surface is
crossed ({σA} in Figure 6.23). Thus

F
({σX} + α

{
�σ e

}) = 0 (6.50)

For a non-hardening von Mises material the point can be found explicitly from:

α = −3B ±√
9B2 − 12A(3C − 3c2

u)

6A
(6.51)

MATERIAL NON-LINEARITY 263

where

A = 1

2
((�se

x)
2 + (�se

y)2 + (�se
z)

2) + (�τe
xy)

2

B = sx�se
x + sy�se

y + sz�se
z + 2�τxyτ

e
xy (6.52)

C = 1

2
(s2

x + s2
y + s2

z) + τ 2
xy

but an approximate α can be found by linearly interpolating between points X and B from,

α ≈ −F({σX})
F ({σB}) − F({σX}) (6.53)

The remaining stress (1 − α)[De] {�ε} causes the “illegal” stress state outside the yield
surface. For non-hardening plasticity, it is assumed that once a stress state reaches a yield
surface, subsequent changes in stress may shift the stress state to a different position on
the yield surface but not outside it (6.30), hence

�F = {a}T {�σ } = 0 (6.54)

thus

�F = {a}T ([De] {�ε} − (1 − α)λ[De] {a}) = 0 (6.55)

Assuming that the derivative vector {a} as evaluated at point A is called {aA}, the
following expression for λA, the “plastic multiplier” at A is given by,

λA = {aA}T [De] {�ε}
(1 − α) {aA}T [De] {aA} (6.56)

The final stress is then

{σC} = {σX} + {
�σ e

}− λA[De] {aA} (6.57)

This is the method used in equation (6.35) in which f = 1 − α.

6.9.2 Backward Euler method

Here the rate equation is integrated at the “illegal” state B (β = 1). This results in a simple
evaluation of the plastic multiplier λ for non-hardening von Mises materials. A first order
Taylor expansion of the yield function at B gives:

F({σC}) = F({σB}) +
{

∂F

∂σ

}T

{�σ } (6.58)

By enforcing consistency of the yield function at point C,

0 = F({σB}) − λB {aB}T [De] {aB} (6.59)

264 MATERIAL NON-LINEARITY

so that

λB = F({σB})
{aB}T [De] {aB} (6.60)

The change in stress is given by,

{�σ } = {
�σ e

}− F({σB})[De] {aB}
{aB}T [De] {aB} (6.61)

and final stress by,

{σ } = {σX} + {
�σ e

}− λB[De] {aB} (6.62)

Rice and Tracey (1973) advocated a mean normal method for a von Mises yield criterion
so that

{aA + aB}T {�σ e
}

2
= 0 (6.63)

In a von Mises yield criterion under plane strain and 3D stress states, the yield surface
appears as a circle on the deviatoric plane. Any “illegal” stress can be corrected along a
radial path directed from the hydrostatic stress axis. The final deviatoric stress at point C is

{sC} =
√

3cu√
3J2

{sB} (6.64)

and the components of {σC} can then be determined by superimposing the hydrostatic
stress from point B.

In practice, it has been found that this method offers no advantages over forward Euler
in constant stiffness algorithms. The same is not true for tangent stiffness methods as is
shown in the next paragraph.

6.10 Tangent stiffness approaches

The difference between constant stiffness and tangent stiffness methods was discussed
in Section 6.1. In general, constant stiffness methods can be attractive in displacement-
controlled situations (see Figure 6.20 where the number of iterations per displacement
increment is modest), but in load-controlled situations, particularly close to collapse, large
numbers of iterations tend to arise (see e.g. Figure 6.10). Tangent stiffness approaches
require fewer iterations per load step, however this saving is counterbalanced by the speed
of constant stiffness methods, in which the global stiffness matrix is only factorised once.
If convergence in cases like Figure 6.10 is monitored, it will be found that most Gauss
points have converged to the yield surface, leaving only a few Gauss points responsible for
the lack of convergence. Tangent stiffness methods, with backward Euler integration can
significantly improve the convergence properties of algorithms to the point where the cost
of re-forming and re-factorising the global stiffness can be justified.

MATERIAL NON-LINEARITY 265

6.10.1 Inconsistent tangent matrix

The change in stress is composed of two parts, the elastic predictor [De] {�ε} and a plastic
corrector λ[De] {a}, that is

{�σ } = [De]({�ε} − λ {a}) (6.65)

Substituting λ from (6.56) (α = 0) into the above equation gives,

{�σ } = [De]

(
{�ε} − {a}T [De] {�ε}

{a}T [De] {a} {a}
)

(6.66)

and hence

{�σ } =
(

[De] − [De] {a} {a}T [De]

{a}T [De] {a}
)

{�ε} (6.67)

or

{�σ } = [Dep] {�ε} (6.68)

where [Dep] is known as the standard or “inconsistent” tangent matrix.

6.10.2 Consistent tangent matrix

With the backward Euler integration scheme, a consistent tangent modular matrix can be
formed.

{σ } = {σB} − λB [De] {aB}
= ({σX} + [De] {�ε}) − λB [De] {aB} (6.69)

On differentiation we get,

{�σ } = [De] {�ε} − �λ[De] {a} − λB [De]

[(
∂a
∂σ

)
B

]
{�σ } (6.70)

or

{�σ } =
[

[I] + λB[De]

[(
∂a
∂σ

)
B

]]−1

[De]({�ε} − �λ {a}) (6.71)

= [R]({�ε} − �λ {a}) (6.72)

and hence

{�σ } =
(

[R] − [R] {a} {a}T [R]

{a}T [R] {a}
)

{�ε} (6.73)

or

{�σ } = [Depc] {�ε} (6.74)

where [Depc] is known as the “consistent” tangent matrix.

266 MATERIAL NON-LINEARITY

6.10.3 Convergence criterion

Programs 6.1 to 6.4 used a very simple convergence criterion that was essentially based on
the body loads vector bdylds used to correct the out-of-balance stresses. In the programs
the nodal displacements (usually called loads) caused by the bdylds at successive
iterations were compared. Convergence was said to have occurred, if the absolute change
in all the components of loads, as a fraction of the maximum absolute component of
loads, was less than a tolerance tol of say, 0.001.

When the convergence of loads is examined, it is found that in typical problems
nearly all Gauss Points converge early, and most of the time is taken in forcing the stresses
at a few points towards the yield surface.

In the consistent tangent method, the efficiency of the return algorithm is such that all
Gauss Points converge much faster to the yield surface. On the other hand, there can be no
concept of a converging bdylds. Rather, the residual remaining in bdylds tends to zero
as convergence is approached (this is actually how many codes operate for the constant
stiffness, forward Euler, case as well). A criterion based on the size of the maximum
component of the reducing bdylds as a percentage of, say, the RMS of bdylds can be
used.

In practice, when an element assembly technique is chosen, the strategy for constant
stiffness is simple to implement and just as efficient computationally as the consistent
tangent approach. This is because the plastic iterations involve only forward and back-
substitutions in a direct equation-solving process.

When a tangent stiffness method is used, the extra time involved in reforming the
stiffness matrices and completely re-solving the equilibrium equations can more than com-
pensate for the reduced iteration counts.

However, when iterative strategies are adopted for equilibrium equation solution (e.g.
Program 6.2) the equilibrium equations have to be “reassembled” and solved on every
iteration anyway. In these circumstances, the consistent tangent stiffness with backward
Euler return, leading to low iteration counts, is essential.

Program 6.5 Plane strain bearing capacity analysis of an elastic–plastic (von Mises)
material using 8-node rectangular quadrilaterals. Initial stress method. Tangent stiff-
ness. Consistent return algorithm.

PROGRAM p65
!---
! Program 6.5 Plane strain bearing capacity analysis of an elastic-plastic
! (von Mises) material using 8-node rectangular
! quadrilaterals. Initial stress method. Tangent stiffness.
! Consistent return algorithm.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,incs,iters,iy,k,limit,loaded_nodes,ndim=2,ndof=16,nels, &
neq,nip=4,nn,nod=8,nodof=2,nprops=3,np_types,nr,nst=4,nxe,nye

REAL(iwp)::bot,det,dlam,dsbar,dslam,d3=3.0_iwp,ff,fftol,fnew,fstiff, &
lode_theta,ltol,one=1.0_iwp,ptot,sigm,tloads,tol,top,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &

MATERIAL NON-LINEARITY 267

no(:),num(:)
REAL(iwp),ALLOCATABLE::acat(:,:),acatc(:,:),bee(:,:),bdylds(:),bload(:), &
caflow(:),coord(:,:),daatd(:,:),ddylds(:),dee(:,:),der(:,:),deriv(:,:),&
dl(:,:),dload(:),dsigma(:),eld(:),eload(:),elso(:),eps(:),g_coord(:,:),&
jac(:,:),km(:,:),kv(:),loads(:),points(:,:),prop(:,:),qinc(:),qinva(:),&
qinvr(:),qmat(:,:),ress(:),rmat(:,:),sigma(:),stress(:),tensor(:,:,:), &
totd(:),val(:,:),vmfl(:),vmfla(:),vmflq(:),vmtemp(:,:),weights(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,fftol,ltol,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
x_coords(nxe+1),y_coords(nye+1),num(nod),dee(nst,nst), &
tensor(nst,nip,nels),g_g(ndof,nels),coord(nod,ndim),jac(ndim,ndim), &
der(ndim,nod),deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof), &
km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),bload(ndof),eload(ndof), &
elso(nst),g(ndof),vmfl(nst),qinvr(nst),dl(nip,nels),stress(nst), &
dload(ndof),caflow(nst),dsigma(nst),ress(nst),rmat(nst,nst), &
acat(nst,nst),acatc(nst,nst),qmat(nst,nst),qinva(nst),daatd(nst,nst), &
vmflq(nst),vmfla(nst),vmtemp(1,nst),prop(nprops,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),bdylds(0:neq),totd(0:neq),ddylds(0:neq))

!-----------------------loop the elements to find global arrays sizes-----
kdiag=0
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I7))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); kv=zero
!--------------starting element stiffness integration and assembly--------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1; CALL fsparv(kv,km,g,kdiag)
END DO elements_2

!-----------------------read load weightings and factorise equations------
READ(10,*)loaded_nodes; ALLOCATE(no(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(no(i),val(i,:),i=1,loaded_nodes); CALL sparin(kv,kdiag)

!-----------------------load increment loop-------------------------------
READ(10,*)tol,limit,incs; ALLOCATE(qinc(incs)); READ(10,*)qinc
WRITE(11,'(/A)')" step load disp iters"
totd=zero; tensor=zero; dl=zero; ptot=zero
load_increments: DO iy=1,incs
ptot=ptot+qinc(iy); bdylds=zero; loads=zero; iters=0
DO i=1,loaded_nodes; loads(nf(:,no(i)))=val(i,:)*qinc(iy); END DO

!-----------------------plastic iteration loop----------------------------

268 MATERIAL NON-LINEARITY

plastic_iters: DO
iters=iters+1; IF(iters/=1)loads=zero
WRITE(*,'(A,F8.2,A,I4)')" load",ptot," iteration",iters
loads=loads+bdylds; CALL spabac(kv,loads,kdiag)
bdylds=zero; ddylds=zero; kv=zero

!-----------------------go round the Gauss Points ------------------------
elements_3: DO iel=1,nels
bload=zero; dload=zero; num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g); km=zero
gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv); eps=MATMUL(bee,eld)
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
stress=tensor(:,i,iel); CALL invar(stress,sigm,dsbar,lode_theta)
ff=dsbar-SQRT(d3)*prop(1,etype(iel))
IF(ff>fftol)THEN
dlam=dl(i,iel); CALL vmflow(stress,dsbar,vmfl)
CALL fmrmat(vmfl,dsbar,dlam,dee,rmat); caflow=MATMUL(rmat,vmfl)
bot=DOT_PRODUCT(vmfl,caflow); CALL formaa(vmfl,rmat,daatd)
dee=rmat-daatd/bot

END IF
sigma=MATMUL(dee,eps); stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
fnew=dsbar-SQRT(d3)*prop(1,etype(iel)); fstiff=fnew; elso=zero
IF(fnew>=zero)THEN
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
CALL vmflow(stress,dsbar,vmfl); caflow=MATMUL(dee,vmfl)
bot=DOT_PRODUCT(vmfl,caflow); dlam=fnew/bot; elso=caflow*dlam
stress=tensor(:,i,iel)+sigma-elso
CALL invar(stress,sigm,dsbar,lode_theta)
fnew=dsbar-SQRT(d3)*prop(1,etype(iel))
iterate_on_fnew: DO

CALL vmflow(stress,dsbar,vmfl); caflow=MATMUL(dee,vmfl)*dlam
ress=stress-(tensor(:,i,iel)+sigma-caflow)
CALL fmacat(vmfl,acat); acat=acat/dsbar
acatc=MATMUL(dee,acat); qmat=acatc*dlam
DO k=1,4; qmat(k,k)=qmat(k,k)+one; END DO; CALL invert(qmat)
vmtemp(1,:)=vmfl; vmtemp=MATMUL(vmtemp,qmat)
vmflq=vmtemp(1,:); top=DOT_PRODUCT(vmflq,ress)
vmtemp=MATMUL(vmtemp,dee); vmfla=vmtemp(1,:)
bot=DOT_PRODUCT(vmfla,vmfl); dslam=(fnew-top)/bot
qinvr=MATMUL(qmat,ress); qinva=MATMUL(MATMUL(qmat,dee),vmfl)
dsigma=-qinvr-qinva*dslam; stress=stress+dsigma
CALL invar(stress,sigm,dsbar,lode_theta)
fnew=dsbar-SQRT(d3)*prop(1,etype(iel)); dlam=dlam+dslam
IF(fnew<tol)EXIT

END DO iterate_on_fnew
dl(i,iel)=dlam; elso=tensor(:,i,iel)+sigma-stress
eload=MATMUL(elso,bee); bload=bload+eload*det*weights(i)
CALL vmflow(stress,dsbar,vmfl)
CALL fmrmat(vmfl,dsbar,dlam,dee,rmat); caflow=MATMUL(rmat,vmfl)
bot=DOT_PRODUCT(vmfl,caflow); CALL formaa(vmfl,rmat,daatd)
dee=rmat-daatd/bot

END IF
IF(fstiff<zero) &
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))

MATERIAL NON-LINEARITY 269

km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
!-----------------------update the Gauss Point stresses-------------------

tensor(:,i,iel)=tensor(:,i,iel)+sigma-elso; stress=tensor(:,i,iel)
eload=MATMUL(stress,bee); dload=dload+eload*det*weights(i)

END DO gauss_pts_2
!-----------------------compute the total bodyloads vector----------------

bdylds(g)=bdylds(g)+bload; bdylds(0)=zero; ddylds(g)=ddylds(g)+dload
ddylds(0)=zero; CALL fsparv(kv,km,g,kdiag)

END DO elements_3; CALL sparin(kv,kdiag); tloads=SUM(bdylds)
IF(iters==1)converged=.FALSE.
IF(iters/=1.AND.tloads<ltol)converged=.TRUE.; totd=totd+loads
IF(converged.OR.iters==limit)EXIT

END DO plastic_iters; totd=totd+loads
WRITE(11,'(I5,2E12.4,I5)')iy,ptot,totd(nf(2,no(1))),iters
IF(iters==limit)EXIT

END DO load_increments
CALL dismsh(totd,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(totd,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p65

New scalar reals:
bot holds several dot products
dlam plastic multiplier λ

dslam plastic multiplier increment �λ

ff holds a value of the yield function
fftol tolerance on yield function
fstiff holds a value of the yield function
ltol tolerance on tloads
top holds a dot product
tloads holds the sum of bdylds

New dynamic real arrays:
acat used in development of (6.74)
acatc used in development of (6.74)
caflow used in development of (6.74)
daatd used in development of (6.74)
ddylds global body loads
dl holds plastic multiplier λ for all Gauss points
dload element body loads
dsigma stress increment
qinva used in development of (6.74)
qinvr used in development of (6.74)
qmat used in development of (6.74)
ress used in development of (6.74)
rmat used in development of (6.74)
vmfl von Mises “flow” vector
vmfla used in development of (6.74)
vmflq used in development of (6.74)
vmtemp used in development of (6.74)

270 MATERIAL NON-LINEARITY

Form and factorise the global stiffness matrix

For all load (displacement) increments

Read applied load increment

For all iterations

Solve equations to give displacement increments
Set converged to .TRUE. if displacements hardly changed

from last iteration

For all elements

For all Gauss points

Compute elastic strain increments
Compute elastic stress increments and add to
stresses left over from last load increment

Failure criterion exceeded?

Yes No

Form plastic [D] matrix Form elastic [D] matrix

Assemble global body-loads and
update global stiffness matrix

Factorise global stiffness matrix
Check convergence

Update and print displacements

Figure 6.24 Structure chart for variable stiffness algorithm with assembly

The structure chart for a typical tangent stiffness approach is shown in Figure 6.24.
Preliminary element loops, elements 1 and elements 2 set up the geometry and the
starting tangent matrix respectively. The load increment loop is entered and new subroutines
encountered are vmflow which forms the von Mises flow vector from equation (6.45),
fmrmat, formaa, and fmacat which are used to form the matrices needed in the
development of equation (6.74) at every Gauss point in the elements 3 loop. The 4 × 4
matrix qmat has to be inverted to complete the return strategy at each Gauss point and
ultimately the consistent tangent dee matrix is obtained, leading to the consistent km.

Figure 6.25 shows the data for the problem analysed, for which we return to the original
problem of Figure 6.9. The only new information required is confined to tolerances specific
to the tangent stiffness algorithm, namely fftol=-1.0e-6 and ltol=5.0e-5, while
the iteration ceiling limit can be assigned a much more economic value of, say, 50.

The results are listed as Figure 6.26 and are found to be very similar to those in
Figure 6.10 up to the 9th load increment. Up until then, the consistent return algorithm leads
to convergence within 4 iterations on every increment. On the final increment (at “failure”)
Program 6.5 took 28 iterations compared to Program 6.1 which took (at least) 250.

MATERIAL NON-LINEARITY 271

nxe nye fftol ltol np_types
8 4 -1.0e-6 5.0e-5 1

prop(cu,e,v)
100.0 1.0e5 0.3

etype(not needed)

x_coords, y_coords
0.0 1.0 2.0 3.0 4.0 5.5 7.0 9.0 12.0
0.0 -1.25 -2.5 -3.75 -5.0

nr,(k,nf(:,k),i=1,nr)
33
 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1
 7 0 1 8 0 1 9 0 0 14 0 0 23 0 0 28 0 0
 37 0 0 42 0 0 51 0 0 56 0 0 65 0 0 70 0 0
 79 0 0 84 0 0 93 0 0 98 0 0 107 0 0 112 0 0
113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0
119 0 0 120 0 0 121 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
5
1 0.0 -0.166667 10 0.0 -0.666667 15 0.0 -0.333333
24 0.0 -0.666667 29 0.0 -0.166667

tol limit
0.001 50

incs,(qinc(i),i=1,incs)
10
200.0 100.0 50.0 50.0 50.0 30.0 20.0 10.0 5.0 5.0

Figure 6.25 Data for Program 6.5 example

There are 184 equations and the skyline storage is 4130

 step load disp iters
 1 0.2000E+03 -0.6592E-02 2
 2 0.3000E+03 -0.1154E-01 4
 3 0.3500E+03 -0.1614E-01 4
 4 0.4000E+03 -0.2285E-01 4
 5 0.4500E+03 -0.3278E-01 4
 6 0.4800E+03 -0.4184E-01 4
 7 0.5000E+03 -0.5031E-01 4
 8 0.5100E+03 -0.5613E-01 4
 9 0.5150E+03 -0.6058E-01 4
 10 0.5200E+03 -0.3307E+00 28

Figure 6.26 Results from Program 6.5 example

Program 6.6 Plane strain bearing capacity analysis of an elastic–plastic (von Mises)
material using 8-node rectangular quadrilaterals. Initial stress method. Tangent stiff-
ness. Consistent return algorithm. No global stiffness matrix assembly. Diagonally
preconditioned conjugate gradient solver.

PROGRAM p66
!---
! Program 6.6 Plane strain bearing capacity analysis of an elastic-plastic
! (von Mises) material using 8-node rectangular
! quadrilaterals. Initial stress method. Tangent stiffness.
! No global stiffness matrix assembly. Diagonally
! preconditioned conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,cg_tot,i,iel,incs,iters,iy,k,limit, &
loaded_nodes,ndim=2,ndof=16,nels,neq,nip=4,nn,nod=8,nodof=2,nprops=3, &

272 MATERIAL NON-LINEARITY

np_types,nr,nst=4,nxe,nye
REAL(iwp)::alpha,beta,bot,cg_tol,det,dlam,dsbar,dslam,d3=3.0_iwp,ff, &
fftol,fnew,fstiff,lode_theta,ltol,one=1.0_iwp,ptot,sigm, &
small_tol=1.e-5_iwp,tloads,tol,top,up,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
LOGICAL::converged,cg_converged

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::nf(:,:),g(:),no(:),num(:),g_num(:,:),g_g(:,:), &
etype(:)

REAL(iwp),ALLOCATABLE::acat(:,:),acatc(:,:),bee(:,:),bdylds(:),bload(:), &
caflow(:),coord(:,:),d(:),daatd(:,:),ddylds(:),dee(:,:),der(:,:), &
deriv(:,:),diag_precon(:),dl(:,:),dload(:),dsigma(:),eld(:),eload(:), &
elso(:),eps(:),g_coord(:,:),jac(:,:),km(:,:),loads(:),p(:),points(:,:),&
prop(:,:),qinc(:),qinva(:),qinvr(:),qmat(:,:),ress(:),rmat(:,:), &
sigma(:),storkm(:,:,:),stress(:),tensor(:,:,:),totd(:),u(:),val(:,:), &
vmfl(:),vmfla(:),vmflq(:),vmtemp(:,:),weights(:),x(:),xnew(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,cg_tol,cg_limit,fftol,ltol,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
x_coords(nxe+1),y_coords(nye+1),num(nod),dee(nst,nst), &
tensor(nst,nip,nels),g_g(ndof,nels),etype(nels),storkm(ndof,ndof,nels),&
coord(nod,ndim),stress(nst),dl(nip,nels),jac(ndim,ndim),der(ndim,nod), &
deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
eps(nst),sigma(nst),bload(ndof),eload(ndof),elso(nst),g(ndof), &
vmfl(nst),qinvr(nst),dload(ndof),caflow(nst),dsigma(nst),ress(nst), &
rmat(nst,nst),acat(nst,nst),acatc(nst,nst),qmat(nst,nst),qinva(nst), &
daatd(nst,nst),vmflq(nst),vmfla(nst),vmtemp(1,nst), &
prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
WRITE(11,'(A,I6,A)')"There are ",neq," equations"
ALLOCATE(loads(0:neq),bdylds(0:neq),totd(0:neq),ddylds(0:neq),p(0:neq), &
x(0:neq),xnew(0:neq),u(0:neq),diag_precon(0:neq),d(0:neq))

!---------------loop the elements to set up element data------------------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1; CALL mesh(g_coord,g_num,12)
CALL sample(element,points,weights); diag_precon=zero

!----starting element stiffness integration, storage and preconditioner---
elements_2: DO iel=1,nels
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(matmul(transpose(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1; storkm(:,:,iel)=km
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); END DO

END DO elements_2; diag_precon(1:)=one/diag_precon(1:)
!-----------------------read load weightings------------------------------
READ(10,*)loaded_nodes; ALLOCATE(no(loaded_nodes),val(loaded_nodes,ndim))

MATERIAL NON-LINEARITY 273

READ(10,*)(no(i),val(i,:),i=1,loaded_nodes)
!-----------------------load increment loop-------------------------------
READ(10,*)tol,limit,incs; ALLOCATE(qinc(incs)); READ(10,*)qinc
WRITE(11,'(/A)') &
" step load disp iters cg iters/plastic iter"
totd=zero; tensor=zero; xnew=zero; dl=zero; diag_precon(0)=zero; ptot=zero
load_increments: DO iy=1,incs
ptot=ptot+qinc(iy); bdylds=zero; loads=zero; iters=0; cg_tot=0
DO i=1,loaded_nodes; loads(nf(:,no(i)))=val(i,:)*qinc(iy); END DO

!-----------------------plastic iteration loop --------------------------
plastic_iters: DO

iters=iters+1; IF(iters/=1)loads=zero
WRITE(*,'(A,F8.2,A,I4)')" load",ptot," iteration",iters
loads=loads+bdylds
IF(ABS(SUM(loads))<small_tol)THEN; iters=iters-1; EXIT; END IF
bdylds=zero; ddylds=zero; d=diag_precon*loads; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO
cg_iters=cg_iters+1; u=zero
elements_3: DO iel=1,nels

g=g_g(:,iel); km=storkm(:,:,iel); u(g)=u(g)+MATMUL(km,p(g))
END DO elements_3
up=DOT_PRODUCT(loads,d); alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha
loads=loads-u*alpha; d=diag_precon*loads
beta=DOT_PRODUCT(loads,d)/up; p=d+p*beta
call checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg; cg_tot=cg_tot+cg_iters; loads=xnew; loads(0)=zero
diag_precon=zero

!-----------------------go round the Gauss Points-------------------------
elements_4: DO iel=1,nels
bload=zero; dload=zero; num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g); km=zero
gauss_points_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv); eps=MATMUL(bee,eld)
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
stress=tensor(:,i,iel); CALL invar(stress,sigm,dsbar,lode_theta)
ff=dsbar-SQRT(d3)*prop(1,etype(iel))
IF(ff>fftol)THEN
dlam=dl(i,iel); CALL vmflow(stress,dsbar,vmfl)
CALL fmrmat(vmfl,dsbar,dlam,dee,rmat); caflow=MATMUL(rmat,vmfl)
bot=DOT_PRODUCT(vmfl,caflow); CALL formaa(vmfl,rmat,daatd)
dee=rmat-daatd/bot

END IF; sigma=MATMUL(dee,eps); stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
fnew=dsbar-SQRT(d3)*prop(1,etype(iel)); fstiff=fnew; elso=zero
IF(fnew>=zero)THEN
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
CALL vmflow(stress,dsbar,vmfl); caflow=MATMUL(dee,vmfl)
bot=DOT_PRODUCT(vmfl,caflow); dlam=fnew/bot; elso=caflow*dlam
stress=tensor(:,i,iel)+sigma-elso
CALL invar(stress,sigm,dsbar,lode_theta)
fnew=dsbar-SQRT(d3)*prop(1,etype(iel))
iterate_on_fnew: DO

CALL vmflow(stress,dsbar,vmfl); caflow=MATMUL(dee,vmfl)*dlam

274 MATERIAL NON-LINEARITY

ress=stress-(tensor(:,i,iel)+sigma-caflow)
CALL fmacat(vmfl,acat); acat=acat/dsbar
acatc=MATMUL(dee,acat); qmat=acatc*dlam
DO k=1,4; qmat(k,k)=qmat(k,k)+one; END DO; CALL invert(qmat)
vmtemp(1,:)=vmfl; vmtemp=MATMUL(vmtemp,qmat)
vmflq=vmtemp(1,:); top=DOT_PRODUCT(vmflq,ress)
vmtemp=MATMUL(vmtemp,dee); vmfla=vmtemp(1,:)
bot=DOT_PRODUCT(vmfla,vmfl); dslam=(fnew-top)/bot
qinvr=MATMUL(qmat,ress); qinva=MATMUL(MATMUL(qmat,dee),vmfl)
dsigma=-qinvr-qinva*dslam; stress=stress+dsigma
CALL invar(stress,sigm,dsbar,lode_theta)
fnew=dsbar-SQRT(d3)*prop(1,etype(iel)); dlam=dlam+dslam
IF(fnew<tol)EXIT

END DO iterate_on_fnew
dl(i,iel)=dlam; elso=tensor(:,i,iel)+sigma-stress
eload=MATMUL(elso,bee); bload=bload+eload*det*weights(i)
CALL vmflow(stress,dsbar,vmfl)
CALL fmrmat(vmfl,dsbar,dlam,dee,rmat); caflow=MATMUL(rmat,vmfl)
bot=DOT_PRODUCT(vmfl,caflow); CALL formaa(vmfl,rmat,daatd)
dee=rmat-daatd/bot

END IF
IF(fstiff<zero) &
CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))

km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
!-----------------------update the Gauss Point stresses-------------------

tensor(:,i,iel)=tensor(:,i,iel)+sigma-elso; stress=tensor(:,i,iel)
eload=MATMUL(stress,bee); dload=dload+eload*det*weights(i)

END DO gauss_points_2
!-----------------------compute the total bodyloads vector----------------

bdylds(g)=bdylds(g)+bload; bdylds(0)=zero; ddylds(g)=ddylds(g)+dload
ddylds(0)=zero; storkm(:,:,iel)=km
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); END DO

END DO elements_4; diag_precon(1:neq)=one/diag_precon(1:neq)
diag_precon(0)=zero; tloads=SUM(bdylds); IF(iters==1)converged=.FALSE.
IF(iters/=1.AND.tloads<ltol)converged=.TRUE.; totd=totd+loads
IF(converged.OR.iters==limit)EXIT

END DO plastic_iters; totd=totd+loads
WRITE(11,'(I5,2E12.4,I5,F17.2)') &

iy,ptot,totd(nf(2,no(1))),iters,REAL(cg_tot)/REAL(iters)
IF(iters==limit)EXIT

END DO load_increments
CALL dismsh(totd,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(totd,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p66

The “mesh-free” version of the constant stiffness method, Program 6.2, was inefficient
(at least on a scalar computer) due to the large number of repeated equation solutions.
Program 6.5 has shown that a tangent stiffness approach, with consistent return, has reduced
the number of equation solutions to 4 per load increment. With significantly fewer equations
to be solved, there is less benefit to be gained from factorisation, implying that a “mesh-free”
approach using an iterative preconditioned conjugate gradient solver could be appropriate.
Program 6.6 should be seen as a merging of Programs 6.2 and 6.5. The data for the problem
solved, again the original one of Figure 6.9, are shown in Figure 6.27. Extra information,

MATERIAL NON-LINEARITY 275

nxe nye cg_tol cg_limit fftol ltol np_types
8 4 0.0001 100 -1.0e-6 5.0e-5 1

prop(cu,e,v)
100.0 1.0e5 0.3

etype(not needed)

x_coords, y_coords
0.0 1.0 2.0 3.0 4.0 5.5 7.0 9.0 12.0
0.0 -1.25 -2.5 -3.75 -5.0

nr,(k,nf(:,k),i=1,nr)
33
 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1
 7 0 1 8 0 1 9 0 0 14 0 0 23 0 0 28 0 0
 37 0 0 42 0 0 51 0 0 56 0 0 65 0 0 70 0 0
 79 0 0 84 0 0 93 0 0 98 0 0 107 0 0 112 0 0
113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0
119 0 0 120 0 0 121 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
5
1 0.0 -0.166667 10 0.0 -0.666667 15 0.0 -0.333333
24 0.0 -0.666667 29 0.0 -0.166667

tol limit
0.001 50

incs,(qinc(i),i=1,incs)
10
200.0 100.0 50.0 50.0 50.0 30.0 20.0 10.0 5.0 5.0

Figure 6.27 Data for Program 6.6 example

There are 184 equations

 step load disp iters cg iters/plastic iter
 1 0.2000E+03 -0.6593E-02 1 46.00
 2 0.3000E+03 -0.1154E-01 4 51.50
 3 0.3500E+03 -0.1614E-01 4 56.00
 4 0.4000E+03 -0.2284E-01 4 63.00
 5 0.4500E+03 -0.3277E-01 4 69.50
 6 0.4800E+03 -0.4183E-01 4 78.75
 7 0.5000E+03 -0.5031E-01 4 78.25
 8 0.5100E+03 -0.5614E-01 4 88.50
 9 0.5150E+03 -0.6062E-01 4 84.75
 10 0.5200E+03 -0.2117E+00 17 99.59

Figure 6.28 Results from Program 6.6 example

as compared with the data for Program 6.5, is limited to the conjugate gradient tolerance
and iteration limit, set respectively to cg tol=0.0001 and cg limit=100.

The output is listed as Figure 6.28 which can be compared with Figure 6.26. Between 46
and 100 conjugate gradient iterations per plastic iteration were required, but the program
ran faster than Program 6.1 for the solution of this problem, even in scalar mode. In
parallel implementations, there is a trade-off between constant stiffness and tangent stiffness
methods because for the latter, all yielded elements are different, although their geometries
and elastic properties may be identical.

276 MATERIAL NON-LINEARITY

6.11 The geotechnical processes of embanking
and excavation

6.11.1 Embanking

One of the main features of analyses of geotechnical problems is the need to model construc-
tion processes. Gravity is one of the main agencies causing deformations and it is common
to employ “gravity turn-on” as the loading mechanism. In embankments for example, the
final geometry of a weightless slope can be modelled by a finite element mesh, which is
then subjected to gravity loading, often in a single increment. To obtain the Factor of Safety,
the soil’s strength parameters can be reduced sequentially to failure (see e.g. Program 6.3).

Although it has been known for a long time (Smith and Hobbs, 1974) that this method
can capture some of the realities of a construction process which takes place piece by piece
(e.g. in layers), it is more realistic to be able to build up a mesh in stages modelling the
influence of gravity at each stage.

Program 6.7 Plane strain construction of an elastic–plastic (Mohr–Coulomb)
embankment in layers on a foundation using 8-node quadrilaterals. Viscoplastic strain
method.

PROGRAM p67
!---
! Program 6.7 Plane strain construction of an elastic-plastic
! (Mohr-Coulomb) embankment in layers on a foundation using
! 8-node quadrilaterals. Viscoplastic strain method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::enxe,enye,fnxe,fnye,i,iel,ii,incs,iters,itype,iy,k,lifts,limit, &
lnn,ndim=2,ndof=16,nels,neq,newele,nip=4,nn,nod=8,nodof=2,nr,nst=4, &
oldele,oldnn

REAL(iwp)::c,c_e,c_f,det,dq1,dq2,dq3,dsbar,dt,d4=4.0_iwp,d180=180.0_iwp, &
e,e_e,e_f,f,gamma,gama_e,gama_f,k0,lode_theta,one=1.0_iwp,phi,phi_e, &
phi_f,pi,psi,psi_e,psi_f,sigm,snph,tol,two=2.0_iwp,v,v_e,v_f, &
zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),lnf(:,:),&
nf(:,:),num(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),devp(:),edepth(:),eld(:),eload(:),eps(:),erate(:), &
evp(:),evpt(:,:,:),ewidth(:),fdepth(:),flow(:,:),fun(:),fwidth(:), &
gc(:),gravlo(:),g_coord(:,:),jac(:,:),km(:,:),kv(:),loads(:),m1(:,:), &
m2(:,:),m3(:,:),oldis(:),points(:,:),sigma(:),stress(:),tensor(:,:,:), &
totd(:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)fnxe,fnye,nn,incs,limit,tol,lifts,enxe,enye,itype,k0,e_f,v_f, &
c_f,phi_f,psi_f,gama_f,e_e,v_e,c_e,phi_e,psi_e,gama_e

!-----------------------calculate the total number of elements------------
k=0; DO i=1,enye-1; k=i+k; END DO; nels=fnxe*fnye+(enxe*enye-k)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
edepth(enye+1),num(nod),dee(nst,nst),evpt(nst,nip,nels),ewidth(enxe+1),&

MATERIAL NON-LINEARITY 277

coord(nod,ndim),fun(nod),etype(nels),g_g(ndof,nels),jac(ndim,ndim), &
der(ndim,nod),deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof), &
km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),bload(ndof),eload(ndof), &
erate(nst),evp(nst),devp(nst),g(ndof),m1(nst,nst),m2(nst,nst), &
m3(nst,nst),flow(nst,nst),stress(nst),fwidth(fnxe+1),fdepth(fnye+1), &
gc(ndim),tensor(nst,nip,nels))

READ(10,*)fwidth,fdepth,ewidth,edepth
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
WRITE(11,'(A,I5)')" The final number of elements is:",nels
WRITE(11,'(A,I5)')" The final number of freedoms is:",neq

!-----------------------set the element type------------------------------
etype(1:fnxe*fnye)=1; etype(fnxe*fnye+1:nels)=2

!-----------set up the global node numbers and element nodal coordinates--
CALL fmglem(fnxe,fnye,enxe,g_num,lifts)
CALL fmcoem(g_num,g_coord,fwidth,fdepth,ewidth,edepth, &
enxe,lifts,fnxe,fnye,itype)

ALLOCATE(totd(0:neq)); tensor=zero; totd=zero; pi=ACOS(-one)
!-----------------------loop the elements to find the global g------------
elements_1: DO iel=1,nels
num=g_num(:,iel); CALL num_to_g(num,nf,g); g_g(:,iel)=g

END DO elements_1; CALL sample(element,points,weights)
!-----------------------construct another lift----------------------------
lift_number: DO ii=1,lifts
WRITE(11,'(/A,I5)')" Lift number",ii

!-----------------------calculate how many elements there are-------------
IF(ii<=lifts)THEN

IF(ii==1)THEN; newele=fnxe*fnye; oldele=newele; ELSE
newele=enxe-(ii-2); oldele=oldele+newele

END IF
!-----------------------calculate how many nodes there are----------------

IF(ii==1)THEN; lnn=(fnxe*2+1)*(fnye+1)+(fnxe+1)*fnye; oldnn=lnn
END IF
IF(ii>1)THEN; lnn=oldnn+(enxe-(ii-2))*2+1+(enxe-(ii-2)+1); oldnn=lnn
END IF; ALLOCATE(lnf(nodof,lnn)); lnf=nf(:,1:lnn)

!-----------------------recalculate the number of freedoms neq------------
neq=MAXVAL(lnf); ALLOCATE(kdiag(neq)); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_2: DO iel=1,oldele; g=g_g(:,iel); CALL fkdiag(kdiag,g)
END DO elements_2
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(3(A,I5))')" There are",neq," freedoms"
WRITE(11,'(3(A,I5))')" There are",oldele," elements after", &
newele," were added"

END IF
ALLOCATE(kv(kdiag(neq)),loads(0:neq),bdylds(0:neq),oldis(0:neq), &

gravlo(0:neq)); gravlo=zero; loads=zero; kv=zero
!-----------------------element stiffness integration and assembly--------

elements_3: DO iel=1,oldele
IF(etype(iel)==1)THEN; gamma=gama_f; e=e_f; v=v_f
ELSE; gamma=gama_e; e=e_e; v=v_e
END IF
IF(iel<=(oldele-newele))gamma=zero; num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
CALL deemat(dee,e,v); eld=zero
gauss_pts_1: DO i=1,nip
CALL shape_fun(fun,points,i); gc=MATMUL(fun,coord)

!-----------------------initial stress in foundation----------------------
IF(ii==1)THEN; tensor(2,i,iel)=-one*(fdepth(fnye+1)-gc(2))*gamma

278 MATERIAL NON-LINEARITY

tensor(1,i,iel)=k0*tensor(2,i,iel)
tensor(4,i,iel)=tensor(1,i,iel); tensor(3,i,iel)=zero

END IF
CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
DO k=2,ndof,2; eld(k)=eld(k)+fun(k/2)*det*weights(i); END DO

END DO gauss_pts_1
CALL fsparv(kv,km,g,kdiag)
IF(ii<=lifts)gravlo(g)=gravlo(g)-eld*gamma; gravlo(0)=zero

END DO elements_3
!-----------------------factorise equations--and-factor gravlo by incs----

CALL sparin(kv,kdiag); gravlo=gravlo/incs
!-----------------------apply gravity loads incrementally-----------------

load_incs: DO iy=1,incs
iters=0; oldis=zero; bdylds=zero; evpt(:,:,1:oldele)=zero

!-----------------------iteration loop------------------------------------
its: DO
iters=iters+1
WRITE(*,'(A,I3,A,I3,A,I4)')" lift",ii," increment",iy, &

" iteration",iters
loads=zero; loads=gravlo+bdylds; CALL spabac(kv,loads,kdiag)

!-----------------------check convergence---------------------------------
CALL checon(loads,oldis,tol,converged)
IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points-------------------------
elements_4: DO iel=1,oldele

IF(etype(iel)==1)THEN; phi=phi_f; c=c_f; e=e_f; v=v_f; psi=psi_f
ELSE; phi=phi_e; c=c_e; e=e_e; v=v_e; psi=psi_e
END IF; snph=SIN(phi*pi/d180)
dt=d4*(one+v)*(one-two*v)/(e*(one-two*v+snph**2))
CALL deemat(dee,e,v); bload=zero; num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip
CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel)
sigma=MATMUL(dee,eps)
IF(ii==1)THEN; stress=tensor(:,i,iel)
ELSE; stress=tensor(:,i,iel)+sigma
END IF; CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phi,c,sigm,dsbar,lode_theta,f)
IF(converged.OR.iters==limit)THEN; devp=stress; ELSE

IF(f>=zero)THEN
CALL mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(stress,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,stress); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero)THEN; eload=MATMUL(devp,bee)

bload=bload+eload*det*weights(i)
END IF

!-----------------------if appropriate update the Gauss point stresses----

MATERIAL NON-LINEARITY 279

IF(converged.OR.iters==limit)THEN
IF(ii/=1)tensor(:,i,iel)=stress

END IF
END DO gauss_pts_2

!-----------------------compute the total bodyloads vector----------------
bdylds(g)=bdylds(g)+bload; bdylds(0)=zero

END DO elements_4; IF(converged.OR.iters==limit)EXIT
END DO its; IF(ii/=1)totd(:neq)=totd(:neq)+loads(:neq)
WRITE(11,'(2(A,I5),A)')" Increment",iy," took ",iters, &
" iterations to converge"

IF(iy==incs.OR.iters==limit)WRITE(11,'(A,E12.4)') &
" Max displacement is",MAXVAL(ABS(loads))

IF(iters==limit)THEN
CALL dismsh(loads,lnf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,lnf,0.05_iwp,0.1_iwp,g_coord,g_num,14)
STOP

END IF
END DO load_incs; DEALLOCATE(lnf,kdiag,kv,loads,bdylds,oldis,gravlo)

END DO lift_number
STOP
END PROGRAM p67

New scalar integers:
enxe number of x-elements in embankment
enye number of y-elements in embankment
fnxe number of x-elements in foundation
fnye number of y-elements in foundation
ii counts the lifts
itype type of degeneration of quadrilateral to triangle
lifts number of lifts
lnn keeps running total of number of nodes
newele number of new elements at each lift
oldele keeps running total of number of elements
oldnn number of nodes from previous lift

New scalar reals:
c e embankment cohesion
c f foundation cohesion
e e Young’s modulus in embankment
e f Young’s modulus in foundation
gama e unit weight of embankment
gama f unit weight of foundation
phi e friction angle of embankment
phi f friction angle of foundation
psi e dilation angle of embankment
psi f dilation angle of foundation
v e Poisson’s ratio of embankment
v f Poisson’s ratio of foundation

New dynamic integer arrays:
lnf updated nodal freedom array

280 MATERIAL NON-LINEARITY

New dynamic real arrays:
edepth y-coordinates of top of each embankment lift
ewidth x-coordinates of base of embankment
fdepth y-coordinates of foundation depth layout
fwidth x-coordinates of foundation depth layout

Program 6.7 analyses the stability of a slope, built up in layers on a foundation.
Figure 6.29 shows a typical staged construction of an embankment (plane strain) on a
rectangular foundation block of soil. The embankment is assumed to be raised in a series
of “lifts”, the first of which merely stresses the foundation block gravitationally under “at
rest” conditions. The “soil” is assumed to be an elastic–plastic Mohr–Coulomb material
and a viscoplastic strain algorithm is used, so the program can be considered to be a devel-
opment of Program 6.3. Figure 6.30 shows the final mesh in more detail with the input
data for the problem.

The basic mesh information is read in the data with fnxe, fnye, fwidth and
fdepth for the foundation, and enxe, enye, ewidth and edepth for the embank-
ment. Subroutines fmglem and fmcoem set up the global node numbers and element

L i f t

1

2

3

4

Figure 6.29 Staged construction of an embankment

MATERIAL NON-LINEARITY 281

fnxe

enxe

0 10 15 18 20 22 24 26 28 32 35 3830

2 3 4
25

26 27 38

39 40 41
63

64

161

177

263

10
11
12
13
14

0

5

7.5

9

226

153

1

1

2

5

6

7
2

3

3
4

1

2

4

6

7

3

2

itype=1

8 8

itype=2

4

All dimensions in m and kPa

fnye

fnxe fnye nn incs limit tol
12 4 263 3 500 0.0001

lifts enxe enye itype k0
5 8 4 1 1.0

e_f v_f c_f phi_f psi_f gama_f
1.0e5 0.49 14.0 0.0 0.0 20.0

e_e v_e c_e phi_e psi_e gama_e
1.0e5 0.49 14.0 0.0 0.0 20.0

fwidth, fdepth, ewidth, edepth
 0.0 10.0 15.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 35.0 38.0
 0.0 5.0 7.5 9.0 10.0
20.0 22.0 24.0 26.0 28.0 30.0 32.0 35.0 38.0
10.0 11.0 12.0 13.0 14.0

nr,(k,nf(:,k),i=1,nr)
49
 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0
 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0
 25 0 0 26 0 1 38 0 1 39 0 1 63 0 1 64 0 1 76 0 1 77 0 1
101 0 1 102 0 1 114 0 1 115 0 1 139 0 1 140 0 1 152 0 1 153 0 1
177 0 1 186 0 1 203 0 1 211 0 1 226 0 1 233 0 1 246 0 1 252 0 1
263 0 1

Dimensions

D
i
m
e
n
s
i
o
n
s

3,4,5

Figure 6.30 Mesh and data for Program 6.7 example

nodal coordinates g num and g coord respectively, in this case customised for a 2:1
slope inclined at 26.57◦ to the horizontal. Alternatives, controlled by itype as shown
in the figure, allow quadrilaterals to be degenerated into triangles (on the face of the
embankment slope) by two different methods.

The problem consists of two materials, the foundation, with properties given by e f,
v f, c f, phi f, psi f and gama f and the embankment, with properties given
by e e, v e, c e, phi e, psi e and gama e.

Because the mesh is updated at every “lift” there is a need for a “local” node freedom
array lnf which is found from the final nf at every stage. lnf is ALLOCATEd and

282 MATERIAL NON-LINEARITY

DEALLOCATEd at each lift. Then, for each lift the geometry and connectivity can be
calculated and hence the number of equations, neq and stiffness matrix diagonal locator
kdiag, operating at that stage of the construction process. The stiffness matrix and load
vector sizes can then be set by an ALLOCATE statement and the viscoplastic algorithm
initiated. The program has the option of applying the gravity loads associated with each
lift in incs increments (3 in this case).

The results are shown in Figure 6.31 and plotted in Figure 6.32, showing the progress of
toe displacement as the embankment is raised. For the case shown, in which the foundation
and embankment are both undrained clays, with cu = 14 kN/m2, the embankment is seen to
fail when its height reaches approximately 4 m. This is exactly what would be predicted by
Taylor’s (1937) charts, which gives, for a 2:1 slope with a depth ratio of D = 3.5, a stability
number equal to 0.18, implying a factor of safety very close to unity. The displacement
vectors corresponding to the unconverged solution when the embankment height reached
4 m are shown in Figure 6.33.

 The final number of elements is: 74
 The final number of freedoms is: 452

 Lift number 1
 There are 288 freedoms
 There are 48 elements after 48 were added
 Increment 1 took 2 iterations to converge
 Increment 2 took 2 iterations to converge
 Increment 3 took 2 iterations to converge
 Max displacement is 0.1948E-03

 Lift number 2
 There are 338 freedoms
 There are 56 elements after 8 were added
 Increment 1 took 2 iterations to converge
 Increment 2 took 2 iterations to converge
 Increment 3 took 2 iterations to converge
 Max displacement is 0.2624E-03

 Lift number 3
 There are 382 freedoms
 There are 63 elements after 7 were added
 Increment 1 took 2 iterations to converge
 Increment 2 took 2 iterations to converge
 Increment 3 took 2 iterations to converge
 Max displacement is 0.2806E-03

 Lift number 4
 There are 420 freedoms
 There are 69 elements after 6 were added
 Increment 1 took 2 iterations to converge
 Increment 2 took 5 iterations to converge
 Increment 3 took 7 iterations to converge
 Max displacement is 0.3311E-03

 Lift number 5
 There are 452 freedoms
 There are 74 elements after 5 were added
 Increment 1 took 15 iterations to converge
 Increment 2 took 45 iterations to converge
 Increment 3 took 500 iterations to converge
 Max displacement is 0.1138E+00

Figure 6.31 Results from Program 6.7 example

MATERIAL NON-LINEARITY 283

0 1 2 3 4 5 6

−2
5

−2
0

−1
5

−1
0

−5
0

dmax(mm)

H(m)

Taylor(1937)
Hmax = 4 m

Figure 6.32 Embankment height versus maximum nodal displacement from Program 6.7
example

Figure 6.33 Displacement vectors corresponding to the unconverged solution when the
embankment height reached 4 m

6.11.2 Excavation

The second important geotechnical construction process involving change of geometry
occurs when material is removed from the ground, either in open excavations (“cuts”) or
in enclosed tunnels. The ground is stressed prior to removal of part of it and this starting
stress state may be difficult to infer from the known history.

The aim in an analysis is that, when a portion of material is excavated, and forces are
applied along the excavated surface, the remaining material should experience the correct
stress relief so that the new “free surface” is indeed stress-free.

Suppose body A is to be removed from body B as shown in Figure 6.34. The stresses to
begin with are {σ A0} and {σB0} respectively. Any external loads are taken into consideration
in forming these stresses prior to the removal of A. Since both bodies are in equilibrium,
forces {FAB} must be applied to body B due to body A to maintain {σB0} and, similarly,

284 MATERIAL NON-LINEARITY

= +

B sB0

A

sA0

FBA

Initial stress state Bodies A and B are in equilibrium

B sB0

B sB1

Excavation forces FBA

A

sA0

FAB

FBA

Figure 6.34 Formulation of excavation forces

Unit weight

g = 20 kN/m3
K0 = 0.5

Initial stresses

sy = gy

sx = sz = K0sy
txy = 0

Top two elements
to be excavated

5 m

2 m

y

x

Figure 6.35 Column of elements before excavation

{FBA} must act on body A. Forces {FAB} and {FBA} are equal in magnitude and opposite in
sign. In general, therefore, the excavation forces acting on a boundary depend on the stress
state in the excavated material and on the self-weight of that material. It can be shown that,

{FBA} =
∫

VA

[B]T {σ A0} dVA + γ

∫
VA

[N]TdVA (6.75)

MATERIAL NON-LINEARITY 285

where [B] is the strain-displacement matrix, VA the excavated volume, [N] the element
shape functions and γ the soil unit weight.

Single-stage and multi-stage excavations give the same results, and in a one-dimensional
situation a stress-free excavated surface results. Figure 6.35 shows a column of five 8-node
elements at rest under self-weight stresses from which the top two elements are to be
excavated. Figure 6.36 shows the excavation force terms computed using 2 × 2 Gauss
points from (6.75), and the resulting forces that need to be applied to the free surface.

When the situation is two- or three-dimensional, equation (6.75) applies again, but in
the corners of excavations, a rather complex stress concentration exists. This means that
the finite element results will be mesh-dependent (Smith and Ho, 1992).

6.6726.676.67

6.67 1.671.67

6.67 1.671.67

6.67 1.671.67

6.67 1.671.67

6.67 1.67

6.67 6.67

3.33 3.33

1.67

1.67 1.67

 20 1.671.67

1.67 1.67

 208.33 8.33

10 10

6.67 6.67
3.33 3.33

6.675 5

6.67 6.67

6.67 6.67

+
∫[B]T{s}dV
Initial
stresses

g∫[N]TdV
Self weight

Excavation forces
applied to free surface=

Figure 6.36 Development of excavation force terms

286 MATERIAL NON-LINEARITY

A program illustrating the analysis of excavation processes is listed as Program 6.8. As
with the previous program, it can be derived from Program 6.3.

Program 6.8 Plane strain construction of an elastic–plastic (Mohr–Coulomb) exca-
vation in layers using 8-node quadrilaterals. Viscoplastic strain method.

PROGRAM p68
!--
! Program 6.8 Plane strain construction of an elastic-plastic
! (Mohr-Coulomb) excavation in layers using 8-node
! quadrilaterals. Viscoplastic strain method.
!--
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,ii,incs,iters,iy,k,layers,limit,ndim=2,ndof=16,nels,neq, &
nip=4,nn,nod=8,nodof=2,noexe,nouts,nprops=7,np_types,nr,nst=4,ntote

REAL(iwp)::c,ddt,det,dq1,dq2,dq3,dsbar,dt,d4=4.0_iwp,d180=180.0_iwp,e,f, &
gamma,lode_theta,one=1.0_iwp,phi,pi,psi,sigm,snph,start_dt=1.e15_iwp, &
tol,two=2.0_iwp,v,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),exele(:),g(:),g_num(:,:),kdiag(:),lnf(:,:),&
nf(:,:),no(:),num(:),solid(:),totex(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),devp(:),eld(:),eload(:),eps(:),erate(:),evp(:), &
evpt(:,:,:),exc_loads(:),flow(:,:),fun(:),gc(:),g_coord(:,:),jac(:,:), &
km(:,:),kv(:),loads(:),m1(:,:),m2(:,:),m3(:,:),oldis(:),points(:,:), &
prop(:,:),stress(:),tensor(:,:,:),tot_d(:,:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nn,np_types; ALLOCATE(prop(nprops,np_types),etype(nels))
READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
num(nod),dee(nst,nst),evpt(nst,nip,nels),coord(nod,ndim),fun(nod), &
solid(nels),jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
g_num(nod,nels),bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst), &
totex(nels),bload(ndof),eload(ndof),erate(nst),evp(nst),devp(nst), &
g(ndof),m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst),stress(nst), &
tot_d(nodof,nn),gc(ndim),tensor(nst,nip,nels),lnf(nodof,nn))

!-----------------------read geometry and connectivity--------------------
READ(10,*)g_coord,g_num
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr)

!---------------lnf is the current nf at each stage of excavation---------
lnf=nf; CALL formnf(lnf); neq=MAXVAL(lnf)
WRITE(11,'(A,I5)')" The initial number of elements is:",nels
WRITE(11,'(A,I5)')" The initial number of freedoms is:",neq

!--------set up the global node numbers and global nodal coordinates------
!-----------------------loop the elements to set starting stresses--------
CALL sample(element,points,weights)
elements_0: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
gamma=prop(4,etype(iel))
gauss_pts_0: DO i=1,nip

CALL shape_fun(fun,points,i); gc=MATMUL(fun,coord)
tensor(2,i,iel)=gc(2)*gamma
tensor(1,i,iel)=prop(7,etype(iel))*tensor(2,i,iel)
tensor(4,i,iel)=tensor(1,i,iel); tensor(3,i,iel)=zero

MATERIAL NON-LINEARITY 287

END DO gauss_pts_0
END DO elements_0; tot_d=zero; ntote=0; solid=1; totex=0; pi=ACOS(-one)

!-----------------------excavate a layer----------------------------------
READ(10,*)nouts; ALLOCATE(no(nouts)); READ(10,*)no,tol,limit,incs,layers
layer_number: DO ii=1,layers
WRITE(11,'(/A,I5)')" Excavation number",ii

!-----------------------read elements to be removed-----------------------
READ(10,*)noexe; ALLOCATE(exele(noexe)); READ(10,*)exele; solid(exele)=0
CALL exc_nods(noexe,exele,g_num,totex,ntote,nf); lnf=nf
CALL formnf(lnf); neq=MAXVAL(lnf)
ALLOCATE(kdiag(neq),exc_loads(0:neq),bdylds(0:neq),oldis(0:neq), &

loads(0:neq)); WRITE(11,'(3(A,I5))')" There are",neq," freedoms"
WRITE(11,'(3(A,I5))')" There are",nels-ntote," elements after", &

noexe," were removed"; kdiag=0
!-----------------------loop the elements to find global arrays sizes-----

elements_1: DO iel=1,nels
num=g_num(:,iel); CALL num_to_g(num,lnf,g); CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq))); exc_loads=zero

!-----------------------calculate excavation load ------------------------
elements_2: DO iel=1,noexe

k=exele(iel); gamma=prop(4,etype(k)); bload=zero; eld=zero
num=g_num(:,k); CALL num_to_g(num,lnf,g)
coord=TRANSPOSE(g_coord(:,num))
gauss_pts_2: DO i=1,nip
CALL shape_fun(fun,points,i); stress=tensor(:,i,k)
CALL bee8(bee,coord,points(i,1),points(i,2),det)
eload=MATMUL(stress,bee); bload=bload+eload*det*weights(i)
eld(nodof:ndof:nodof)=eld(nodof:ndof:nodof)+fun(:)*det*weights(i)

END DO gauss_pts_2; exc_loads(g)=exc_loads(g)+eld*gamma+bload
END DO elements_2; exc_loads(0)=zero

!-----------------------element stiffness integration and assembly--------
kv=zero; dt=start_dt
elements_3: DO iel=1,nels

IF(solid(iel)==0)THEN; e=zero; ELSE
phi=prop(1,etype(iel)); e=prop(5,etype(iel)); v=prop(6,etype(iel))
snph=SIN(phi*pi/d180)
ddt=d4*(one+v)*(one-two*v)/(e*(one-two*v+snph*snph))
IF(ddt<dt)dt=ddt

END IF
km=zero; eld=zero; CALL deemat(dee,e,v); num=g_num(:,iel)
CALL num_to_g(num,lnf,g); coord=TRANSPOSE(g_coord(:,num))
gauss_pts_3: DO i=1,nip
CALL bee8(bee,coord,points(i,1),points(i,2),det)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

END DO gauss_pts_3; CALL fsparv(kv,km,g,kdiag)
END DO elements_3

!-----------------------factorise sand factor excavation load by incs-----
CALL sparin(kv,kdiag); exc_loads=exc_loads/incs

!-----------------------apply excavation loads incrementally--------------
load_incs: DO iy=1,incs

iters=0; oldis=zero; bdylds=zero; evpt=zero
!-----------------------iteration loop -----------------------------------

its: DO
iters=iters+1
WRITE(*,'(A,I3,A,I3,A,I4)')" excavation",ii," increment",iy, &

" iteration",iters

288 MATERIAL NON-LINEARITY

loads=exc_loads+bdylds; CALL spabac(kv,loads,kdiag)
!-----------------------check convergence---------------------------------

CALL checon(loads,oldis,tol,converged)
IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)THEN; bdylds=zero

DO k=1,nn; DO i=1,nodof
IF(lnf(i,k)/=0)tot_d(i,k)=tot_d(i,k)+loads(lnf(i,k))

END DO; END DO
END IF

!-----------------------go round the Gauss Points-------------------------
elements_4: DO iel=1,nels

phi=prop(1,etype(iel)); c=prop(2,etype(iel))
psi=prop(3,etype(iel)); e=prop(5,etype(iel))
v=prop(6,etype(iel)); IF(solid(iel)==0)e=zero; bload=zero
CALL deemat(dee,e,v); num=g_num(:,iel); CALL num_to_g(num,lnf,g)
coord=TRANSPOSE(g_coord(:,num)); eld=loads(g)
gauss_pts_4: DO i=1,nip
CALL bee8(bee,coord,points(i,1),points(i,2),det)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel)
stress=tensor(:,i,iel)+MATMUL(dee,eps)

!-----------------------air element stresses are zero---------------------
IF(solid(iel)==0)stress=zero
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phi,c,sigm,dsbar,lode_theta,f)
IF(converged.OR.iters==limit)THEN; devp=stress; ELSE

IF(f>=zero)THEN; CALL mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(stress,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,stress); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero.OR.(converged.OR.iters==limit))THEN

eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)
END IF

!-----------------------if appropriate update the Gauss point stresses----
IF(converged.OR.iters==limit)tensor(:,i,iel)=stress

END DO gauss_pts_4
!-----------------------compute the total bodyloads vector ---------------

bdylds(g)=bdylds(g)+bload; bdylds(0)=zero
END DO elements_4; IF(converged.OR.iters==limit)EXIT

END DO its
WRITE(11,'(A,I3,A,I5,A)')" Increment",iy," took",iters, &

" iterations to converge"
IF(iy==incs.OR.iters==limit)THEN
WRITE(11,'(A)') " Node x-disp y-disp"
DO i=1,nouts; WRITE(11,'(I5,2E12.4)')no(i),tot_d(:,no(i)); END DO
EXIT

END IF
END DO load_incs; IF(ii==layers.OR.iters==limit)EXIT
DEALLOCATE(kdiag,kv,exc_loads,bdylds,oldis,loads,exele)

END DO layer_number
loads(lnf(1,:))=tot_d(1,:); loads(lnf(2,:))=tot_d(2,:)
g_num(:,totex(:ntote))=0; CALL mesh(g_coord,g_num,12)
CALL dismsh(loads,lnf,0.1_iwp,g_coord,g_num,13)
CALL vecmsh(loads,lnf,0.1_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p68

MATERIAL NON-LINEARITY 289

New scalar integers:
layers number of excavation steps
noexe number of elements to be removed at each step
nouts number of nodes at which output is required
ntote holds running total of number of excavated elements

New dynamic integer arrays:
exele element numbers of removed elements
solid identifies “air” elements (= 0 for “air”, = 1 for solid)
totex holds element numbers for all removed elements

New dynamic real arrays:
exc loads excavation loads
tot d holds running total of nodal displacements

Figure 6.37 shows a square block of “soil” from which a vertical cut is to be excavated.
The figure indicates five possible sequences that would lead to the same final excavation
geometry. Figure 6.38 shows the mesh and data corresponding to excavation case B in a
soil with undrained shear strength cu = 9 kN/m2.

Case A Case B Case C Case D Case E

Figure 6.37 Five ways of excavating a vertical cut

290 MATERIAL NON-LINEARITY

0 m 2 m 3 m 4 m1 m

-1 m

-2 m

-3 m

-4 m

0 m
1

2

3

4

5

6

7

9

10

14

15 57

65

8

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

29

30

31

32

nels nn np_types
16 65 1

prop(phi,c,psi,gamma,e,v,ko)
0.0 9.0 0.0 20.0 1.0e5 0.49 1.0

etype(not needed)

g_coord
 0.00 0.00 0.00 -0.50 0.00 -1.00 0.00 -1.50 0.00 -2.00
 0.00 -2.50 0.00 -3.00 0.00 -3.50 0.00 -4.00 0.50 0.00
 g_coord data for nodes 11-55 have been omitted here
 3.50 -4.00 4.00 0.00 4.00 -0.50 4.00 -1.00 4.00 -1.50
 4.00 -2.00 4.00 -2.50 4.00 -3.00 4.00 -3.50 4.00 -4.00

g_num
 3 2 1 10 15 16 17 11
 5 4 3 11 17 18 19 12
g_num data for elements 3-14 have been omitted here
49 48 47 54 61 62 63 55
51 50 49 55 63 64 65 56

nr,(k,nf(:,k),i=1,nr)
25
 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1
 9 0 0 14 0 0 23 0 0 28 0 0 37 0 0 42 0 0 51 0 0 56 0 0
57 0 1 58 0 1 59 0 1 60 0 1 61 0 1 62 0 1 63 0 1 64 0 1
65 0 0

nouts,(no(i),i=1,nouts)
4
29 30 31 32

tol limit incs layers
0.0001 250 5 2

noexe,(exele(i),i=1,noexe) (for excavation 1)
2
 9 13

noexe,(exele(i),i=1,noexe) (for excavation 2)
 2
10 14

Figure 6.38 Mesh and data for Program 6.8 example

MATERIAL NON-LINEARITY 291

This program allows excavations over general shapes of meshes, so it is the user’s
responsibility to provide the global coordinates g coord and element numbering g num
of the original unexcavated configuration as data. Figure 6.38 shows a truncated data set in
the interests of a compact presentation. The same concept of a “local” node freedom array
lnf as in the previous program is used again. In a preliminary loop, labelled elements 0
the ground is stressed by its own weight. The soil model allows for 7 properties read as
usual into the array prop. Note that due to the simplicity of the constitutive model, a very
limited range of Ko values could be achieved automatically, so Ko is input as data as the
7th property read into the array prop.

Following the coordinates, element numbering, and boundary condition data, the data
requires the number of nodes at which output will be required nouts, followed by the
output node numbers no, the plastic tolerance tol, the iteration ceiling limit, the number
of load increments per excavation incs, and the number of excavations layers.

The final block of data gives the excavation sequence. For each of the excavation steps,
the number of elements to be removed noexe and the element numbers exele must be
read. The subroutine exc nods computes the node numbers removed at each excavation
step. Excavated “air” elements are given a stiffness of zero (E = 0) and the excavated
nodes are automatically fully restrained and hence removed from the assembly process.

As in the previous program, for each “layer” the geometry is modified and a new
stiffness matrix and load vectors formed. Arrays that change their size from one excavation
to the next therefore involve ALLOCATE and DEALLOCATE statements.

For the case considered, the vertical excavation (case B) is to occur in two steps
layers=2 leading to a cut of depth 2 m. As can be seen from the data, the first excavation
removes elements 9 and 13, and the second excavation, removes elements 10 and 14.
The output (for case B) shown as Figure 6.39 and plotted in Figure 6.40, indicates that

The initial number of elements is: 16
The initial number of freedoms is: 96

Excavation number 1
There are 86 freedoms
There are 14 elements after 2 were removed
Increment 1 took 2 iterations to converge
Increment 2 took 2 iterations to converge
Increment 3 took 2 iterations to converge
Increment 4 took 2 iterations to converge
Increment 5 took 2 iterations to converge
 Node x-disp y-disp
 29 0.7635E-05 -0.5876E-04
 30 0.9240E-04 -0.3784E-04
 31 0.8605E-04 -0.1057E-04
 32 0.1102E-03 -0.1652E-05

Excavation number 2
There are 76 freedoms
There are 12 elements after 2 were removed
Increment 1 took 2 iterations to converge
Increment 2 took 2 iterations to converge
Increment 3 took 5 iterations to converge
Increment 4 took 22 iterations to converge
Increment 5 took 250 iterations to converge
 Node x-disp y-disp
 29 -0.3073E-03 -0.1641E-02
 30 0.9790E-03 -0.1531E-02
 31 0.2371E-02 -0.1282E-02
 32 0.4044E-02 -0.7897E-03

Figure 6.39 Results from Program 6.8 example

292 MATERIAL NON-LINEARITY

0 0.5 1 1.5 2 2.5

−1
5

−1
0

−5
0

×1
0

− 4
d31

H

Taylor(1937)
Hcr = 1.73 m

Figure 6.40 Excavation height versus y-displacement at node 31 from Program 6.8
example

Figure 6.41 Displacement vectors corresponding to the unconverged solution when the
excavation height reached 2 m

MATERIAL NON-LINEARITY 293

the displacement at node 31 (on the excavation face) increased very significantly after
the second excavation. For a vertical cut consisting of undrained clay with a strength
of 9 kN/m2, Taylor (1937) predicts a critical height of approximately 1.73 m which is
well within the range of the second excavation. Figure 6.41 gives the corresponding nodal
displacement vectors.

6.12 Undrained analysis

Little mention has been made so far of the role of the dilation angle ψ on the calculation
of collapse loads in Mohr–Coulomb materials. The reason is that the dilation angle governs
volumetric strains during plastic yield and will have little influence on collapse loads in
“unconfined” problems. The examples considered so far in this chapter have been relatively
unconfined (e.g. slope stability, earth pressures).

“Undrained” soils are two-phase particulate materials in which the voids between the
particles are full of water. In addition, the permeability of the material may be sufficiently
low or the loads applied so quickly that pore water pressures that are generated have no
time to dissipate during the time scale of the analysis.

In the case of undrained clays that have soft soil skeletons, the shear strength appears
to be constant and given by an undrained “cohesion” cu and φu = 0. In such materials, the
von Mises or Tresca failure criterion can be successfully applied, as was demonstrated in
Program 6.1.

In the case of saturated soils with hard skeletons, such as dense quartz sand, shear
stresses will tend to cause dilation which will be resisted by tensile water pressures in
the voids of the soil. In turn, the effective stresses between particles will rise and, in a
frictional material, the shear stresses necessary to cause failure will also rise. Thus, a dense
sand, far from exhibiting a constant shear strength when sheared undrained, would have
infinite strength provided the pore fluid could sustain infinite suction and the grains did
not crush. In reality, a finite shear strength is recorded due to either grain crushing or pore
fluid cavitation.

To perform analyses of this type it is necessary to separate stresses into pore water
pressures (isotropic) and effective interparticle stresses (isotropic + shear). Such a treatment
has already been described in Section 2.18 in terms of time dependent “consolidation”
properties of two-phase materials (Biot’s poro-elastic theory) and programs to deal with
this will be found in Chapter 9. However, the undrained problem pertaining at the beginning
of the Biot process is so important in soil mechanics that it merits special treatment.

Naylor (1974) has described a method of separating the stresses into pore pressures
and effective stresses. The method uses as its basis the concept of effective stress in matrix
notation; thus

{σ } = {σ ′} + {u} (6.76)

where {σ } is the total stress, {σ ′} the effective stress, and {u} the pore pressure.
The elastic stress–strain relationships can be written as,

{σ ′} = [D′]{ε} (6.77)

294 MATERIAL NON-LINEARITY

and

{u} = [Du] {ε} (6.78)

Combining these equations gives,

{σ } = [D] {ε} (6.79)

where

[D] = [D′] + [Du] (6.80)

The matrix [D′] is the familiar elastic stress–strain matrix in terms of effective Young’s
modulus E′ and Poisson’s ratio v′ from (2.77). The matrix [Du] contains the apparent bulk
modulus of the fluid Ke in the following locations:

[Du] =

Ke Ke 0 Ke

Ke Ke 0 Ke

0 0 0 0
Ke Ke 0 Ke

 (6.81)

assuming that the third column corresponds to the shear terms in a two-dimensional plane–
strain analysis.

To implement this method in the programs described in this chapter, it is necessary
to form the global stiffness matrix using the total stress–strain matrix [D], while effective
stresses for use in the failure function are computed from total strains using the effective
stress–strain matrix [D′]. Pore pressures are simply computed from:

{u} = Ke ({εr} + {εz} + {εθ })

1
1
0
1

 (6.82)

assuming an axisymmetric analysis.
For relatively large values of Ke, the analysis is insensitive to the exact magnitude of

Ke. For axisymmetric analyses, Griffiths (1985) defined the dimensionless group,

βt = (1 − 2ν′)Ke

E′ (6.83)

and showed that for an undrained triaxial test in a non-dilative material (ψ = 0), consoli-
dated at a cell pressure of σ3, the deviator stress at failure would be given by,

Df = σ3(Kp − 1)(3βt + 1)

(Kp + 2)βt + 1
(6.84)

where Kp = tan2(45◦ + φ′/2).

MATERIAL NON-LINEARITY 295

In the limit as βt → ∞, this expression tends to,

Df = 3σ3(Kp − 1)

(Kp + 2)
(6.85)

although for numerical purposes, undrained behaviour is essentially captured for βt > 20

Program 6.9 Axisymmetric “undrained” strain of an elastic–plastic (Mohr–Cou-
lomb) solid using 8-node rectangular quadrilaterals. Viscoplastic strain method.

PROGRAM p69
!---
! Program 6.9 Axisymmetric ‘undrained' strain of an elastic-plastic
! (Mohr-Coulomb) solid using 8-node rectangular
! quadrilaterals. Viscoplastic strain method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,incs,iters,iy,k,limit,ndim=2,ndof=16,nels, &
neq,nip=4,nn,nod=8,nodof=2,nr,nst=4,nxe,nye

REAL(iwp)::bulk,c,cons,det,dq1,dq2,dq3,dsbar,dt,d4=4.0_iwp, &
d180=180.0_iwp,e,f,lode_theta,one=1.0_iwp,phi,pi,presc,psi,sigm,snph, &
penalty=1.e20_iwp,tol,two=2.0_iwp,v,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:),no(:), &
node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),devp(:),eld(:),eload(:),eps(:),erate(:), &
etensor(:,:,:),evp(:),evpt(:,:,:),flow(:,:),fun(:),gc(:),g_coord(:,:), &
jac(:,:),km(:,:),kv(:),loads(:),m1(:,:),m2(:,:),m3(:,:),oldis(:), &
points(:,:),pore(:,:),sigma(:),storkv(:),stress(:),tensor(:,:,:), &
totd(:),weights(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,phi,c,psi,e,v,bulk,cons
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
x_coords(nxe+1),y_coords(nye+1),num(nod),evpt(nst,nip,nels), &
coord(nod,ndim),g_g(ndof,nels),tensor(nst,nip,nels),fun(nod), &
etensor(nst,nip,nels),dee(nst,nst),pore(nip,nels),stress(nst), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),bload(ndof), &
eload(ndof),erate(nst),evp(nst),devp(nst),g(ndof),m1(nst,nst), &
m2(nst,nst),m3(nst,nst),flow(nst,nst),gc(ndim))

READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq))

!-----------------------loop the elements to find global arrays sizes-----
kdiag=0
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

296 MATERIAL NON-LINEARITY

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I7))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------add fluid bulk modulus effective dee matrix-------
CALL deemat(dee,e,v); pi=ACOS(-one)
DO i=1,nst; DO k=1,nst; IF(i/=3.AND.k/=3)dee(i,k)=dee(i,k)+bulk
END DO; END DO; snph=SIN(phi*pi/d180)

dt=d4*(one+ v)*(one-two*v)/(e*(one-two*v+snph*snph))
CALL sample(element,points,weights); kv=zero; tensor=zero; etensor=zero

!-----------------------element stiffness integration and assembly--------
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero
gauss_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i)
CALL bee8(bee,coord,points(i,1),points(i,2),det)
gc=MATMUL(fun,coord); bee(4,1:ndof-1:2)=fun(:)/gc(1)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)*gc(1)
tensor(1:2,i,iel)=cons; tensor(4,i,iel)=cons

END DO gauss_pts_1; CALL fsparv(kv,km,g,kdiag)
END DO elements_2

!-----------------------read displacement data and factorise equations----
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms),no(fixed_freedoms),&

storkv(fixed_freedoms))
READ(10,*)(node(i),sense(i),i=1,fixed_freedoms)
DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
kv(kdiag(no))=kv(kdiag(no))+penalty; storkv=kv(kdiag(no))

END IF; CALL sparin(kv,kdiag); CALL deemat(dee,e,v)
!-----------------------displacement increment loop-----------------------
READ(10,*)tol,limit,incs,presc
WRITE(11,'(/A)')" step disp dev stress pore press iters"
oldis=zero; totd=zero
disp_incs: DO iy=1,incs
iters=0; bdylds=zero; evpt=zero

!-----------------------plastic iteration loop----------------------------
its: DO

iters=iters+1
WRITE(*,'(A,E11.3,A,I4)')" displacement",iy*presc," iteration",iters
loads=zero; loads(no)=storkv*presc; loads=loads+bdylds
CALL spabac(kv,loads,kdiag)

!-----------------------check plastic convergence-------------------------
CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.

!-----------------------go round the Gauss points ------------------------
elements_3: DO iel=1,nels
bload=zero; num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
g=g_g(:,iel); eld=loads(g)
gauss_pts_2: DO i=1,nip

CALL shape_fun(fun,points,i)
CALL bee8(bee,coord,points(i,1),points(i,2),det)
gc=MATMUL(fun,coord); bee(4,1:ndof-1:2)=fun(:)/gc(1)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel); sigma=MATMUL(dee,eps)
stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phi,c,sigm,dsbar,lode_theta,f)
IF(f>=zero)THEN

MATERIAL NON-LINEARITY 297

CALL mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(stress,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,stress); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)
eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)*gc(1)

END IF
!------update the Gauss Point stresses and calculate pore pressures-------

IF(converged.OR.iters==limit)THEN
tensor(:,i,iel)=stress
etensor(:,i,iel)=etensor(:,i,iel)+eps+evpt(:,i,iel)
pore(i,iel)=(etensor(1,i,iel)+etensor(2,i,iel)+ &

etensor(4,i,iel))*bulk
END IF

END DO gauss_pts_2
!-----------------------compute the total bodyloads vector ---------------

bdylds(g)=bdylds(g)+bload; bdylds(0)=zero
END DO elements_3; IF(converged.OR.iters==limit)EXIT

END DO its; totd=totd+loads
WRITE(11,'(I5,3E12.4,I5)')iy,totd(no(1)),dsbar, pore(1,1),iters
IF(iters==limit)EXIT

END DO disp_incs
CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p69

New scalar reals:
bulk apparent fluid bulk modulus (Ke)
cons consolidating stress (σ3)

New dynamic real arrays:
etensor holds running total of all integrating point strain terms
pore holds running total of all integrating point pore pressures

The example shown in Figure 6.42 represents a single axisymmetric 8-node element
subjected to vertical compressive displacement increments along its top face. The analysis
is of a “CU” triaxial test, in which the sample has been consolidated under a cell pressure of
σ3 = 100 kN/m2, followed by undrained axial loading. In order to compute pore pressures
during undrained loading, it is necessary to update strains (etensor) as well as stresses
after each increment. The pore pressure is also computed from equation (6.82).

This program assumes a homogeneous material described by a Mohr–Coulomb failure
criterion. In addition to the usual shear strength, dilation, and elastic parameters, the data
file must provide the apparent fluid bulk modulus bulk and the initial consolidation stress
cons

After the effective stress–strain matrix has been augmented by the fluid bulk modulus
according to (6.80), the global stiffness matrix is formed in the usual way. Prescribed axial
displacement increments are then applied to the top of the element using the “penalty”
method as used previously in Program 6.4.

Just before the displacement increment loop begins, the subroutine deemat is called to
form the effective stress–strain matrix. The data shown in Figure 6.42 is for an undrained

298 MATERIAL NON-LINEARITY

nxe nye
1 1

prop(phi,c,psi,e,v,ke)
30.0 0.0 0.0 2.5e4 0.25 1.0e6

cons
100.0

x_coords y_coords
0.0 1.0
0.0 2.0

nr,(k,nf(:,k),i=1,nr)
5
1 0 1 -2 0 1 3 0 0 5 1 0 8 1 0

fixed_freedoms,(node(i),sense(i),i=1,fixed_freedoms)
3
1 2 4 2 6 2

tol limit incs presc
0.0001 50 8 -2.0e-3

2

3 5

7

8

41 6 E’= 2.5×104kN/m2
u’= 0.25
Ke = 10

6kN/m2

f’= 30°
c’= 0
s3= 100kN/m

2

cLcL rigid top platen, displaced vertically

2 m

1 m

Figure 6.42 Mesh and data for Program 6.9 example

“sand” with the following properties:

φ′ = 30◦
c′ = 0
E′ = 2.5 × 104 kN/m2

ν′ = 0.25
Ke = 106 kN/m2

The triaxial specimen has been consolidated under a compressive cell pressure of
100 kN/m2 before undrained loading commences.

The output of two analyses is presented in Figure 6.43. In analysis (a), ψ = 0 and in
analysis (b), ψ = 30◦. As expected, the inclusion of dilation has a considerable impact
on the response in this “confined” problem. The deviator stress versus vertical deflection
has been plotted for both undrained cases in Figure 6.44 together with the drained result
obtained by setting Ke = 0. In case (a), where there is no plastic volume change (ψ = 0),

MATERIAL NON-LINEARITY 299

(b) y = 30°

There are 10 equations and the skyline storage is 55

 step disp dev stress pore press iters
 1 -0.2000E-02 0.2990E+02 -0.9804E+01 2
 2 -0.4000E-02 0.5980E+02 -0.1961E+02 2
 3 -0.6000E-02 0.8971E+02 -0.2941E+02 2
 4 -0.8000E-02 0.1196E+03 -0.3922E+02 2
 5 -0.1000E-01 0.1299E+03 -0.2960E+02 3
 6 -0.1200E-01 0.1439E+03 -0.2363E+02 3
 7 -0.1400E-01 0.1570E+03 -0.1683E+02 3
 8 -0.1600E-01 0.1703E+03 -0.1022E+02 3

There are 10 equations and the skyline storage is 55

 step disp dev stress pore press iters
 1 -0.2000E-02 0.2990E+02 -0.9804E+01 2
 2 -0.4000E-02 0.5980E+02 -0.1961E+02 2
 3 -0.6000E-02 0.8971E+02 -0.2941E+02 2
 4 -0.8000E-02 0.1196E+03 -0.3922E+02 2
 5 -0.1000E-01 0.1209E+03 -0.3965E+02 4
 6 -0.1200E-01 0.1210E+03 -0.3966E+02 4
 7 -0.1400E-01 0.1210E+03 -0.3966E+02 4
 8 -0.1600E-01 0.1210E+03 -0.3966E+02 4

(a) y = 0

Figure 6.43 Results from Program 6.9 example with (a) ψ = 0 and (b) ψ = 30◦

0 5 10 15 20 25

×10−3

0
50

10
0

15
0

20
0

D

dv

Griffiths(1985)
Df = 120.8 kN/m

2

Drained solution
Df = 200 kN/m

2

b) undrained,y = 30°

a) undrained,y = 0

Figure 6.44 Vertical displacement versus deviator stress for drained and undrained triaxial
loading. (a) ψ = 0 and (b) ψ = 30◦

300 MATERIAL NON-LINEARITY

the deviator stress reaches a peak of 121 kN/m2, which is in close agreement with the
closed form solution of 120.8 kN/m2 (Griffiths, 1985) given by (6.84) for this problem
with βt = 20.

The deviator stress at failure in case (a) is significantly smaller than the drained value
of 200 kN/m2 due to the compressive pore pressures generated during elastic compression.
Case (b), which includes an associated flow rule (ψ = φ′ = 30◦), shows no sign of failure
due to the tendency for dilation. In this case, the pore pressures continue to fall and
the deviator stress continues to rise. This trend would continue indefinitely unless some
additional criterion (e.g. cavitation or particle crushing) was introduced. It may also be
noted from Figure 6.44, that the undrained response is slightly stiffer than the drained
response at small strains.

While the presence of dilation has a very significant influence on undrained behaviour,
it has little influence on the deviator stress at failure in the drained case.

Program 6.10 Three-dimensional strain analysis of an elastic–plastic (Mohr–Cou-
lomb) slope using 20-node hexahedra. Viscoplastic strain method.

PROGRAM p610
!---
! Program 6.10 Three-dimensional strain analysis of an elastic-plastic
! (Mohr-Coulomb) slope using 20-node hexahedra. Viscoplastic
! strain method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,ifix,iters,iy,limit,ndim=3,ndof=60,nels,neq,nip=8,nn, &
nod=20,nodof=3,nprops=6,np_types,nsrf,nst=6,nx1,nx2,ny1,ny2,nze

REAL(iwp)::cf,ddt,det,dq1,dq2,dq3,dsbar,dt=1.0e15_iwp,d1,d4=4.0_iwp, &
d180=180.0_iwp,e,f,fmax,h1,h2,lode_theta,one=1.0_iwp,phi,phif,pi,psi, &
psif,sigm,snph,start_dt=1.e15_iwp,s1,tnph,tnps,tol,two=2.0_iwp,v,w1,w2,&
zero=0.0_iwp

CHARACTER(LEN=80)::element='hexahedron'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
num(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),devp(:),eld(:),eload(:),eps(:),erate(:),evp(:), &
evpt(:,:,:),flow(:,:),fun(:),gravlo(:),g_coord(:,:),jac(:,:),km(:,:), &
kv(:),loads(:),m1(:,:),m2(:,:),m3(:,:),oldis(:),points(:,:),prop(:,:), &
sigma(:),srf(:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res');

!---(ifix=1) smooth-smooth; (ifix=2) rough-smooth; (ifix=3) rough-rough---
READ(10,*)w1,s1,w2,h1,h2,d1,nx1,nx2,ny1,ny2,nze,ifix,np_types
nels=(nx1*ny1+ny2*(nx1+nx2))*nze
nn=((3*(ny1+ny2)+2)*nx1+2*(ny1+ny2)+1+(3*ny2+2)*nx2)*(1+nze)+ &
((ny1+ny2+1)*(nx1+1)+(ny2+1)*nx2)*nze

ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
num(nod),dee(nst,nst),evpt(nst,nip,nels),coord(nod,ndim),fun(nod), &
g_g(ndof,nels),jac(ndim,ndim),der(ndim,nod),etype(nels), &
deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
eps(nst),sigma(nst),bload(ndof),eload(ndof),erate(nst),evp(nst), &
devp(nst),g(ndof),m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst), &
prop(nprops,np_types))

MATERIAL NON-LINEARITY 301

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
CALL emb_3d_bc(ifix,nx1,nx2,ny1,ny2,nze,nf); neq=MAXVAL(nf)
ALLOCATE(loads(0:neq),bdylds(0:neq),oldis(0:neq),gravlo(0:neq),kdiag(neq))

!-----------------------loop the elements to find global arrays sizes-----
kdiag=0
elements_1: DO iel=1,nels
CALL emb_3d_geom(iel,nx1,nx2,ny1,ny2,nze,w1,s1,w2,h1,h2,d1,coord,num)
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(A,I7,A,I8)') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); kv=zero; gravlo=zero
!-----------------------element stiffness integration and assembly--------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(5,etype(iel)),prop(6,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; eld=zero
gauss_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
eld(nodof:ndof:nodof)=eld(nodof:ndof:nodof)+fun(:)*det*weights(i)

END DO gauss_pts_1
CALL fsparv(kv,km,g,kdiag); gravlo(g)=gravlo(g)-eld*prop(4,etype(iel))

END DO elements_2
!-----------------------factorise equations-------------------------------
CALL sparin(kv,kdiag); pi=ACOS(-one)

!-----------------------trial strength reduction factor loop--------------
READ(10,*)tol,limit,nsrf; ALLOCATE(srf(nsrf)); READ(10,*)srf
WRITE(11,'(/A)')" srf max disp iters"
srf_trials: DO iy=1,nsrf
dt=start_dt
DO i=1,np_types

phi=prop(1,i); tnph=TAN(phi*pi/d180); phif=ATAN(tnph/srf(iy))
snph=SIN(phif); e=prop(5,i); v=prop(6,i)
ddt=d4*(one+v)*(one-two*v)/(e*(one-two*v+snph**2)); IF(ddt<dt)dt=ddt

END DO; iters=0; bdylds=zero; evpt=zero; oldis=zero
!-----------------------plastic iteration loop----------------------------

its: DO
fmax=zero; iters=iters+1; loads=gravlo+bdylds
CALL spabac(kv,loads,kdiag); loads(0)=zero

!-----------------------check plastic convergence-------------------------
CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points ------------------------
elements_3: DO iel=1,nels
bload=zero; phi=prop(1,etype(iel)); tnph=TAN(phi*pi/d180)
phif=ATAN(tnph/srf(iy))*d180/pi; psi=prop(3,etype(iel))
tnps=TAN(psi*pi/d180); psif=ATAN(tnps/srf(iy))*d180/pi
cf=prop(2,etype(iel))/srf(iy); e=prop(5,etype(iel))
v=prop(6,etype(iel)); CALL deemat(dee,e,v); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_points_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)

302 MATERIAL NON-LINEARITY

eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel)
sigma=MATMUL(dee,eps); CALL invar(sigma,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phif,cf,sigm,dsbar,lode_theta,f); IF(f>fmax)fmax=f
IF(converged.OR.iters==limit)THEN; devp=sigma; ELSE
IF(f>=zero.OR.(converged.OR.iters==limit))THEN

CALL mocouq(psif,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(sigma,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,sigma); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero.OR.(converged.OR.iters==limit))THEN
eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)

END IF
END DO gauss_points_2

!-----------------------compute the total bodyloads vector----------------
bdylds(g)=bdylds(g)+bload; bdylds(0)=zero

END DO elements_3
WRITE(*,'(A,F7.2,A,I4,A,F8.3)') &
" srf",srf(iy)," iteration",iters," F_max",fmax

IF(converged.OR.iters==limit)EXIT
END DO its; WRITE(11,'(F7.2,E12.4,I5)')srf(iy),MAXVAL(ABS(loads)),iters
IF(iters==limit)EXIT

END DO srf_trials
STOP
END PROGRAM p610

New scalar integers:
ifix sets boundary conditions,

(1 smooth-smooth, 2 rough-smooth, 3 rough-rough)
nze number of elements in z-direction

New scalar reals:
d1 depth of mesh in z-direction

This program demonstrates 3D plasticity analysis using 20-noded hexahedral elements
with “reduced” (nip=8) integration. The example is of a simple 3D slope stability analysis,
and the program is very similar to its 2D counterpart Program 6.3. Only three additional
inputs are required as compared with the data for Program 6.3. The first is ifix which
fixes the front and back faces of the mesh (in the z-direction) to either “rough” or “smooth”.
When ifix=1, both boundaries are smooth, and if the slope is homogeneous the analysis
essentially reduces to plane strain, when ifix=2 the front face is rough and the back
face smooth, implying a line of symmetry along the centre of the embankment, and when
ifix=3 both boundaries are rough, enabling a full 3D analysis of a slope that may have
non-uniform and non-symmetric properties in the crest (z-) direction. The second new
input parameter is nze, which defines the number of slices of elements required in the
z-direction, and the third is d1 which represents the depth of the slope in the z-direction.

Two new subroutines, emb 3d bc and emb 3d geom are introduced to generate,
respectively, the nodal freedom array nf, and the nodal coordinates and element node
numbering g coord and g num. The subroutines create a rather simple 3D geometry in

MATERIAL NON-LINEARITY 303

which the 2D cross-section (see Figure 6.15) is extrapolated uniformly in the z-direction.
Users are invited to introduce their own mesh-generation techniques to study more realistic
3D geometries.

The slope and data to be considered are shown in Figure 6.45. The figure shows a 2:1
slope consisting of an embankment of height 10 m resting on a foundation of depth 5 m. The

0

10

20

30

40

50

60

x

0

10

20

30

40

z

–10
–5
0

y

rough

smooth

x z

y

w1 s1 w2 h1 h2 d1
20.0 20.0 20.0 10.0 5.0 40.0

nx1 nx2 ny1 ny2 nze
5 3 5 3 5

ifix np_types
2 5

prop(phi,c,psi,gamma,e,v)
0.0 60.0 0.0 20.0 1.0e5 0.3
0.0 55.0 0.0 20.0 1.0e5 0.3
0.0 50.0 0.0 20.0 1.0e5 0.3
0.0 45.0 0.0 20.0 1.0e5 0.3
0.0 40.0 0.0 20.0 1.0e5 0.3

etype(i),i=1,nels (x then y then z)
1 1
1 1
2 2
2 2
3 3
3 3
4 4
4 4
5 5
5 5

tol limit
0.0001 1000

nsrf,(srf(i),i=1,nsrf)
6
1.0 1.4 1.5 1.55 1.58 1.60

c u
=6
0

c u
=5
5

c u
=5
0

c u
=4
5

c u
=4
0

Figure 6.45 Mesh and data for Program 6.10 example

304 MATERIAL NON-LINEARITY

depth of the mesh in the z-direction is 40 m d1=40, and the boundary condition parameter
is set to ifix=2 implying a line of symmetry at the z = 40 m plane (rough-smooth), so
the “actual” embankment has a depth of 80 m.

Three-dimensional analysis involves very significant storage requirements compared
with 2D, so the example involves a quite crude mesh with 5 slices of elements in the
z-direction nze=5. In this case the slope is assumed to have a linearly varying undrained
strength varying from 60 kN/m2 at the abutment to 40 kN/m2 at the centreline. There are
thus 5 property types (np types=5) in the data file, one for each slice.

The etype data maps the properties onto the elements, which are numbered, starting at
the origin, first in the x-direction, then in the y-direction (top to bottom) and finally in the
z-direction. The tolerance tol and iteration ceiling limit are set as usual, followed by
the number of trial strength reduction factors nsrf and the strength reduction factor values
read into srf. The iteration ceiling has been set higher than usual at 1,000 to emphasise
the onset of failure.

The output from the analysis is given in Figure 6.46 and plotted in Figure 6.47. The
results indicate that the factor of safety of the slope is about 1.6. Figure 6.48 shows the

There are 2972 equations and the skyline storage is 1538004

 srf max disp iters
 1.00 0.2266E-01 16
 1.40 0.3123E-01 77
 1.50 0.3930E-01 208
 1.55 0.4971E-01 380
 1.58 0.6363E-01 703
 1.60 0.9308E-01 1000

Figure 6.46 Results from Program 6.10 example

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.
1

0.
08

0.
06

0.
04

0.
02

SRF

dmax

FS ≈ 1.6

16

77

380

703

208

Iterations

1000+

Figure 6.47 Plot of maximum displacement versus Strength Reduction Factor from
Program 6.10 example

MATERIAL NON-LINEARITY 305

0

10

20

30

40

50

60

x

0

10

20

30

40

z

–10

–5

0

y

Figure 6.48 Deformed mesh at failure from Program 6.10 example

deformed mesh corresponding to this unconverged solution. The slumping of the slope
towards its centreline is clearly seen.

Program 6.11 Three-dimensional strain analysis of an elastic–plastic (Mohr–Cou-
lomb) slope using 20-node hexahedra. Viscoplastic strain method. No global stiffness
matrix assembly. Diagonally preconditioned conjugate gradient solver.

PROGRAM p611
!---
! Program 6.11 Three-dimensional strain analysis of an elastic-plastic
! (Mohr-Coulomb) slope using 20-node hexahedra. Viscoplastic
! strain method. No global stiffness matrix assembly.
! Diagonally preconditioned conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,cg_tot,i,iel,ifix,iters,iy,k,limit,ndim=3, &
ndof=60,nels,neq,nip=8,nn,nod=20,nodof=3,nprops=6,np_types,nsrf,nst=6, &
nx1,nx2,ny1,ny2,nze

REAL(iwp)::alpha,beta,cf,cg_tol,ddt,det,dq1,dq2,dq3,dsbar,dt=1.0e15_iwp, &
d1,d4=4.0_iwp,d180=180.0_iwp,e,f,fmax,h1,h2,lode_theta,one=1.0_iwp,phi,&
phif,pi,psi,psif,sigm,snph,start_dt=1.e15_iwp,s1,tnph,tnps,tol, &
two=2.0_iwp,up,v,w1,w2,zero=0.0_iwp

CHARACTER(LEN=80)::element='hexahedron'; LOGICAL::converged,cg_converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),num(:)
REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),d(:), &
dee(:,:),der(:,:),deriv(:,:),devp(:),diag_precon(:),eld(:),eload(:), &

306 MATERIAL NON-LINEARITY

eps(:),erate(:),evp(:),evpt(:,:,:),flow(:,:),fun(:),gravlo(:), &
g_coord(:,:),jac(:,:),km(:,:),loads(:),m1(:,:),m2(:,:),m3(:,:), &
oldis(:),p(:),points(:,:),prop(:,:),sigma(:),srf(:),storkm(:,:,:),u(:),&
weights(:),x(:),xnew(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')

!---(ifix=1) smooth-smooth; (ifix=2) rough-smooth; (ifix=3) rough-rough---
READ(10,*)w1,s1,w2,h1,h2,d1,nx1,nx2,ny1,ny2,nze,ifix, &
cg_tol,cg_limit,np_types

nels=(nx1*ny1+ny2*(nx1+nx2))*nze
nn=((3*(ny1+ny2)+2)*nx1+2*(ny1+ny2)+1+(3*ny2+2)*nx2)*(1+nze)+ &
((ny1+ny2+1)*(nx1+1)+(ny2+1)*nx2)*nze

ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &
num(nod),dee(nst,nst),evpt(nst,nip,nels),coord(nod,ndim),fun(nod), &
g_g(ndof,nels),jac(ndim,ndim),der(ndim,nod),etype(nels), &
deriv(ndim,nod),g_num(nod,nels),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
eps(nst),sigma(nst),bload(ndof),eload(ndof),erate(nst),evp(nst), &
devp(nst),g(ndof),m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst), &
prop(nprops,np_types),storkm(ndof,ndof,nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
CALL emb_3d_bc(ifix,nx1,nx2,ny1,ny2,nze,nf); neq=MAXVAL(nf)
WRITE(11,'(A,I7,A)')" There are",neq," equations"
ALLOCATE(loads(0:neq),bdylds(0:neq),oldis(0:neq),gravlo(0:neq),p(0:neq), &
x(0:neq),xnew(0:neq),u(0:neq),diag_precon(0:neq),d(0:neq))

!-----------------------loop the elements to find global array sizes-----
elements_1: DO iel=1,nels
CALL emb_3d_geom(iel,nx1,nx2,ny1,ny2,nze,w1,s1,w2,h1,h2,d1,coord,num)
g_num(:,iel)=num; CALL num_to_g(num,nf,g)
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1
CALL sample(element,points,weights); diag_precon=zero; gravlo=zero

!----------element stiffness integration, storage and preconditioner------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(5,etype(iel)),prop(6,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; eld=zero
gauss_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
eld(nodof:ndof:nodof)=eld(nodof:ndof:nodof)+fun(:)*det*weights(i)

END DO gauss_pts_1; storkm(:,:,iel)=km
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); END DO
gravlo(g)=gravlo(g)-eld*prop(4,etype(iel))

END DO elements_2; diag_precon(1:)=one/diag_precon(1:); pi=ACOS(-one)
!-----------------------trial strength reduction factor loop--------------
READ(10,*)tol,limit,nsrf; ALLOCATE(srf(nsrf)); READ(10,*)srf
WRITE(11,'(/A)')" srf max disp iters cg iters/plastic iter"
srf_trials: DO iy=1,nsrf
dt=start_dt
DO i=1,np_types

phi=prop(1,i); tnph=TAN(phi*pi/d180); phif=ATAN(tnph/srf(iy))
snph=SIN(phif); e=prop(5,i); v=prop(6,i)
ddt=d4*(one+v)*(one-two*v)/(e*(one-two*v+snph**2)); IF(ddt<dt)dt=ddt

END DO; iters=0; bdylds=zero; evpt=zero; oldis=zero;
cg_tot=0; diag_precon(0)=zero

!-----------------------plastic iteration loop----------------------------
its: DO

MATERIAL NON-LINEARITY 307

iters=iters+1; loads=gravlo+bdylds; d=diag_precon*loads; p=d; x=zero;
cg_iters=0; fmax=zero

!-----------------------pcg equation solution-----------------------------
pcg: DO
cg_iters=cg_iters+1; u=zero
elements_3 : DO iel=1,nels

CALL deemat(dee,prop(2,etype(iel)),prop(3,etype(iel)))
g=g_g(:,iel); km=storkm(:,:,iel); u(g)=u(g)+MATMUL(km,p(g))

END DO elements_3
up=DOT_PRODUCT(loads,d); alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha
loads=loads-u*alpha; d=diag_precon*loads
beta=DOT_PRODUCT(loads,d)/up; p=d+p*beta
CALL checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg; cg_tot=cg_tot+cg_iters; loads=xnew; loads(0)=zero
!-----------------------check plastic convergence-------------------------

CALL checon(loads,oldis,tol,converged); IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points ------------------------
elements_4: DO iel=1,nels
bload=zero; phi=prop(1,etype(iel)); tnph=TAN(phi*pi/d180)
phif=ATAN(tnph/srf(iy))*d180/pi; psi=prop(3,etype(iel))
tnps=TAN(psi*pi/d180); psif=ATAN(tnps/srf(iy))*d180/pi
cf=prop(2,etype(iel))/srf(iy); e=prop(5,etype(iel))
v=prop(6,etype(iel)); CALL deemat(dee,e,v); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); eld=loads(g)
gauss_points_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel)
sigma=MATMUL(dee,eps); CALL invar(sigma,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phif,cf,sigm,dsbar,lode_theta,f); IF(f>fmax)fmax=f
IF(converged.OR.iters==limit)THEN; devp=sigma; ELSE
IF(f>=zero.OR.(converged.OR.iters==limit))THEN

CALL mocouq(psif,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(sigma,m1,m2,m3); flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,sigma); evp=erate*dt
evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero.OR.(converged.OR.iters==limit))THEN
eload=MATMUL(devp,bee); bload=bload+eload*det*weights(i)

END IF
END DO gauss_points_2

!-----------------------compute the total bodyloads vector----------------
bdylds(g)=bdylds(g)+bload; bdylds(0)=zero

END DO elements_4
WRITE(*,'(A,F7.2,A,I4,A,F8.3)') &
" srf",srf(iy)," iteration",iters," F_max",fmax

IF(converged.OR.iters==limit)EXIT
END DO its; WRITE(11,'(F7.2,E12.4,I5,F17.2)') &

srf(iy),MAXVAL(ABS(loads)),iters,REAL(cg_tot)/REAL(iters)
IF(iters==limit)EXIT

END DO srf_trials
STOP
END PROGRAM p611

308 MATERIAL NON-LINEARITY

The final program in this chapter repeats the analysis of Program 6.10, using a pre-
conditioned conjugate gradient solver involving no mesh assembly. The rather crude mesh
demonstrated in the previous example still required 1,538,004 locations in the vector kv in
order to store the stiffness matrix using a skyline strategy. Even quite modest 3D meshes
require arrays with millions of locations in order to store the global matrices.

The “mesh-free” approach made possible with preconditioned conjugate gradient (pcg)
solvers, enables large 3D analyses to be performed on computers with modest core memory
availability. Furthermore, the pcg approach is highly amenable to exploitation on computers
with parallel architecture as will be demonstrated in detail in Chapter 12.

Program 6.11 (data shown in Figure 6.49) involves no new variables and can be con-
sidered an extension of Program 6.2, in which the pcg technique was first introduced in a
plasticity analysis.

w1 s1 w2 h1 h2 d1
20.0 20.0 20.0 10.0 5.0 40.0

nx1 nx2 ny1 ny2 nze
5 3 5 3 5

ifix cg_tol cg_limit np_types
2 0.0001 500 5

prop(phi,c,psi,gamma,e,v)
0.0 60.0 0.0 20.0 1.0e5 0.3
0.0 55.0 0.0 20.0 1.0e5 0.3
0.0 50.0 0.0 20.0 1.0e5 0.3
0.0 45.0 0.0 20.0 1.0e5 0.3
0.0 40.0 0.0 20.0 1.0e5 0.3

etype(i),i=1,nels (x then y then z)
1 1
1 1
2 2
2 2
3 3
3 3
4 4
4 4
5 5
5 5

tol limit
0.0001 1000

nsrf,(srf(i),i=1,nsrf)
6
1.0 1.4 1.5 1.55 1.58 1.60

Figure 6.49 Data for Program 6.11 example

There are 2972 equations

 srf max disp iters cg iters/plastic iter
 1.00 0.2264E-01 17 107.88
 1.40 0.3119E-01 78 110.40
 1.50 0.3918E-01 206 110.41
 1.55 0.4959E-01 379 110.11
 1.58 0.6377E-01 723 110.04
 1.60 0.9431E-01 1000 110.03

Figure 6.50 Results from Program 6.11 example

MATERIAL NON-LINEARITY 309

Two additional data values required are pcg tol set to 0.0001, and pcg limit set to
500. The output shown in Figure 6.50 is essentially identical to that shown in Figure 6.46
obtained using the direct solver.

Glossary of variable names used in Chapter 6

Scalar integers:
cg iters conjugate gradient iteration counter
cg limit conjugate gradient iteration ceiling
cg tot keeps running total of cg iters
fixed freedoms number of fixed displacements
i simple counter
iel simple counter
ifix sets 3D slope boundary conditions
incs number of load increments
iters counts plastic iterations
iy counts load increments
iwp SELECTED REAL KIND(15)
k node number
limit plastic iteration ceiling
loaded nodes number of loaded nodes
ndim number of dimensions
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points per element
nn number of nodes is the mesh
nod number of nodes per element
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes
nsrf number of trial strength reduction factors
nst number of stress (strain) terms
nxe number of columns of elements in x-direction
nx1 number of columns of elements in embankment
nx2 number of columns of elements to right of toe
nye number of rows of elements in y-direction
ny1 number of rows of elements in embankment
ny2 number of rows of elements in foundation
nze number of slices of elements in z-direction

Scalar reals:
alpha α from (3.22)
beta β from (3.22)
bot holds several dot products
c cohesion

310 MATERIAL NON-LINEARITY

bulk apparent fluid bulk modulus
cf factored cohesion
cg tol pcg convergence tolerance
cons consolidating stress (σ3)
c e embankment cohesion
c f foundation cohesion
dlam plastic multiplier λ

ddt used to find the critical time step
det determinant of the Jacobian matrix
dq1 plastic potential derivative, ∂Q/∂σm

dq2 plastic potential derivative, ∂Q/∂J2
dq3 plastic potential derivative, ∂Q/∂J3
dsbar invariant, σ

dslam plastic multiplier increment �λ

dt critical viscoplastic time step (set initially to 1015)
d1 depth of mesh in z-direction
d3 set to 3.0
d4 set to 4.0
d180 set to 180.0
e Young’s modulus
enxe number of x-elements in embankment
enye number of y-elements in embankment
e e Young’s modulus in embankment
e f Young’s modulus in foundation
f value of yield function
fac measure of yield surface overshoot(f from 6.35)
ff holds a value of the yield function
fftol tolerance on yield function
fmax maximum value of yield function F
fnew value of yield function after stress increment
fnxe number of x-elements in foundation
fnye number of y-elements in foundation
fstiff holds a value of the yield function
gama e unit weight of embankment
gama f unit weight of foundation
gamma soil unit weight
h1 height of embankment
h2 height of foundation
ii counts the lifts
itype type of degeneration of quadrilateral to triangle
k0 “at rest” earth pressure coefficient, Ko

layers number of excavation steps
lifts number of lifts
lnn keeps running total of number of nodes
load theta Lode angle, θ

ltol tolerance on tloads

MATERIAL NON-LINEARITY 311

newele number of new elements at each lift
noexe number of elements to be removed at each step
nouts number of nodes at which output is required
ntote holds running total of number of excavated elements
oldele keeps running total of number of elements
oldnn number of nodes from previous lift
one set to 1.0
ot overturning moment
pav earth force based on stress averaging
penalty set to 1 × 1020

phi friction angle (degrees)
phif factored friction angle
phi e friction angle of embankment
phi f friction angle of foundation
pi set to π

pr earth force based on nodal reactions
presc wall displacement increment
psi dilation angle (degrees)
psi e dilation angle of embankment
psi f dilation angle of foundation
psif factored dilation angle
ptot holds running total of applied pressure
pt5 set to 0.5
sigm mean stress, σm

snph sin of phi
start dt starting value of dt
s1 width of top of embankment
tloads holds the sum of bdylds
tnph tangent of phi
tnps tangent of psi
tol plastic convergence tolerance
top holds a dot product
two set to 2.0
up holds dot product {R}T

k {R}k from (3.22)
v Poisson’s ratio
v e Poisson’s ratio of embankment
v f Poisson’s ratio of foundation
w1 width of sloping section of embankment
w2 distance foundation extends beyond the toe
zero set to 0.0

Scalar character:
element element type

Scalar logicals:
cg converged set to .TRUE. if pcg process has converged
converged set to .TRUE. if plastic iterations have converged

312 MATERIAL NON-LINEARITY

Dynamic integer arrays:
etype element property type vector
exele element numbers of removed elements
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term location vector
nf nodal freedom matrix
no fixed freedom numbers vector
node loaded nodes vector
num element node numbers vector
sense sense of freedom to be fixed vector

Dynamic real arrays:
acat used in development of (6.74)
acatc used in development of (6.74)
bdylds self-equilibrating global body loads
bee strain-displacement matrix
bload self-equilibrating element body loads
caflow used in development of (6.74)
coord element nodal coordinates
d vector used in equation (3.22)
daatd used in development of (6.74)
ddylds global body loads
dee stress–strain matrix
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
devp product [De]

{
�εvp

}
diag precon diagonal preconditioner vector
dl holds plastic multiplier λ for all Gauss points
dload element body loads
dsigma stress increment
elastic elastic nodal displacements
eld element nodal displacements
eload integrating point contribution to bload
elso plastic stresses
eps strain terms
erate viscoplastic strain rate,

{
ε̇vp
}

etensor holds running total of all integrating point strain terms
evp viscoplastic strain rate increment,

{
δεvp

}
evpt holds running total of viscoplastic strains,

{
�εvp

}
exc loads excavation loads
flow holds {∂Q/∂σ }
fun shape functions
gc integrating point coordinates

MATERIAL NON-LINEARITY 313

gravlo loads generated by gravity
g coord nodal coordinates for all elements
jac Jacobian matrix
km element stiffness matrix
kv global stiffness matrix
loads nodal loads and displacements
m1 used to compute {∂σm/∂σ }
m2 used to compute {∂J2/∂σ }
m3 used to compute {∂J3/∂σ }
oldis nodal displacements from previous iteration
p “descent” vector used in (3.22)
pl plastic [Dp] matrix
points integrating point local coordinates
pore holds running total of all integrating point pore pressures
prop element properties
qinva used in development of (6.74)
qinvr used in development of (6.74)
qmat used in development of (6.74)
react global nodal reaction forces
ress used in development of (6.74)
rmat used in development of (6.74)
rload element nodal reaction forces
qinc holds applied pressure increments
sigma stress terms
solid identifies “air” elements (= 0 for “air”, = 1 for solid)
srf trial strength reduction factors
storkm holds element stiffness matrices
storkv holds augmented stiffness diagonal terms
stress stress term increments
tensor holds running total of all integrating point stress terms
totd holds running total of nodal displacements (vector)
tot d holds running total of nodal displacements (array)
totex holds element numbers for all removed elements
val applied nodal load weightings
vmfl von Mises “flow” vector
vmfla used in development of (6.74)
vmflq used in development of (6.74)
vmtemp used in development of (6.74)
u vector used in equations (3.22)
value fixed values of displacements
weights weighting coefficients
x “old” solution vector
xnew “new” solution vector
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

314 MATERIAL NON-LINEARITY

6.13 Exercises

1. Use Program 6.1 to estimate the bearing capacity of the surface strip footing shown
in Figure 6.51 which is supported by undrained clay with a shear strength of cu = 50
kN/m2. (Ans: qult ≈ 257 kN/m2)

5 m

Centerline

q

12 m

2 m

Figure 6.51

2. Repeat question 1 if the undrained shear strength increases linearly from 20 kN/m2

at ground level to 50 kN/m2 at 5 m depth. (Ans: qult ≈ 130 kN/m2)

3. Use Program 6.1 to estimate the bearing capacity of the footing shown in Figure 6.52
which is at the edge of a vertical cut of undrained clay with a shear strength of cu = 75
kN/m2. (Ans: qult = 150 kN/m2)

4 m

4 m

1 m

q

Figure 6.52

MATERIAL NON-LINEARITY 315

4. Use Program 6.3 to estimate the factor of safety of the slope shown in Figure 6.53.
(Ans: F ≈ 1.45)

10 m

40 m

f’= 32°

c’/g H = 0.036

g = 19.7 kN/m3

H = 20 m

Figure 6.53

5. Use Program 6.3 to repeat the previous analysis if a second layer of soil is discovered
in the lower part of the embankment as shown in Figure 6.54. (Ans: F ≈ 1.06)

10 m

f’= 32°

f’= 25°

c’= 4.3 kN/m2

c’= 2.2 kN/m2,

g = 19.6 kN/m3

g = 19.6 kN/m3

10 m

20 m

40 m

Figure 6.54

6. Use Program 6.3 to estimate the factor of safety of the slope shown in Figure 6.55
with cu2 = 4, 7.5 and 10 kN/m2. (Ans: F ≈ 1.22, 2.05, 2.09)

1 m

1 m

2 m 2 m

2 m

2
1

Cu1 = 5 kN/m2

fu = 0

g = 20 kN/m3

Cu2

Figure 6.55

316 MATERIAL NON-LINEARITY

7. Use Program 6.4 to estimate the active force exerted by the soil on the wall shown
in Figure 6.56. (Ans: F ≈ 3.3 kN/m)

PA

5 m

2 m

1 m f’ = 30°

c’= 0

g = 20 kN/m3

Figure 6.56

8. Use Program 6.8 to repeat the excavation example described in Figure 6.38 using the
construction sequence of Cases D and E in Figure 6.37. (Ans: Case D fails after first
excavation of elements 9 and 10. Case E fails after fourth excavation of element 14)

9. Use Program 6.10 or 6.11 to investigate the influence of the third dimension d1 on
the factor of safety of the cohesive slope shown in Figure 6.57. Gradually increase
the depth d1 of the mesh and use the symmetry boundary condition ifix=2.

(Ans:
d1 1.4 2.1 2.8 3.5 4.2 plane strain
F 1.97 1.75 1.66 1.59 1.56 1.45

)

1.5

2.0 2.1

d1
cu = 5 kN/m

2

fu = 0

g = 20 kN/m3

1.0

1.0

Figure 6.57

References

Bishop AW and Morgenstern NR 1960 Stability coefficients for earth slopes. Géotechnique 10,
129–150.

Cormeau IC 1975 Numerical stability in quasi–static elasto–viscoplasticity. Int J Numer Methods Eng
9(1), 109–127.

MATERIAL NON-LINEARITY 317

Duncan JM and Chang CY 1970 Non-linear analysis of stress and strain in soils. J Soil Mech Found
Div, ASCE 96(SM5), 1629–1653.

Griffiths DV 1980 Finite Element Analyses of Walls, Footings and Slopes. PhD thesis, Department of
Engineering, University of Manchester.

Griffiths DV 1982 Computation of bearing capacity factors using finite elements. Géotechnique 32(3),
195–202.

Griffiths DV 1985 The effect of pore fluid compressibility on failure loads in elasto-plastic soils. Int
J Numer Anal Methods Geomech 9, 253–259.

Griffiths DV and Lane PA 1999 Slope stability analysis by finite elements. Géotechnique 49(3),
387–403.

Griffiths DV and Mustoe GGW 1995 Selective reduced integration of the four node plane element
in closed-form. J Eng Mech, ASCE 121(6), 725–729.

Griffiths DV and Willson SM 1986 An explicit form of the plastic matrix for a Mohr–Coulomb
material. Commun Appl Numer Methods 2, 523–529.

Hill R 1950 The Mathematical Theory of Plasticity. Oxford University Press.
Hughes TJR 1987 The Finite Element Method. Prentice-Hall, Englewood Cliffs, N.J.
Molenkamp F 1987 Kinematic model for alternating loading ALTERNAT. Technical report CO-

218598, Delft Geotechnics, Delft.
Nayak GC and Zienkiewicz OC 1972 Elasto/Plastic stress analysis. A generalisation for various

constitutive relationships including strain softening. Int J Numer Methods Eng 5, 113–135.
Naylor DJ 1974 Stresses in nearly incompressible materials by finite elements with application to the

calculation of excess pore pressure. Int J Numer Methods Eng 8, 443–460.
Ortiz M and Popov EP 1985 Accuracy and stability integration algorithms for elasto-plastic consti-

tutive relations. Int J Numer Methods Eng 21, 1561–1576.
Rice JR and Tracey DM 1973 Computational fracture mechanics. In Proceedings of Symposium on

Numerical Methods and Structural Mechanics (ed. Fenves S). Academic Press.
Smith IM 1997 Computation of large scale viscoplastic flows of frictional geotechnical materials. In

Dynamics of Complex Fluids (ed. Adams MJ et al). Imperial College Press, pp. 425–445.
Smith IM and Ho DKH 1992 Influence of construction technique on performance of braced excavation

in marine clay. Int J Numer Anal Methods Geomech, 16, 845–867.
Smith IM and Hobbs R 1974 Finite element analysis of centrifuged and built-up slopes. Géotechnique

24(4), 531–559.
Taylor DW 1937 Stability of earth slopes. J Boston Soc Civil Eng 24, 197–246.
Yamada Y, Yoshimura N and Sakurai T 1968 Plastic stress-strain matrix and its application for the

solution of elastic plastic problems by the finite element method. J Mech Sci 10, 343–354.
Zienkiewicz OC and Cormeau IC 1974 Viscoplasticity, plasticity and creep in elastic solids. A unified

approach. Int J Numer Methods Eng 8, 821–845.
Zienkiewicz OC and Taylor RL 1989 The Finite Element Method, vol. 1, 4th edn. McGraw-Hill,

London, New York.
Zienkiewicz OC, Humpheson C and Lewis RW 1975 Associated and non-associated viscoplasticity

and plasticity in soil mechanics. Géotechnique 25, 671–689.
Zienkiewicz OC, Valliappan S and King IP 1969 Elasto-plastic solutions of engineering problems,

‘initial stress’ finite element approach. Int J Numer Methods Eng 1, 75–100.

7

Steady State Flow

7.1 Introduction

The five programs presented in this chapter solve steady state problems governed by
Laplace’s equation (2.122). Typical examples of this type of problem include steady seepage
through soils and steady heat flow through a conductor. Examples are presented of planar
(confined and unconfined), axisymmetric, and three-dimensional flow. Unlike the problems
solved in Chapters 5 and 6, which gave vector fields of displacements, the dependent vari-
able in these problems is a scalar, generically called the potential which may represent, for
example, the total head in a seepage problem or the temperature in a heat flow analysis.
Each node therefore has only one degree of freedom associated with it.

Systems that are governed by Laplace’s equation require boundary conditions to be pre-
scribed at all points around a closed domain. These boundary conditions commonly take
the form of fixed values of the potential or its first derivative normal to the boundary. The
problem amounts to finding the values of the potential at points within the closed domain.

Being “elliptic” in character, the solution of Laplace’s equation quite closely resembles
the solution of equilibrium equations (2.57) in solid elasticity. Both methods ultimately
require the solution of a set of linear simultaneous equations. The element conductivity
matrix (analogous to the “stiffness” matrix in elasticity) can be formed numerically, as
described by equations (3.61) to (3.63) or “analytically” as discussed in Section 3.2.2.
Either way, the element matrices can be assembled into a global conductivity matrix which,
like its global elastic counterpart, is symmetrical, banded, and usually stored as a skyline.
Alternatively, element-by-element iterative strategies can be used. Taking the analogy with
Chapter 5 one stage further, “displacements” now become total heads and “loads” become
net nodal inflow.

Program 7.1 describes the solution of Laplace’s equation over a set of 1D elements, that
can each have different lengths, areas, and permeabilities. The elements can be attached
end to end, or in any desired “network” of connections. Program 7.2 describes the solution
of Laplace’s equation over a plane or axisymmetric 2D domain. Program 7.3 describes the
non-linear problem of free-surface flow, in which the mesh is allowed to deform iteratively

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

320 STEADY STATE FLOW

until it assumes the shape of the free surface at convergence. Program 7.4 is a general
program for the solution of Laplace’s equation over two- or three-dimensional domains.
The final Program 7.5 describes an element-by-element version of Program 7.4 avoiding
the need for global matrix assembly. A parallel version of this program is also described
in Chapter 12.

As the problems in this chapter involve scalar fields with just one unknown at each
node, the programming is simplified in that nod is always equal to ndof, so the latter
is not required. A further change from the solid mechanics applications of the preceding
chapters, is that the “zero freedoms” data previously introduced through the nf array has
been removed. In this chapter, all fixed boundary conditions, whether equal to zero or not,
are applied through the fixed freedom data. Since all nodal freedoms are therefore
retained in the assembly and analysis, nn is always equal to neq. In the interests of
consistency with other programs in the book however, neq has been retained.

Program 7.1 One-dimensional analysis of steady seepage using 2-node line elements.

PROGRAM p71
!---
! Program 7.1 One dimensional analysis of steady seepage using
! 2-node line elements.
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,nels,neq,nod=2,nn,nprops=1, &
np_types

REAL(iwp)::penalty=1.0e20_iwp,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),kdiag(:),g_num(:,:),node(:),num(:)
REAL(iwp),ALLOCATABLE::disps(:),ell(:),kp(:,:),kv(:),kvh(:),loads(:), &
prop(:,:),value(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,nn,np_types; neq=nn
ALLOCATE(ell(nels),num(nod),prop(nprops,np_types),etype(nels), &
kp(nod,nod),g_num(nod,nels),kdiag(neq),loads(0:neq),disps(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)ell; READ(10,*)g_num; kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
num=g_num(:,iel); CALL fkdiag(kdiag,num)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

ALLOCATE(kv(kdiag(neq)),kvh(kdiag(neq))); kv=zero
!-----------------------global conductivity matrix assembly---------------
elements_2: DO iel=1,nels
CALL rod_km(kp,prop(1,etype(iel)),ell(iel))
num=g_num(:,iel); CALL fsparv(kv,kp,num,kdiag)

END DO elements_2; kvh=kv
!-----------------------specify boundary values---------------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(k),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms))

STEADY STATE FLOW 321

READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
kv(kdiag(node))=kv(kdiag(node))+penalty
loads(node)=kv(kdiag(node))*value

END IF
!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag)

!-----------------------retrieve nodal net flow rates---------------------
CALL linmul_sky(kvh,loads,disps,kdiag)
WRITE(11,'(/A)')" Node Total Head Flow rate"; disps(0)=zero
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(k),disps(k); END DO
WRITE(11,'(/A)')" Inflow Outflow"
WRITE(11,'(5X,2E12.4)') &
SUM(disps,MASK=disps>zero),SUM(disps,MASK=disps<zero)

STOP
END PROGRAM p71

Scalar integers:
fixed freedoms number of fixed total heads
i simple counter
iel simple counter
iwp SELECTED REAL KIND(15)
k node number
loaded nodes number of fixed source/sink nodes
nels number of elements
neq number of degrees of freedom in the mesh
nn number of nodes in the mesh
nod number of nodes per element
nprops number of material properties
np types number of different property types

Scalar reals:
penalty set to 1 × 1020

zero set to 0.0

Dynamic integer arrays:
etype element property types vector
g num global element node numbers matrix
kdiag diagonal term location vector
node fixed nodes vector
num element node numbers vector

Dynamic real arrays:
disps net nodal inflow/outflow
ell element lengths
kc element conductivity matrix
kv global conductivity matrix
kvh copy of kv
loads nodal total heads
prop element properties
value fixed values of total heads

322 STEADY STATE FLOW

nels nn np_types
3 4 3

prop(ka)
4.0 3.0 2.0

etype
1 2 3

ell
1.0 1.0 1.0

g_num
1 2 2 3 3 4

loaded_nodes,(k,loads(k),i=1,loaded_nodes)
1
1 -100.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
2
2 -10.0 4 10.0

1 2 3 4

H4= 10
1 2 3

kA = 4
L = 1

kA = 3
L = 1

kA = 2
L = 1

Q1= 100
(sink)

H2= -10

Figure 7.1 Mesh and data for first Program 7.1 example

Figure 7.1 shows a string of three elements attached end to end. Each element has the
same length, but different permeability properties. In this context, the property applied to
each element is kA (analogous to EA in Program 4.1), namely the product of the perme-
ability and the cross-sectional area of each element. A fixed steady outflow or “sink” of
−100.0 (negative sign denotes outflow) is applied at node 1, and the total head is fixed to
−10.0 and 10.0 at nodes 2 and 4 respectively. The data involves reading the number of
elements nels, the number of nodes nn, and the number of property types np types.
In this case there are 3 property types, one for each element, so with np types>1 the
etype data is read next, indicating that element 1 has a kA of 4.0, element 2 has a kA of
3.0, and so on. The element lengths ell are read, followed by the node numbers of each
element g num. In the case of a string of elements such as this, the g num data is quite

 There are 4 equations and the skyline storage is 7

 Node Total Head Flow rate
 1 -0.3500E+02 -0.1000E+03
 2 -0.1000E+02 0.7600E+02
 3 -0.2000E+01 0.3553E-14
 4 0.1000E+02 0.2400E+02

 Inflow Outflow
 0.1000E+03 -0.1000E+03

Figure 7.2 Results from first Program 7.1 example

STEADY STATE FLOW 323

predictable. Finally the fixed source/sink values and fixed total head values are read through
the loaded nodes and fixed freedoms data. The output shown in Figure 7.2 indi-
cates the total head at nodes 1 and 3 to be −35.00 and −2.00 respectively, and the net flow
rates at nodes 2 and 4 to be inflows of 76.0 and 24.0 respectively. The final line of output
confirms the continuity condition that the total flow in, is the same as the total flow out.

The second example shown in Figure 7.3 is of a pipe network involving 6 elements and
5 nodes. There are three different property groups spread across the elements, which do
not all have the same lengths. The g num data gives the connectivity of the network. The
boundary conditions include sources of 75.0 and 10.0 at nodes 3 and 5 respectively, and
a total head at node 1 equal to zero. The output shown in Figure 7.4 indicates an outflow
of 85.0 at node 1, and total heads at nodes 2, 3, 4, and 5 of 10.2, 40.8, 42.0, and 45.6
respectively.

It should be noted that in problems of this type, all nodal boundary conditions are fixed
to either a net flow rate or a total head. If the data prescribes both the net flow rate and
the total head at a particular node, the total head takes priority as the dependent variable.

nels nn np_types
6 5 3

prop(ka)
3.0 2.0 1.0

etype
1 3 2 2 1 3

ell
1.0 1.0 1.5 1.5 1.0 1.0

g_num
1 2 2 3 1 3 3 5 3 4 4 5

loaded_nodes,(k,loads(k),i=1,loaded_nodes)
2
3 75.0 5 10.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
1
1 0.0

1

2

5

4

1

3
2

5
4

6

kA = 3L = 1

k
A
=
1

L
=
1

kA
=
3

L
=
1

kA
= 1

L =
1

kA
= 2

L =
1.
5

kA = 2L = 1.5

Q3 = 75

(source)
3

H1 = 0

Q5 = 10

(source)

Figure 7.3 Mesh and data for second Program 7.1 example

324 STEADY STATE FLOW

 There are 5 equations and the skyline storage is 11

 Node Total Head Flow rate
 1 0.8500E-18 -0.8500E+02
 2 0.1020E+02 0.0000E+00
 3 0.4080E+02 0.7500E+02
 4 0.4200E+02 -0.2842E-13
 5 0.4560E+02 0.1000E+02

 Inflow Outflow
 0.8500E+02 -0.8500E+02

Figure 7.4 Results from second Program 7.1 example

The default net flow rate at all nodes is set initially to zero, so only non-zero values need
to be input as data.

Program 7.2 Plane or axisymmetric analysis of steady seepage using 4-node rectan-
gular quadrilaterals. Mesh numbered in x (r)- or y(z)- direction.

PROGRAM p72
!---
! Program 7.2 Plane or axisymmetric analysis of steady seepage using
! 4-node rectangular quadrilaterals. Mesh numbered
! in x(r)- or y(z)- direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,nci,ndim=2,nels,neq,nip=4, &
nod=4,nn,np_types,nxe,nye

REAL(iwp)::det,one=1.0_iwp,penalty=1.0e20_iwp,zero=0.0_iwp
CHARACTER(LEN=15)::dir,element='quadrilateral',type_2d

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),kdiag(:),node(:),num(:)
REAL(iwp),ALLOCATABLE::coord(:,:),der(:,:),deriv(:,:),disps(:),fun(:), &
gc(:),g_coord(:,:),jac(:,:),kay(:,:),kp(:,:),kv(:),kvh(:),loads(:), &
points(:,:),prop(:,:),value(:),weights(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)type_2d,dir,nxe,nye,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
ALLOCATE(points(nip,ndim),g_coord(ndim,nn),coord(nod,ndim), &
jac(ndim,ndim),weights(nip),der(ndim,nod),deriv(ndim,nod), &
kp(nod,nod),num(nod),g_num(nod,nels),kay(ndim,ndim),etype(nels), &
x_coords(nxe+1),y_coords(nye+1),prop(ndim,np_types),gc(ndim),fun(nod), &
kdiag(neq),loads(0:neq),disps(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord)
CALL fkdiag(kdiag,num)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),kvh(kdiag(neq))); WRITE(11,'(2(A,I5))') &
"There are",neq," equations and the skyline storage is",kdiag(neq)

STEADY STATE FLOW 325

CALL sample(element,points,weights); kv=zero; gc=one
!-----------------------global conductivity matrix assembly---------------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kp=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); IF(type_2d=='axisymmetric')gc=MATMUL(fun,coord)
kp=kp+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)*gc(1)

END DO gauss_pts_1; CALL fsparv(kv,kp,num,kdiag)
END DO elements_2; kvh=kv

!-----------------------specify boundary values---------------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(k),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
kv(kdiag(node))=kv(kdiag(node))+penalty
loads(node)=kv(kdiag(node))*value

END IF
!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag)

!-----------------------retrieve nodal net flow rates---------------------
CALL linmul_sky(kvh,loads,disps,kdiag)
WRITE(11,'(/A)')" Node Total Head Flow rate"
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(k),disps(k); END DO
disps(0)=zero; WRITE(11,'(/A)')" Inflow Outflow"
WRITE(11,'(5X,2E12.4)') &
SUM(disps,MASK=disps>zero),SUM(disps,MASK=disps<zero)

READ(10,*)nci; IF(nod==4)CALL contour(loads,g_coord,g_num,nci,13)
STOP
END PROGRAM p72

New scalar integers:
nci number of contour intervals required
ndim number of dimensions
nip number of integrating points
nxe number of elements in the x(r)-direction
nye number of elements in the y(r)-direction

New scalar reals:
det determinant of the Jacobian matrix
one set to 1.0

Scalar characters:
dir element and node numbering direction
element element type
type 2d type of 2D analysis

New dynamic real arrays:
coord element nodal coordinates
der shape function derivatives with respect to local coordinates

326 STEADY STATE FLOW

deriv shape function derivatives with respect to global coordinates
fun shape functions
gc integrating point coordinates
g coord nodal coordinates for all elements
jac Jacobian matrix
kay permeability matrix
points integrating point local coordinates
weights weighting coefficients
x coords x(r)-coordinates of mesh layout
y coords y(z)-coordinates of mesh layout

This program is for the analysis of 2D steady seepage problems under plane or axi-
symmetric conditions, and is analogous to Program 5.1 in Chapter 5. In order to sim-
plify the data however, the examples presented here use 4-node rectangular elements only
(element=’quadrilateral’ and nod=4). The program includes graphics subrou-
tines mesh and contour which generate PostScript files containing, respectively, images
of the finite element mesh (held in fe95.msh), and a contour map of the dependent
variable (held in the fe95.con). Contouring is currently restricted to meshes made up of
4-node quadrilateral elements.

The first example in Figure 7.5 shows a typical problem of steady seepage beneath an
impermeable sheet pile wall. The total head loss across the wall has been normalised to
100 units, but due to symmetry only half the problem needs to be analysed, with a total
head loss of 50 units. Figure 7.6 shows the mesh and data that will be used to analyse the
problem.

Total head = 100Total head = 0

kx

ky
Steady flow Q

12 m

3 m

3 m

Figure 7.5 Steady flow under a single sheet pile

STEADY STATE FLOW 327

Fixed potential,
f = 50

1 2 3 4 5 6 7

8 9 13 14

15 16 17 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

10 11 12

18

∂f = 0
∂x

∂f = 0
∂x

6 m

Impermeable

 kx= ky= 1 m/s
∂f = 0
∂y

Impermeable

Fixed potential, f = 0

6 m

Impermeable

type_2d dir
’plane’ ’x’

nxe nye np_types
6 6 1

prop(kx,ky)
1.0 1.0

etype(not needed)

x_coords, y_coords
0.0 1.0 2.0 3.0 4.0 5.0 6.0
0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0

loaded_nodes
0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
11
 1 0.0 2 0.0 3 0.0 4 0.0
 5 0.0 6 0.0 7 0.0
28 50.0 35 50.0 42 50.0 49 50.0

nci
10

Figure 7.6 Mesh and data for first Program 7.2 example

The first line of data reads type 2d and dir indicating that a plane analysis is to be
performed with element and node numbering in the x-direction. The second line indicates
that the rectangular mesh consists of six columns (nxe) and six rows (nye) of elements,
and that there is only one property type (np types) in this homogeneous example. The
third line reads the x- and y-direction permeabilities, kx and ky into the property array
prop, and since there is only one property type in this problem, the etype data is not
required. The fourth and fifth lines give, respectively, the x- (x coords) and y-coordinates
(y coords) of the lines that make up the mesh. The zero loaded nodes on the sixth

328 STEADY STATE FLOW

line indicates that no internal sources or sinks are applied in this case. The seventh to tenth
lines indicate that there are 11 fixed total head values (fixed freedoms) values at the
up- and downstream boundaries of the mesh. The last line of data indicates that after the
total head values have been computed, a contour map will be produced with 10 (nci)
contour intervals (or equipotential drops nd , see equation (7.2)).

The fixed potential boundary conditions (equal to either zero or 50) are fixed through the
data as described above. All other boundaries are “no-flow” or impermeable, so a boundary
condition of ∂φ/∂n = 0 is required, which is obtained by default at the boundaries of the
mesh by taking no further action.

The program assumes a rectangular mesh made up of rectangular elements, with nodal
coordinates and connectivity generated by the library subroutine geom rect.

After scanning the elements to determine the storage requirements, the program uses
numerical integration to form the element conductivity matrices kc, which are then assem-
bled into a global conductivity matrix kv. The sequence of operations described by the
elements 2 loop bears a striking similarity to the integration of an element stiffness
matrix used, for example, in Program 5.1. Program 7.2 is actually simpler, because the
derivative array deriv is used directly in the products described by (3.63).

Following the solution of the “equilibrium” equations, which is performed by library
subroutines sparin and spabac, the nodal potentials are held in the vector loads
and printed. In order to retrieve the nodal flow rates disps, the matrix kvh, which is a
copy of the global conductivity matrix kv, is multiplied by the nodal potentials loads
by library subroutine linmul sky. Examination of disps reveals that the majority of
net flow rates corresponding to internal nodes are zero, the only non-zero values occurring
at the boundary nodes that had their total head values fixed. If we had chosen to include
an internal source or sink as data using loaded nodes, this would have appeared at the
appropriate node in the disps vector.

Finally, the net inflow and outflow through the system is computed by summing, respec-
tively, the positive and negative terms in disps. The output from Program 7.2 is shown
in Figure 7.7. As expected the inflow and outflow values are identical and give a steady
state flow rate of 48.6. The Method of Fragments for this constrained seepage problem
(e.g. Griffiths, 1984) would predict a flow rate of around 47. The theoretical solution for a
sheet pile wall embedded to half the depth of a stratum of similar soil in a domain which
extends to infinity laterally would be exactly 50.0.

A good way to visualise the results of a seepage analysis such as this is to draw a
contour map of the nodal potentials. Figure 7.8 shows a contour map of the total heads and
the stream functions that would be computed using a rather more refined mesh (50 × 50
elements) than that shown in Figure 7.6. Both sides of the wall are shown for clarity,
although only half the problem was actually analysed. The stream function problem has
not been solved in this example, however it could easily be included by solving the ‘inverse’
problem given by:

1

ky

∂2ψ

dx2
+ 1

kx

∂2ψ

dy2
= 0 (7.1)

where ψ is the stream function. The boundary conditions for the stream problem must
now be “inverted”, thus those boundaries that had fixed values in the potential problem
such as the up- and downstream boundaries, have ∂ψ/∂n = 0 boundary conditions in the

STEADY STATE FLOW 329

There are 49 equations and the skyline storage is 385

 Node Total Head Flow rate
 1 0.2926E-19 -0.2926E+01
 2 0.6063E-19 -0.6063E+01
 3 0.6708E-19 -0.6708E+01
 4 0.7810E-19 -0.7810E+01
 5 0.9184E-19 -0.9184E+01
 6 0.1042E-18 -0.1042E+02
 7 0.5453E-19 -0.5453E+01
 8 0.5716E+01 -0.8882E-15
 9 0.5921E+01 -0.1776E-14
 10 0.6553E+01 -0.0000E+00
.
.
.
 40 0.3378E+02 0.1066E-13
 41 0.4130E+02 0.0000E+00
 42 0.5000E+02 0.9201E+01
 43 0.2196E+02 -0.2220E-14
 44 0.2272E+02 -0.1776E-14
 45 0.2502E+02 0.7105E-14
 46 0.2897E+02 0.1510E-13
 47 0.3464E+02 0.0000E+00
 48 0.4185E+02 -0.1776E-13
 49 0.5000E+02 0.4260E+01

 Inflow Outflow
 0.4857E+02 -0.4857E+02

Figure 7.7 Results from first Program 7.2 example

Figure 7.8 Flow net of seepage beneath a sheet pile wall from first Program 7.2 example

stream problem, and boundaries that had ∂φ/∂n = 0 conditions in the potential problem,
such as at impermeable boundaries, are given fixed values of the stream function. In order
to choose a contour interval which satisfies the usual flow-net rules involving “square”
regions, it is suggested that when solving the stream problem, the uppermost streamline (in
this case the wall) is fixed equal to the flow rate (ψ = 48.6), and the lowest streamline (the
impermeably boundary) is fixed to zero (ψ = 0). The required number of flow channels

330 STEADY STATE FLOW

nf for the stream contour map, can then be computed from,

nf = Q nd

k H
(7.2)

where Q is the flow rate computed from the potential problem, k is the (isotropic) perme-
ability of the soil, nd is the number of equipotential drops chosen for the total head contour

21 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24 r

Fixed potential, f = 100

fixed potential, f = 0

z q

3 m

Fixed
potential,
 f = 100

Fixed
potential,
 f = 0

5 m

Q10= 25
(sink)

type_2d dir
’axisymmetric’ ’r’

nxe nye np_types
3 5 1

prop(kx,ky)
1.0 1.0

etype(not needed)

x_coords, y_coords
0.0 1.0 2.0 3.0
0.0 -1.0 -2.0 -3.0 -4.0 -5.0

loaded_nodes,(k,loads(k),i=1,loaded_nodes)
1
10 -25.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
 16
 1 100.0 2 100.0 3 100.0 4 0.0 5 100.0 8 0.0 9 100.0
12 0.0 13 100.0 16 0.0 17 100.0 20 0.0 21 0.0 22 0.0
23 0.0 24 0.0
20

Figure 7.9 Mesh and data for second Program 7.2 example

STEADY STATE FLOW 331

plot, and H is the total head loss between the up- and downstream boundaries. Finally, nf

should be rounded to the nearest whole number and input to the stream function analysis
as the number of stream contour intervals nci.

A second example of the use of Program 7.2 is shown in Figure 7.9, and represents a
radial plane of a cylinder of porous material. The model subtends one radian at the axis of
rotational symmetry. The boundary conditions consist of a fixed total head of 100 units on
the top of the cylinder and on the central axis (r = 0). The outer surface of the cylinder
and the bottom surface are fixed to zero. The data are very similar to those of the previous
example, but with type 2d set to ‘axisymmetric’ and dir set to ‘r’ because the
node and element numbering is now in the radial direction. Although axisymmetry adds
an extra order of r to the terms to be integrated, the “mass” and conductivity matrices of
rectangular 4-node elements in radial planes, are still exactly integrated with nip=4. When
performing axisymmetric analysis with non-rectangular quadrilateral elements however,
higher orders of numerical integration should be investigated, and slightly different results
can be expected as nip is increased. Customised quadrature rules for axisymmetric analysis
are available (see e.g. Griffiths, 1991).

In this example, a steady point sink of −25.0 m3/s/radian is applied to node 10. The
computed results are shown in Figure 7.10. In addition to the usual flow rates recorded
at the boundary nodes, the fluid removed from the system at node 10 also appears in the
“Flow rate” column as −25.0. The net inflow (outflow) from the entire system is computed
to be 362.7 m3/s/radian.

There are 24 equations and the skyline storage is 122

 Node Total Head Flow rate
 1 0.1000E+03 0.6068E+01
 2 0.1000E+03 0.4558E+02
 3 0.1000E+03 0.1878E+03
 4 0.6925E-18 -0.6925E+02
 5 0.1000E+03 0.1726E+02
 6 0.6359E+02 0.3553E-14
 7 0.3310E+02 -0.4086E-13
 8 0.1255E-17 -0.1255E+03
 9 0.1000E+03 0.2863E+02
 10 0.3283E+02 -0.2500E+02
.
.
.
 19 0.6183E+01 0.7105E-14
 20 0.1421E-18 -0.1421E+02
 21 0.3278E-19 -0.3278E+01
 22 0.2631E-18 -0.2631E+02
 23 0.1396E-18 -0.1396E+02
 24 0.5152E-19 -0.5152E+01

 Inflow Outflow
 0.3627E+03 -0.3627E+03

Figure 7.10 Results from second Program 7.2 example

332 STEADY STATE FLOW

Program 7.3 Analysis of plane free-surface flow using 4-node quadrilaterals. “Ana-
lytical” form of element conductivity matrix.

PROGRAM p73
!---
! Program 7.3 Analysis of plane free-surface flow using 4-node
! quadrilaterals. "Analytical" form of element conductivity
! matrix.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_down,fixed_seep,fixed_up,i,iel,iters,k,limit,nci,ndim=2, &
nels,neq,nod=4,nn,nxe,nye,np_types

REAL(iwp)::d180=180.0_iwp,hdown,hup,initial_height,one=1.0_iwp, &
penalty=1.e20_iwp,tol,zero=0.0_iwp; LOGICAL::converged

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),kdiag(:),node_down(:), &
node_seep(:),node_up(:),num(:)

REAL(iwp),ALLOCATABLE::angs(:),bottom_width(:),coord(:,:),disps(:), &
g_coord(:,:),kay(:,:),kp(:,:),kv(:),kvh(:),loads(:),oldpot(:), &
prop(:,:),surf(:),top_width(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,tol,limit,np_types; nels=nxe*nye
nn=(nxe+1)*(nels/nxe+1); neq=nn
ALLOCATE(g_coord(ndim,nn),coord(nod,ndim),bottom_width(nxe+1), &
top_width(nxe+1),surf(nxe+1),angs(nxe+1),kp(nod,nod),num(nod), &
g_num(nod,nels),prop(ndim,np_types),kdiag(neq),kay(ndim,ndim), &
etype(nels),loads(0:neq),disps(0:neq),oldpot(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)bottom_width; READ(10,*)top_width; READ(10,*)initial_height
surf=initial_height
angs=ATAN(surf/(top_width-bottom_width))*d180/acos(-one)
READ(10,*)hup,fixed_up; ALLOCATE(node_up(fixed_up)); READ(10,*)node_up
READ(10,*)hdown,fixed_down; ALLOCATE(node_down(fixed_down))
READ(10,*)node_down; fixed_seep=nels/nxe-fixed_down
ALLOCATE(node_seep(fixed_seep))
DO i=1,fixed_seep; node_seep(i)=i*(nxe+1)+1; END DO; kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_freesurf(iel,nxe,fixed_seep,fixed_down, &

hdown,bottom_width,angs,surf,coord,num); CALL fkdiag(kdiag,num)
END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),kvh(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
"There are ",neq," equations and the skyline storage is ",kdiag(neq)

!-----------------------global conductivity matrix assembly---------------
oldpot=zero; iters=0
its: DO
iters=iters+1; kv=zero
elements_2: DO iel=1,nels

kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
CALL geom_freesurf(iel,nxe,fixed_seep,fixed_down, &
hdown,bottom_width,angs,surf,coord,num)

g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord)

STEADY STATE FLOW 333

CALL seep4(kp,coord,kay); CALL fsparv(kv,kp,num,kdiag)
END DO elements_2; kvh=kv

!-----------------------specify boundary values---------------------------
loads=zero; kv(kdiag(node_up))=kv(kdiag(node_up))+penalty
loads(node_up)=kv(kdiag(node_up))*hup
kv(kdiag(node_down))=kv(kdiag(node_down))+penalty
loads(node_down)=kv(kdiag(node_down))*hdown
kv(kdiag(node_seep))=kv(kdiag(node_seep))+penalty
DO i=1,fixed_seep

loads(node_seep(i))=kv(kdiag(node_seep(i)))* &
(hdown+(surf(1)-hdown)*(fixed_seep+1-i)/(fixed_seep+1))

END DO
!-----------------------equation solution---------------------------------

CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag)
surf(1:nxe)=loads(1:nxe)

!-----------------------check convergence---------------------------------
CALL checon(loads,oldpot,tol,converged)
IF(converged.OR.iters==limit)EXIT

END DO its; CALL linmul_sky(kvh,loads,disps,kdiag)
WRITE(11,'(/A)')" Node Total Head Flow rate"
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(k),disps(k); END DO
disps(0)=zero; WRITE(11,'(/A)')" Inflow Outflow"
WRITE(11,'(5X,2E12.4)') &

SUM(disps,MASK=disps<zero),SUM(disps,MASK=disps>zero)
WRITE(11,'(/A,I3,A)')" Converged in",iters," iterations"
CALL mesh(g_coord,g_num,12)
READ(10,*)nci; CALL contour(loads,g_coord,g_num,nci,13)

STOP
END PROGRAM p73

New scalar integers:
fixed down number of nodes on downstream side
fixed seep number of nodes on seepage surface
fixed up number of nodes on upstream side
iters counts free-surface iterations
limit iteration ceiling

New scalar reals:
hdown fixed total head on downstream side
hup fixed total head on upstream side
d180 set to 180.0
initial height initial height of free surface to start process
tol convergence tolerance

Scalar logical:
converged set to .TRUE. if mesh has converged

New dynamic integer arrays:
node down nodes fixed on downstream side
node seep nodes fixed on downstream seepage surface
node up nodes fixed on upstream side

334 STEADY STATE FLOW

New dynamic real arrays:
angs angles to horizontal made by sloping mesh lines
bottom width x-coordinates of nodes at base of mesh
oldpot nodal total head values from previous iteration
surf current total head values of free surface
top width x-coordinates of initial nodes at top of mesh

In this program we consider a boundary condition frequently met in geomechanics
in relation to the flow of water through dams. Free-surface problems involve an upper
boundary, the location of which is not known a priori, so an iterative procedure is required
to find it. This iteration can be done in several ways; for example, a fixed mesh can be used
and nodes separated into “active” and “inactive” ones depending upon whether fluid exists
at that point. An alternative strategy is to use the present program, whereby the mesh is
deformed so that its upper surface ultimately coincides with the free surface. A summary
of the boundary conditions is given in Figure 7.11

The analysis starts by assuming an initial position for the free surface. Solution of
Laplace’s equation gives values of the total head along the free-surface nodes which will
not in general equal the elevation of the upper surface of the mesh. The elevations of the
nodes along the upper surface are therefore adjusted to equal the total head values just
calculated at those locations. In order to avoid distorted elements, the library geometry
subroutine geom freesurf ensures that the nodes beneath the top surface are evenly
distributed. The geometry subroutine is designed for solving free surface problems with
initially trapezoidal meshes and counts nodes and elements in the x-direction. The anal-
ysis is then repeated with the new mesh. Since many of the coordinates have changed,
the conductivity matrices of all the elements must be re-computed and assembled into
the global system. In order to avoid the need for numerical integration of the element
conductivity matrices at each iteration, library subroutine seep4 computes the element

No flow boundary
potential = elevation

Constant
upstream
potential

No flow boundary

Potential = elevation

Constant
downstream
potential

Figure 7.11 Boundary conditions for free surface flow

STEADY STATE FLOW 335

conductivity matrices kc “analytically” (see Section 3.2.2). The assembly is made into a
global conductivity matrix kv stored as a skyline in the usual way. Solution of the mod-
ified problem leads to another set of nodal total head values and further updating of the
mesh nodal coordinates. This process is repeated until the change in computed total head
values from one iteration to the next is less than a tolerance value tol. The convergence
check is performed by library subroutine checon, which outputs the logical variable con-
verged. The subroutine sets converged to .TRUE. if the solution has converged and
to .FALSE. if another iteration is required.

The first example shown in Figure 7.12 is of a vertical-sided dam. The free surface
described by nodes 1 through 9 at the top of the mesh is initially assumed to be horizontal.
The initial data relates to the number of elements in the x-(nxe) and y-(nxe) directions,
and this is followed by the tolerance tol, set to 0.01 and the iteration ceiling limit, set
to 20. The dam is homogeneous in this example, so np types is set to 1. The perme-
abilities in the x- and y-directions are read followed by the x-coordinates of the bottom
bottom width and top nodes top width of the starting mesh. The next line of data
reads the initial height of the horizontal free surface initial height which in this
example is set to 7.0. The value of the upstream total head value of hup=7.0 is then
read, followed by the number of nodes to be fixed on the upstream side fixed up and
their node numbers node up. Similarly on the downstream side, the total head is set to
hdown=2.0 followed by fixed down and node down. The final data nci relates to
the number of contour intervals to be plotted.

The output for this example is shown in Figure 7.13 and the Postscript output file
fe95.msh shown in Figure 7.14 gives the deformed mesh at convergence. The graphics
file fe95.con produces the contour map of total head values given in Figure 7.15.

Downstream
nodes
potential
fixed at
2.0

Seepage face
nodes fixed
to elevation

Upstream
nodes
potential
fixed at
7.0

7.0
1 2 3 4 5 6 7 8 9

10

55

64

19

28

37

46

18

27

36

45

54

63

72

Free surface nodes fixed to elevation

No flow

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Figure 7.12 Mesh and data for first Program 7.3 example (Continued on page 336)

336 STEADY STATE FLOW

nxe nye tol limit np_types
8 7 0.01 20 1

prop(kx,ky)
0.001 0.001

etype(not needed)

bottom_width, top_width
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

initial_height
7.0

hup,fixed_up,(node_up(i),i=fixed_up)
7.0
8
9 18 27 36 45 54 63 72

hdown,fixed_down,(node_down(i),i=fixed_down)
2.0
3
46 55 64

nci
20

Figure 7.12 (Continued from page 335)

There are 72 equations and the skyline storage is 703

 Node Total Head Flow rate
 1 0.2759E+01 0.8674E-18
 2 0.3784E+01 -0.2602E-17
 3 0.4498E+01 -0.1301E-17
 4 0.5062E+01 -0.1301E-17
 5 0.5571E+01 0.0000E+00
 6 0.6016E+01 0.1301E-17
 7 0.6409E+01 0.3036E-17
 8 0.6746E+01 -0.2602E-17
 9 0.7000E+01 0.1105E-03
 10 0.2645E+01 -0.3100E-04
.
.
.
 65 0.2840E+01 -0.4337E-18
 66 0.3619E+01 -0.4337E-18
 67 0.4310E+01 0.1409E-17
 68 0.4925E+01 -0.7589E-18
 69 0.5485E+01 0.1518E-17
 70 0.6009E+01 -0.2819E-17
 71 0.6510E+01 -0.3469E-17
 72 0.7000E+01 0.2432E-03

 Inflow Outflow
 -0.2813E-02 0.2813E-02

 Converged in 10 iterations

Figure 7.13 Results from first Program 7.3 example

STEADY STATE FLOW 337

Figure 7.14 Computed free surface at convergence in vertical face dam analysis

Figure 7.15 Equipotentials at convergence in vertical face dam analysis

338 STEADY STATE FLOW

The case of free-surface flow through a dam with vertical faces is a classical problem
for which the Dupuit formula (see e.g. Verruijt, 1970) predicts a flow rate given by:

Q = k(H 2
1 − H 2

2)

2D
(7.3)

where H1 = 7.0 m and H2 = 2.0 m refer to the up- and downstream water elevations, k =
0.001 m/s refers to the permeability (assumed isotropic and homogeneous) and D = 8.0 m
refers to the width of the dam. The formula gives a flow rate of 0.00281 m3/s/m which
agrees exactly with the computed value in this case.

A second example of an earth dam with sloping sides and a relatively impermeable clay
core is presented in Figure 7.16 with data in Figure 7.17. The initial mesh is trapezoidal,
and starts with a horizontal free surface set at an elevation of 37.5 m which is also the
height of the starting mesh. The nodes on the upstream face of the dam are also set at
a total head of 37.5 m, while the bottom two nodes on the downstream side are fixed at
a total head of 7.5 m. The initial mesh is defined by the x-coordinates of the nodes at
the base and the top. There are two property types in this example, so the etype data
is needed to allocate properties to the elements in the mesh. The middle 10 “columns” of
elements represent the clay core.

0 60 90 150

60 72 78 90
Dimensions in m

el = 37.5

el = 7.5
k = 0.1 k = 0.01 k = 0.1

1 51

357307

256

Figure 7.16 Configuration and mesh for embankment free surface analysis. Second
Program 7.3 example

STEADY STATE FLOW 339

nxe nye tol limit np_types
50 6 0.01 20 2

prop(kx,ky)
0.1 0.1
0.01 0.01

etype
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
.
. etype data for elements 51-250 omitted
.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bottom_width, top_width
 0.0 3.0 6.0 9.0 12.0 15.0 18.0
 21.0 24.0 27.0 30.0 33.0 36.0 39.0
 42.0 45.0 48.0 51.0 54.0 57.0 60.0
 63.0 66.0 69.0 72.0 75.0 78.0 81.0
 84.0 87.0 90.0 93.0 96.0 99.0 102.0
105.0 108.0 111.0 114.0 117.0 120.0 123.0
126.0 129.0 132.0 135.0 138.0 141.0 144.0 147.0 150.0
 60.0 60.6 61.2 61.8 62.4 63.0 63.6
 64.2 64.8 65.4 66.0 66.6 67.2 67.8
 68.4 69.0 69.6 70.2 70.8 71.4 72.0
 72.6 73.2 73.8 74.4 75.0 75.6 76.2
 76.8 77.4 78.0 78.6 79.2 79.8 80.4
 81.0 81.6 82.2 82.8 83.4 84.0 84.6
 85.2 85.8 86.4 87.0 87.6 88.2 88.8 89.4 90.0

initial_height
 37.5

hup,(fixed_up,node_up(i),i=fixed_up)
 37.5
 7
 51 102 153 204 255 306 357

hdown,(fixed_down,node_down(i),i=fixed_down)
 7.5
 2
256 307

nci
 20

Figure 7.17 Data for second Program 7.3 example

During the mesh iterations, subroutine geom freesurf ensures that the nodes are
constrained to remain on the sloping lines and maintain even spacing in the y-direction. The
output from this example is shown in Figure 7.18 indicating a steady flow of 0.3335 m3/s/m.
The deformed mesh, which took 11 iterations to converge, is shown in Figure 7.19 indicating
how the free surface falls rapidly within the clay core.

340 STEADY STATE FLOW

There are 357 equations and the skyline storage is 16313

 Node Total Head Flow rate
 1 0.9407E+01 0.8882E-15
 2 0.9959E+01 0.0000E+00
 3 0.1081E+02 0.0000E+00
 4 0.1160E+02 0.8882E-15
 5 0.1229E+02 0.4441E-15
 6 0.1290E+02 -0.8882E-15
 7 0.1345E+02 0.1332E-14
 8 0.1396E+02 -0.8882E-15
 9 0.1443E+02 0.6661E-15
 10 0.1488E+02 -0.2220E-15
.
.
.
 350 0.3743E+02 0.1776E-14
 351 0.3746E+02 0.3553E-14
 352 0.3747E+02 -0.8882E-14
 353 0.3749E+02 -0.7105E-14
 354 0.3749E+02 -0.1776E-14
 355 0.3750E+02 0.3553E-14
 356 0.3750E+02 -0.1776E-14
 357 0.3750E+02 0.4641E-03

 Inflow Outflow
 -0.3335E+00 0.3335E+00

 Converged in 11 iterations

Figure 7.18 Results from second Program 7.3 example

Figure 7.19 Computed free surface at convergence in embankment analysis

Program 7.4 General two- (plane) or three-dimensional analysis of steady seepage.

PROGRAM p74
!---
! Program 7.4 General two- (plane) or three-dimensional analysis of steady
! seepage.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,k,loaded_nodes,nci,ndim,nels,neq,nip,nod, &
nn,np_types; CHARACTER(LEN=15)::element

REAL(iwp)::det,penalty=1.0e20_iwp,zero=0.0_iwp
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),kdiag(:),node(:),num(:)

STEADY STATE FLOW 341

REAL(iwp),ALLOCATABLE::coord(:,:),der(:,:),deriv(:,:),disps(:), &
g_coord(:,:),jac(:,:),kay(:,:),kp(:,:),kv(:),kvh(:),loads(:), &
points(:,:),prop(:,:),value(:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)element,nod,nels,nn,nip,ndim,np_types; neq=nn
ALLOCATE(points(nip,ndim),g_coord(ndim,nn),coord(nod,ndim),etype(nels), &
jac(ndim,ndim),weights(nip),num(nod),g_num(nod,nels),der(ndim,nod), &
deriv(ndim,nod),kp(nod,nod),kay(ndim,ndim),prop(ndim,np_types), &
kdiag(neq),loads(0:neq),disps(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)g_coord; READ(10,*)g_num
IF(ndim==2)CALL mesh(g_coord,g_num,12); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel =1,nels
num=g_num(:,iel); CALL fkdiag(kdiag,num)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

ALLOCATE(kv(kdiag(neq)),kvh(kdiag(neq))); kv=zero
CALL sample(element,points,weights)

!-----------------------global conductivity matrix assembly---------------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kp=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); jac=MATMUL(der,coord)
det=determinant(jac); CALL invert(jac); deriv=MATMUL(jac,der)
kp=kp+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)

END DO gauss_pts_1; CALL fsparv(kv,kp,num,kdiag)
END DO elements_2; kvh=kv

!-----------------------specify boundary values---------------------------
loads=zero; READ(10,*)loaded_nodes,(k,loads(k),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
kv(kdiag(node))=kv(kdiag(node))+penalty
loads(node)=kv(kdiag(node))*value

END IF
!-----------------------equation solution---------------------------------
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag)

!-----------------------retrieve nodal net flow rates---------------------
CALL linmul_sky(kvh,loads,disps,kdiag)
WRITE(11,'(/A)')" Node Total Head Flow rate"
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(k),disps(k); END DO
disps(0)=zero; WRITE(11,'(/A)')" Inflow Outflow"
WRITE(11,'(5X,2E12.4)') &
SUM(disps,MASK=disps>zero),SUM(disps,MASK=disps<zero)

IF(ndim==2.AND.nod==4)THEN
READ(10,*)nci; CALL contour(loads,g_coord,g_num,nci,13)

END IF
STOP
END PROGRAM p74

Program 7.4 can analyse steady confined seepage over any two- or three-dimensional
domain with non-homogeneous and anisotropic material properties. The program is very

342 STEADY STATE FLOW

similar to Program 5.4 for general elastic analysis of two- or three-dimensional solids,
and can use any of the two- or three-dimensional elements referred to in this book (see
Appendix B). The main difference from the programs described previously in this chapter, is
that this program includes no “geometry” subroutine, so all nodal coordinates g coords
and element node numbers g num must be provided as data. In addition, some of the
variables that were previously fixed in the declaration statements, must now be read as data
in order to identify the dimensionality of the problem and the type of element required.
There are no variables required by this program that have not already been encountered in
earlier programs of this chapter.

A three-dimensional seepage example is shown in Figure 7.20. The model represents
one-eighth of a symmetrical cube with a point source of 100 units at its centroid with all
outside faces maintained at a total head of zero. Referring to the figure, node numbers
are indicated in circles and some of the element numbers have also been included. The
example has 125 nodes and 64 elements.

The first line of data identifies the element type element which in this case is a
‘hexahedron’, the number of nodes on each element nod, the number of elements
nels, the number of nodes in the mesh nn, the number of integrating points nip, the
number of dimensions of the problem ndim, and the number of property types np types.
It may be noted that numerical integration of an 8-node hexahedral element usually requires
8 Gauss points, (2 in each of the three coordinate directions), so nip is read as 8.

The problem includes 2 property types, so the next two lines of data provide the property
values for each of the np types groups. A 3D problem (ndim=3) such as this, requires
3 permeabilities terms (kx , ky and kz) for each property group. In this example, the first
group is applied to elements 1 to 32, which are isotropic with kx = ky = kz = 2, and the

z

y

x
1 2 3 4 5

6

26
30

101 105

125

50

plane of symmetry

1 2 3 4

5 8

16

17 20

32
9 12

13

24

28

33 36

48

49 52

64
11

16

25

planes of symmetry

elements 1-32
kx = 2,ky = 2,kz = 2

elements 33-64
kx = 1,ky = 1,kz = 5

21

Q21 = 100
(source)

fixed potential
f = 0

f = 0

fixed
potential

4.0

4.0

4.0

Figure 7.20 Mesh and data for Program 7.4 example (Continued on page 343)

STEADY STATE FLOW 343

element nod nels nn nip ndim np_types
’hexahedron’ 8 64 125 8 3 2

prop(kx,ky,kz)
2.0 2.0 2.0 1.0 1.0 5.0

etype
1 1
2 2

g_coord
0.0 0.0 0.0 1.0 0.0 0.0 2.0 0.0 0.0 3.0 0.0 0.0
.
g_coord data for nodes 5-120 omitted here
.
0.0 4.0 -4.0 1.0 4.0 -4.0 2.0 4.0 -4.0 3.0 4.0 -4.0
4.0 4.0 -4.0

g_num
 6 1 2 7 31 26 27 32 7 2 3 8 32 27 28 33

.
g_num data for elements 3-62 omitted here
.
98 93 94 99 123 118 119 124 99 94 95 100 124 119 120 125

loaded_nodes,(k,loads(k),i=1,loaded_nodes)
1 21 100.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
61
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 10 0.0 15 0.0 20 0.0

.
fixed freedom data for 48 nodes omitted here
.
121 0.0 122 0.0 123 0.0 124 0.0 125 0.0

Figure 7.20 (Continued from page 342)

second group to elements 33 to 64, which are anisotropic with kx = ky = 1 and kz = 5.
The etype vector then reads the information required to match elements with property
groups.

In this chapter we always assume that the principal axes of the permeability tensor
coincide with the Cartesian coordinate axes leading to a diagonal property array kay. If
this is not the case, the kay matrix will be fully populated with off-diagonal terms.

The next data involves the x,y,z coordinates of the nn nodes in the mesh read into
g coord, followed by the node numbers of each of the nels elements read into g num.
If dealing with a three-dimensional 8-node element for example, the order in which the
node numbers are read must follow the sequence described for that element in Appendix B.
Due to the volume of data required in this example, only a few lines of the g coord and
g num data are actually shown in Figure 7.20.

There is one source at node 21 equal to 100.0 indicated in the loaded nodes data. All
the outside faces of the cube are fixed to zero, which requires 61 fixed freedoms data.

If Program 7.4 is to be applied to a 2D analysis using 4-node quadrilateral elements, a
final data input of the number of contour intervals nci is also required.

344 STEADY STATE FLOW

 There are 125 equations and the skyline storage is 3225

 Node Total Head Flow rate
 1 0.1543E-19 -0.1543E+01
 2 0.2732E-19 -0.2732E+01
 3 0.2028E-19 -0.2028E+01
 4 0.1032E-19 -0.1032E+01
 5 0.3514E-20 -0.3514E+00
 6 0.3319E+01 -0.1332E-14
 7 0.3183E+01 -0.7772E-15
 8 0.2152E+01 0.6661E-15
 9 0.1106E+01 -0.4441E-15
 10 0.1026E-19 -0.1026E+01
 11 0.9727E+01 0.3553E-14
 12 0.6905E+01 0.8882E-15
 13 0.5206E+01 0.4441E-15
 14 0.2141E+01 0.8882E-15
 15 0.2004E-19 -0.2004E+01
 16 0.1121E+02 0.3553E-14
 17 0.2098E+02 0.5995E-14
 18 0.6877E+01 0.4885E-14
 19 0.3154E+01 -0.1998E-14
 20 0.2684E-19 -0.2684E+01
 21 0.1689E+03 0.1000E+03
.
.
.
 120 0.2361E-20 -0.2361E+00
 121 0.5872E-20 -0.5872E+00
 122 0.8971E-20 -0.8971E+00
 123 0.7082E-20 -0.7082E+00
 124 0.3505E-20 -0.3505E+00
 125 0.1255E-20 -0.1255E+00

 Inflow Outflow
 0.1000E+03 -0.1000E+03

Figure 7.21 Results from Program 7.4 example

A truncated version of the output from the program is shown in Figure 7.21. The total
head is greatest at the central node, and equals about 169. Outflow occurs at all the outside
nodes of the mesh where the total head was fixed to zero. For example, the outflow at node
number 5 equals −0.3514.

Program 7.5 General two- (plane) or three-dimensional analysis of steady seepage.
No global conductivity matrix assembly. Diagonally preconditioned conjugate gradient
solver.

PROGRAM p75
!---
! Program 7.5 General two- (plane) or three-dimensional analysis of steady
! seepage. No global conductivity matrix assembly.
! Diagonally preconditioned conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,fixed_freedoms,i,iel,k,loaded_nodes,nci,ndim, &
nels,neq,nip,nod,nn,np_types

REAL(iwp)::alpha,beta,cg_tol,det,one=1.0_iwp,penalty=1.0e20_iwp,up, &
zero=0.0_iwp

STEADY STATE FLOW 345

CHARACTER(LEN=15)::element; LOGICAL::cg_converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:)
REAL(iwp),ALLOCATABLE::coord(:,:),d(:),der(:,:),deriv(:,:), &
diag_precon(:),disps(:),g_coord(:,:),jac(:,:),kay(:,:),kp(:,:), &
loads(:),p(:),points(:,:),prop(:,:),store(:),storkp(:,:,:),u(:), &
value(:),weights(:),x(:),xnew(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)element,nod,nels,nn,nip,ndim,cg_tol,cg_limit,np_types; neq=nn
WRITE(11,'(A,I5,A)')" There are",neq," equations"
ALLOCATE(points(nip,ndim),g_coord(ndim,nn),coord(nod,ndim),etype(nels), &
jac(ndim,ndim),weights(nip),num(nod),g_num(nod,nels),der(ndim,nod), &
deriv(ndim,nod),kp(nod,nod),kay(ndim,ndim),prop(ndim,np_types), &
p(0:neq),loads(0:neq),x(0:neq),xnew(0:neq),u(0:neq),diag_precon(0:neq),&
d(0:neq),disps(0:neq),storkp(nod,nod,nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)g_coord; READ(10,*)g_num; IF(ndim==2)CALL mesh(g_coord,g_num,12)
diag_precon=zero; CALL sample(element,points,weights)

!----------element conductivity integration, storage and preconditioner---
elements_1: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kp=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); jac=MATMUL(der,coord)
det=determinant(jac); CALL invert(jac); deriv=MATMUL(jac,der)
kp=kp+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)

END DO gauss_pts_1; storkp(:,:,iel)=kp
DO k=1,nod; diag_precon(num(k))=diag_precon(num(k))+kp(k,k); END DO

END DO elements_1
!-----------------------invert the preconditioner and get starting loads--
loads=zero; READ(10,*)loaded_nodes,(k,loads(k),i=1,loaded_nodes)
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms), &

store(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
diag_precon(node)=diag_precon(node)+penalty
loads(node)=diag_precon(node)*value; store=diag_precon(node)

END IF
diag_precon(1:)=one/diag_precon(1:); diag_precon(0)=zero
d=diag_precon*loads; p=d; x=zero; cg_iters=0
!-----------------------pcg equation solution-----------------------------
pcg: DO
cg_iters=cg_iters+1; u=zero
elements_2: DO iel=1,nels

num=g_num(:,iel); kp=storkp(:,:,iel); u(num)=u(num)+MATMUL(kp,p(num))
END DO elements_2
IF(fixed_freedoms/=0)u(node)=p(node)*store; up=DOT_PRODUCT(loads,d)
alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha; loads=loads-u*alpha
d=diag_precon*loads; beta=DOT_PRODUCT(loads,d)/up; p=d+p*beta
CALL checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg
WRITE(11,'(A,I5)')" Number of cg iterations to convergence was",cg_iters

!-----------------------retrieve nodal net flow rates---------------------
loads=xnew; disps=zero
elements_3: DO iel=1,nels

346 STEADY STATE FLOW

num=g_num(:,iel); kp=storkp(:,:,iel)
disps(num)=disps(num)+MATMUL(kp,loads(num))

END DO elements_3; disps(0)=zero
WRITE(11,'(/A)')" Node Total Head Flow rate"
DO k=1,nn; WRITE(11,'(I5,2E12.4)')k,loads(k),disps(k); END DO
WRITE(11,'(/A)')" Inflow Outflow"
WRITE(11,'(5X,2E12.4)') &
SUM(disps,MASK=disps>zero),SUM(disps,MASK=disps<zero)
IF(ndim==2.AND.nod==4)THEN
READ(10,*)nci; CALL contour(loads,g_coord,g_num,nci,13)

END IF
STOP
END PROGRAM p75

New scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling

New scalar reals:
alpha α from equations (3.22)
beta β from equations (3.22)
cg tol pcg convergence tolerance
up holds dot product {R}T

k {R}k from equations (3.22)

New scalar logical:
cg converged set to .TRUE. if pcg process has converged

New dynamic real arrays:
d preconditioned rhs vector
diag precon diagonal preconditioner vector
p “descent” vector used in equations (3.22)
store stores augmented diagonal terms
storkc holds element conductivity matrices
u vector used in equations (3.22)
x “old” solution vector
xnew “new” solution vector

Program 7.5 is the final program in this chapter and is identical to Program 7.4 except
for the equation solution strategy, which in this case uses the preconditioned conjugate
gradient method with no global matrix assembly. The program is in many ways similar to
Program 5.5 in Chapter 5 where the pcg method was first demonstrated.

All of the elements are looped in order to compute their conductivity matrices, which
are stored in the array storkc for use later in the pcg solution algorithm. This loop
called elements 1 also builds the preconditioning matrix, which is simply the inverse
of the diagonal terms in what would have been the assembled global conductivity matrix.
The preconditioning matrix (stored as a vector) is called diag precon. The section

STEADY STATE FLOW 347

commented “pcg equation solution” carries out the vector operations described in equa-
tions (3.22) within the iterative loop labelled pcg. The matrix–vector multiply needed
in the first of (3.22) is done using (3.23). The node number vector num “gathers” the
appropriate components of p, to be multiplied by the element conductivity matrix kc
retrieved from storkc. Similarly, the vector num “scatters” the result of the matrix–
vector multiply to appropriate locations in u. A tolerance cg tol enables the iterations to
be stopped when successive solutions are “close enough”, but since pcg is a loop which
might carry on “forever”, an iteration ceiling, cg limit, is specified also. The nodal net
flow rates are accumulated from element-by-element matrix–vector products in the loop
called elements 3.

The problem given in Figure 7.20 is solved once more using Program 7.5 with the
data given in Figure 7.22. The only additional data are cg tol and cg limit, the
pcg convergence tolerance, and iteration ceiling respectively. The output in Figure 7.23 is
essentially identical to that obtained previously using an assembly strategy in Figure 7.21,
apart from the additional comment indicating that the pcg algorithm took 18 iterations to
converge.

element nod nels nn nip ndim cg_tol cg_limit np_types
’hexahedron’ 8 64 125 8 3 1.0e-7 200 2

prop(kx,ky,kz)
2.0 2.0 2.0
1.0 1.0 5.0

etype
1 1
2 2

g_coord
0.0 0.0 0.0 1.0 0.0 0.0 2.0 0.0 0.0 3.0 0.0 0.0
.
g_coord data for nodes 5-120 omitted here
.
0.0 4.0 -4.0 1.0 4.0 -4.0 2.0 4.0 -4.0 3.0 4.0 -4.0
4.0 4.0 -4.0

g_num
 6 1 2 7 31 26 27 32 7 2 3 8 32 27 28 33

.
g_num data for elements 3-62 omitted here
.
98 93 94 99 123 118 119 124 99 94 95 100 124 119 120 125

loaded_nodes,(k,loads(k),i=1,loaded_nodes)
1
21 100.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
61
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 10 0.0 15 0.0 20 0.0

.
fixed freedom data for 48 nodes omitted here
.
121 0.0 122 0.0 123 0.0 124 0.0 125 0.0

Figure 7.22 Data for Program 7.5 example

348 STEADY STATE FLOW

 There are 125 equations
 Number of cg iterations to convergence was 18

 Node Total Head Flow rate
 1 0.0000E+00 -0.1543E+01
 2 0.0000E+00 -0.2732E+01
 3 0.0000E+00 -0.2028E+01
 4 0.0000E+00 -0.1032E+01
 5 0.0000E+00 -0.3514E+00
 6 0.3319E+01 0.1305E-05
 7 0.3183E+01 0.7655E-06
 8 0.2152E+01 -0.1016E-05
 9 0.1106E+01 -0.1038E-05
 10 0.0000E+00 -0.1026E+01
 11 0.9727E+01 -0.8685E-06
 12 0.6905E+01 0.1006E-06
 13 0.5206E+01 0.5596E-06
 14 0.2141E+01 -0.1743E-05
 15 0.0000E+00 -0.2004E+01
 16 0.1121E+02 0.2077E-05
 17 0.2098E+02 -0.1051E-05
 18 0.6877E+01 0.7030E-06
 19 0.3154E+01 -0.1291E-05
 20 0.0000E+00 -0.2684E+01
 21 0.1689E+03 0.1000E+03
.
.
.
 120 0.0000E+00 -0.2361E+00
 121 0.0000E+00 -0.5872E+00
 122 0.0000E+00 -0.8971E+00
 123 0.0000E+00 -0.7082E+00
 124 0.0000E+00 -0.3505E+00
 125 0.0000E+00 -0.1255E+00

 Inflow Outflow
 0.1000E+03 -0.1000E+03

Figure 7.23 Results from Program 7.5 example

Glossary of variable names used in Chapter 7

Scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling
fixed down number of nodes on downstream side
fixed freedoms number of fixed total heads
fixed seep number of nodes on seepage surface
fixed up number of nodes on upstream side
i simple counter
iel simple counter
iters counts free-surface iterations
iwp SELECTED REAL KIND(15)

STEADY STATE FLOW 349

k simple counter
limit iteration ceiling
loaded nodes number of fixed source/sink nodes
nci number of contour intervals required
ndim number of dimensions
nels number of elements
neq number of degrees of freedom in the mesh
nod number of nodes per element
nn number of nodes in the mesh
nprops number of material properties
np types number of different property types
nxe number of columns of elements
nye number of rows of elements

Scalar reals:
alpha α from equations (3.22)
beta β from equations (3.22)
cg tol pcg convergence tolerance
det determinant of the Jacobian matrix
hdown fixed total head on downstream side
hup fixed total head on upstream side
d180 set to 180.0
initial height initial height of free surface to start process
one set to 1.0
penalty set to 1 × 1020

tol convergence tolerance
up holds dot product {R}Tk {R}k from equations (3.22)
zero set to 0.0

Scalar characters:
dir direction of element and node numbering
element element type
type 2d type of 2D analysis

Scalar logicals:
cg converged set to .TRUE. if pcg process has converged
converged set to .TRUE. if mesh has converged

Dynamic integer arrays:
etype element property types
g num global element node numbers matrix
kdiag diagonal term locations
node nodes with fixed total heads
node down nodes fixed on downstream side
node seep nodes fixed on downstream seepage surface

350 STEADY STATE FLOW

node up nodes fixed on upstream side
num element node numbers

Dynamic real arrays:
angs angles made by sloping mesh lines to horizontal
bottom width x-coordinates of nodes at base of mesh
coord element nodal coordinates
d preconditioned rhs vector
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
diag precon diagonal preconditioner vector
disps net nodal inflow/outflow
ell element lengths
fun shape functions
gc integrating point coordinates
g coord nodal coordinates for all elements
jac Jacobian matrix
kay permeability matrix
kc element conductivity matrix
kv global conductivity matrix
kvh copy of kv
loads global total head vector
oldpot nodal total head values from previous iteration
p “descent” vector used in equations (3.22)
points integrating point local coordinates
prop element properties
store stores augmented diagonal terms
storkc holds element conductivity matrices
surf holds current total head values of free surface
top width x-coordinates of initial nodes at top of mesh
u vector used in equations (3.22)
value fixed values of total heads
weights weighting coefficients
x “old” solution vector
xnew “new” solution vector
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

7.2 Exercises

1. Steady seepage is taking place along a 1D pipe containing three porous materials
with different permeabilities as indicated in Figure 7.24. The total head difference
between the ends of the pipe is 100 units. Use three 1D ‘rod’ elements to discretise the
steady flow problem and hence compute the total head values at the two intermediate

STEADY STATE FLOW 351

locations along the pipe and the steady flow rate through the pipe. (Ans: 27.27,
81.82, 272.2)

k = 10 k = 5 k = 15

H = 0 H = 100

A/L =1 for each element

Figure 7.24

2. The square region in Figure 7.25 has anisotropic conductivity properties and bound-
ary temperatures fixed at the values indicated. Estimate the steady state temperature
at point A. (Ans: 68.3)

1

1.5

1.5

2

kx = 5

ky = 1

100 100 50

100
0

0
050

A

Figure 7.25

3. Steady seepage including a source (positive) is taking place along a 1D pipe contain-
ing three porous materials with different permeabilities as indicated in Figure 7.26.
Use three 1D ‘rod’ elements to discretise the steady flow problem and hence com-
pute the potential values at the two intermediate locations along the pipe and the net
inflow/outflow through the system. (Ans: 45.45, 86.36, 454.5)

k = 10 k = 5 k = 15

H = 0 H = 100

A/L = 1 for each element

Source = 250

Figure 7.26

352 STEADY STATE FLOW

4. Compute the total head and flow rates at all the nodes in the steady flow problem
shown in Figure 7.27.

(Ans:

H2
H4
H5

 =

76.67
34.05
24.76

Q1
Q3
Q6

 =

58.3
3.6

−61.9

)

k = 10

4 54 3 4

k = 20

H1= 100 H3= 65 H6= 0

k = 10 k = 20 k = 10

2 54

A = 1 For all elements

Figure 7.27

5. Steady seepage is taking place through the square block of anisotropic porous mate-
rial with the external source and boundary total head values shown in Figure 7.28.
Measurements indicate that H1 = 42.967 and H2 = −1.535. Compute the anisotropic
conductivity properties kx and ky . (Ans: kx = 1, ky = 2.5)

Q1= 100 H1 H2

H = 0 H = 0 H = 0

H = 0

H = 0H = 0H = 0

kx

ky

Figure 7.28

6. 1D steady seepage is taking place down a pipe as shown in Figure 7.29. Compute
all the head and net flow rates at the nodes. (Ans: H2 = 43.69, H3 = 67.76, Q1 =
−168.45, Q4 = 193.44)

H=100H=10

1 1

k=5 k=7 k=9

1.5

Q=25
(sink)

Figure 7.29

STEADY STATE FLOW 353

7. Steady heat flow is taking place over the square region shown in Figure 7.30 with the
given boundary conditions. All elements have the same conductivity matrix given by:

[kc] =

4 −2.5 −2 0.5

−2.5 4 0.5 −2

−2 0.5 4 −2.5

0.5 −2 −2.5 4

Solve for the central temperature T . (Ans: T = 62.5)

T

100

100

100
100 100

0

0 0

Figure 7.30

8. Use Program 7.2 to estimate the flow rate under the impermeable dam shown in
Figure 7.31. (Ans: Q ≈ 25 m3/day/m)

soil, k=20 m/day

1085

5

3

Figure 7.31

9. Use Program 7.4 to estimate the flow rate and exit hydraulic gradient due to seepage
beneath the single sheet pile wall shown in Figure 7.32. (Ans: Using 50 square
elements of side length 1 unit, Q ≈ 1.3 × 10−5 m/s3/m, ie ≈ 0.42)

354 STEADY STATE FLOW

6 m

5 m 5 m

4 m

Isotropic
k=10−5 m/s

1 m
Soil surface

4 m

Soil and
downstream
surface

2 m

Figure 7.32

10. Use Program 7.3 to estimate the flow rate due to free-surface flow through the
symmetric homogeneous embankment shown in Figure 7.33. (Ans: Q ≈ 12 ×
10−4 m3/min/m)

25 m

160 m

25 m

k=3x10−4 m/min

Figure 7.33

11. Derive the element conductivity matrix for a square 4-node element suitable for
solving Laplace’s equation for an isotropic material of permeability k.

(Ans: [kc] = k
6

4 −1 −2 −1
4 −1 −2

4 −1
symmetric 4

)

12. Using the matrix from the previous question, assemble the global conductivity matrix
for the heat conduction problem shown in Figure 7.34 and hence solve for the steady
state internal temperatures. (Ans: TA = 37.78, TB = 10.00, TC = TD = 21.11)

STEADY STATE FLOW 355

T=50

T=50

T=25

T=0

T=0

T=0 T=0
T=0

T=25T=50T=50T=50

A C

D B

Figure 7.34

13. Derive the conductivity matrix of a 3-noded, right-angled isosceles triangular element
suitable for discretisation of Laplace’s equation. Use your element to estimate the
steady state value of the potential at the central node of the mesh with the boundary
conditions given in Figure 7.35. (Ans: 75.0)

100 100

1000

Figure 7.35

14. A square 4-node plane element of unit side length and permeability is to be used in
the solution of Laplace’s equation over a two-dimensional isotropic medium. If the
terms of the element conductivity matrix can be expressed in the form:

kij =
∫ 1

0

∫ 1

0
fij (x, y) dx dy, i, j = 1, 2, 3, 4

find the function f14 and evaluate k14 explicitly.
(Ans: f14 = −(1 − y)2 + x(1 − x), k14 = − 1

6)

356 STEADY STATE FLOW

References

Griffiths DV 1984 Rationalised charts for the method of fragments applied to confined seepage.
Géotechnique 34(2), 229–238.

Griffiths DV 1991 Generalised numerical integration of moments. Int J Numer Methods Eng 32(1),
129–147.

Verruijt A 1970 Theory of Groundwater Flow. Macmillan, London.

8

Transient Problems: First Order
(Uncoupled)

8.1 Introduction

In the previous chapter, programs for the solution of steady state potential flow prob-
lems were described. Typically, Laplace’s equation (2.122) was discretised in space into
an equilibrium equation (2.123) involving the solution of a set of simultaneous equations.
For well-posed problems there are usually no associated numerical difficulties.

When a flow process is transient, or time dependent, the simplest extension of
equation (2.122), or reduction of the Navier–Stokes equations, is provided by equations
like (2.130). There is still a single dependent variable (for example potential), and so the
analysis is “uncoupled”. After discretisation in space, a typical element equation is given
by equation (2.131). Problems such as these lead to a set of first order ordinary differential
equations in time, the solution of which is no longer a simple numerical task for large
numbers of elements.

Some of the many solution techniques available were described in Chapter 3. Possibly
the simplest, and most robust, are the “implicit” methods described by equation (3.94)
and by the structure chart in Figure 3.19. These θ -methods form the basis of the first
three programs in this chapter. Program 8.1 analyses the 1D consolidation equation, and
Programs 8.2 and 8.3 extend this approach to two dimensions. In the case of Program 8.3, a
“mesh-free” preconditioned conjugate gradient approach is used. Program 8.4 demonstrates
an “explicit” (θ = 0) solution strategy to a 2D transient problem, and Program 8.5 uses
an “element-by-element” operator splitting method. Program 8.6 returns to the “implicit”
θ methods allowing analysis of 2D or 3D transient problems over a general finite element
mesh. The final two Programs 8.7 and 8.8 solve the diffusion–convention equation (2.132)
in 2D using, respectively, “transformed” and “untransformed” analyses.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

358 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

Program 8.1 One-dimensional consolidation analysis using 2-node line elements.
Implicit time integration using the “theta” method.

PROGRAM p81
!---
! Program 8.1 One dimensional consolidation analysis using 2-node line
! elements. Implicit time integration using the "theta" method.
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,j,nels,neq,nod=2,npri,nprops=1,np_types, &
nres,nstep,ntime

REAL(iwp)::at,a0,dtim,penalty=1.0e20_iwp,pt5=0.5_iwp,theta,time, &
zero=0.0_iwp

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),node(:),num(:),kdiag(:)
REAL(iwp),ALLOCATABLE::bp(:),ell(:),kc(:,:),kv(:),loads(:),newlo(:), &
mm(:,:),press(:),prop(:,:),storbp(:),value(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,np_types; neq=nels+1
ALLOCATE(num(nod),etype(nels),kc(nod,nod),mm(nod,nod),press(0:neq), &
prop(nprops,np_types),ell(nels),kdiag(neq),loads(0:neq),newlo(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype; READ(10,*)ell
READ(10,*)dtim,nstep,theta,npri,nres,ntime; kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
num=(/iel,iel+1/); CALL fkdiag(kdiag,num)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),bp(kdiag(neq))); bp=zero; kv=zero
WRITE(11,'(2(a,i5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

!-----------------------global conductivity and "mass" matrix assembly----
elements_2: DO iel=1,nels
num=(/iel,iel+1/)
CALL rod_km(kc,prop(1,etype(iel)),ell(iel)); CALL rod_mm(mm,ell(iel))
CALL fsparv(kv,kc,num,kdiag); CALL fsparv(bp,mm,num,kdiag)

END DO elements_2; kv=kv*theta*dtim; bp=bp+kv; kv=bp-kv/theta
!-----------------------specify initial and boundary values---------------
loads(0)=zero; READ(10,*)loads(1:); a0=zero
DO iel=1,nels; a0=a0+pt5*ell(iel)*(loads(iel)+loads(iel+1)); END DO
READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)then
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms), &

storbp(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
bp(kdiag(node))=bp(kdiag(node))+penalty; storbp=bp(kdiag(node))

END IF
!-----------------------factorise equations-------------------------------
CALL sparin(bp,kdiag)

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/a,i3,a)')" Time Deg of Con Pressure (node",nres,")"
WRITE(11,'(3e12.4)')0.0,0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim; CALL linmul_sky(kv,loads,newlo,kdiag)
IF(fixed_freedoms/=0)newlo(node)=storbp*value
CALL spabac(bp,newlo,kdiag); loads=newlo; at=zero

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 359

DO iel=1,nels; at=at+pt5*ell(iel)*(loads(iel)+loads(iel+1)); END DO
IF(j==ntime)press(1:)=loads(1:)
IF(j/npri*npri==j)WRITE(11,'(3e12.4)')time,(a0-at)/a0,loads(nres)

END DO timesteps
WRITE(11,'(/a,e10.4,a)')" Depth Pressure (time=",ntime*dtim,")"
WRITE(11,'(3e12.4)')0.0,press(1)
WRITE(11,'(2e12.4)')(SUM(ell(1:i)),press(i+1),i=1,nels)

STOP
END PROGRAM p81

Scalar integers:
fixed freedoms number of fixed nodes
i simple counter
iel simple counter
iwp SELECTED REAL KIND(15)
j simple counter
nels number of elements
neq number of degrees of freedom in the mesh
nod number of nodes per element
npri output printed every npri time steps
nprops number of material properties
np types number of different property types
nres node number at which time history is to be printed
nstep number of time steps required
ntime time step number at which spatial distribution is to be printed

Scalar reals:
at holds area beneath isochrone by Trapezoid Rule at time t

a0 holds area beneath isochrone by Trapezoid Rule at time t = 0
dtim calculation time step
pt 5 set to 0.5
penalty set to 1 × 1020

theta time integration weighting parameter
time holds elapsed time t

zero set to 0.0

Dynamic integer arrays:
etype element property types
kdiag diagonal term locations
node nodes with fixed values
num element node numbers

Dynamic real arrays:
bp global “mass” matrix
ell element lengths
kc element conductivity matrix
kv global conductivity matrix
loads excess pore pressure values

360 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

newlo new excess pore pressure values
mm element “mass” matrix
press excess pore pressure values after ntime time steps
prop element properties
storbp copy of bp
value fixed boundary values of excess pore pressure

In the absence of sources or sinks, equation (3.94) reduces to

([Mm] + θ�t [Kc]) {���}1 = ([Mm] − (1 − θ)�t [Kc]) {���}0 (8.1)

Where the element conductivity [kc] and “mass” [mm] matrices (kc and mm respectively
in programming terminology) have been assembled into their global counterparts [Kc] and
[Mm] (kv and bp). After some manipulations, the left hand side matrix ([Mm] + θ�t [Kc])
is formed (called bp) and the fixed boundary conditions are implemented using the “stiff
spring” or “penalty” strategy. The matrix is then factorised by subroutine sparin, the
initial conditions are read into {���}0 (loads), and the right-hand side matrix-by-vector
product ([Mm] − (1 − θ)�t [Kc]) {���}0 (newlo) computed. Within each time step, all that
is then required to advance the solution, is a matrix-by-vector multiplication on the right
hand side of equation (8.1), followed by a forward and backward substitution. The final
section of the program consists of the time-stepping loop completed nstep times. The
matrix-by-vector multiplication is carried out by linmul sky and forward and back-
ward substitution by spabac. The process is described in detail by the structure chart in

Read data
Allocate arrays
Find problem size

Null global global conductivity and "mass" matrices

For all elements

Find nodal coordinates and steering vector

For all integrating points

Compute shape functions and derivatives in
local coordinates

Convert from local to global coordinates.
Form conductivity and "mass" matrix
contributions to element matrices

Assemble element matrices into global systems.

Factorise the left hand side of the
time-stepping equations

 For all time steps

Form new right hand side
Complete equation solution

 Print results

Figure 8.1 Structure chart for implicit analysis of transient problems with assembly

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 361

1

2

3

4

5

6

7

8

9

10

11

Drained

0.1

cv = 1 (uniform)

u = 100 at all nodes
at time t = 0

Undrainednels np_types
10 1

prop(cv)
1.0

etype(not needed)

ell
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

dtim nstep theta npri nres ntime
0.001 2000 0.5 100 11 1000

loads(i),i=1,neq
100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
1
1 0.0

Figure 8.2 Mesh and data for Program 8.1 example

Figure 8.1. Note, however, that the matrix-by-vector multiplication on the right hand side
could be done using element-by-element summation, avoiding storage of one large matrix.

Figure 8.2 shows a string of 10 elements attached end to end, representing a 1D layer of
saturated soil with a total depth of 1.0. The layer is subjected to a uniform initial excess pore
pressure distribution of 100.0 and is drained at the top only. The material property required
in this analysis is the coefficient of consolidation cv (analogous to EA in Program 4.1 and
kA in Program 7.1). The objective of the analysis is to compute the excess pore pressure
distribution and the average degree of consolidation as a function of time.

The data involve reading the number of elements nels=10, and the number of property
types np types=1. In this case the layer is uniform, so with np types=1 the etype
data is not needed. The 10 element lengths ell are read, and in this example are all the
same length and equal to 0.1.

The next line of data refers to the time-stepping and the output parameters. The three
time-stepping parameters are the calculation time step dtim, read as 0.001, the number of

362 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

calculation time steps required nstep, read as 2,000 and the time integration parameters
theta, read next as 0.5. The choice of θ = 0.5 is often referred to as the “Crank–Nicolson”
method of time integration. The three output parameters are the output frequency parameter
npri, read as 100, the node at which a time history is required nres, read as 11 (cor-
responding to the bottom node at the impermeable boundary) and the time step at which
a spatial distribution of excess pore pressure is required ntime, read as 1,000 and corre-
sponding to t = 1.0. The user could of course modify the program to generate alternative
output if required.

The next data read into loads, gives the initial excess pore pressure at the 11 nodes
at t = 0.0, which in this example is uniform and equal to 100.0. The final data gives the
drainage boundary conditions. In this example, one node (node 1) is a drainage boundary,
so its excess pore pressure is fixed equal to zero. Users are invited to try other initial
conditions and boundary conditions (e.g. linear variation of excess pore pressure, double
drainage, etc.).

The results given in Figure 8.3 show the time history of the excess pore pressure at
node 11 and the average degree of consolidation (U) every 100 time steps up to t = 2.0.
The lower part gives the excess pore pressure with depth corresponding to t = 1.0. With
the maximum drainage path and the coefficient of consolidation both equal to unity in this
example, the dimensionless time factor equals real time, thus T = t .

There are 11 equations and the skyline storage is 21

 Time Deg of Con Pressure (node 11)
 0.0000E+00 0.0000E+00 0.1000E+03
 0.1000E+00 0.3567E+00 0.9525E+02
 0.2000E+00 0.5041E+00 0.7743E+02
 0.3000E+00 0.6134E+00 0.6079E+02
 0.4000E+00 0.6981E+00 0.4751E+02
 0.5000E+00 0.7643E+00 0.3711E+02
 0.6000E+00 0.8159E+00 0.2898E+02
 0.7000E+00 0.8562E+00 0.2263E+02
 0.8000E+00 0.8877E+00 0.1767E+02
 0.9000E+00 0.9123E+00 0.1380E+02
 0.1000E+01 0.9315E+00 0.1078E+02
 0.1100E+01 0.9465E+00 0.8417E+01
 0.1200E+01 0.9582E+00 0.6574E+01
 0.1300E+01 0.9674E+00 0.5134E+01
 0.1400E+01 0.9745E+00 0.4009E+01
 0.1500E+01 0.9801E+00 0.3131E+01
 0.1600E+01 0.9845E+00 0.2445E+01
 0.1700E+01 0.9879E+00 0.1909E+01
 0.1800E+01 0.9905E+00 0.1491E+01
 0.1900E+01 0.9926E+00 0.1165E+01
 0.2000E+01 0.9942E+00 0.9094E+00

 Depth Pressure (time=0.1000E+01)
 0.0000E+00 -0.1967E-21
 0.1000E+00 0.1686E+01
 0.2000E+00 0.3331E+01
 0.3000E+00 0.4893E+01
 0.4000E+00 0.6335E+01
 0.5000E+00 0.7621E+01
 0.6000E+00 0.8720E+01
 0.7000E+00 0.9604E+01
 0.8000E+00 0.1025E+02
 0.9000E+00 0.1065E+02
 0.1000E+01 0.1078E+02

Figure 8.3 Results from Program 8.1 example

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 363

10−3
2 4 6 8

10−2
2 4 6 8

10−1
2 4 6 8

100
2 4 6 8

101

T

1
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

1
0

U Program 8.1
Terzaghi 1-d theory

Figure 8.4 Comparison of Program 8.1 results with Terzaghi’s consolidation theory

Figure 8.4 gives a plot of the computed U vs. T , showing excellent agreement with
the series solution from Terzaghi’s 1D consolidation theory.

Program 8.2 Plane or axisymmetric consolidation analysis using 4-node rectangular
quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration
using the “theta” method.

PROGRAM p82
!---
! Program 8.2 Plane or axisymmetric consolidation analysis using 4-node
! rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-
! direction. Implicit time integration using the "theta"
! method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,j,nci,ndim=2,nels,neq,nip=4,nn,nod=4,npri, &
np_types,nres,nstep,ntime,nxe,nye

REAL(iwp)::det,dtim,one=1.0_iwp,penalty=1.0e20_iwp,theta,time, &
zero=0.0_iwp; CHARACTER(len=15)::dir,element='quadrilateral',type_2d

364 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:),kdiag(:)
REAL(iwp),ALLOCATABLE::bp(:),coord(:,:),der(:,:),deriv(:,:),fun(:), &
gc(:),g_coord(:,:),jac(:,:),kay(:,:),kc(:,:),kv(:),loads(:),newlo(:), &
ntn(:,:),mm(:,:),points(:,:),prop(:,:),storbp(:),value(:),weights(:), &
x_coords(:),y_coords(:)

!-------------------------input and initialisation------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)type_2d,dir,nxe,nye,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
ALLOCATE(points(nip,ndim),weights(nip),kay(ndim,ndim),coord(nod,ndim), &
fun(nod),jac(ndim,ndim),g_coord(ndim,nn),der(ndim,nod),deriv(ndim,nod),&
mm(nod,nod),g_num(nod,nels),kc(nod,nod),ntn(nod,nod),num(nod), &
etype(nels),kdiag(neq),loads(0:neq),newlo(0:neq),x_coords(nxe+1), &
y_coords(nye+1),prop(ndim,np_types),gc(ndim))

READ(10,*)prop; etype=1; if(np_types>1)read(10,*)etype
READ(10,*)x_coords,y_coords
READ(10,*)dtim,nstep,theta,npri,nres,ntime; kdiag=0

! ----------loop the elements to set up global geometry and kdiag --------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord)
CALL fkdiag(kdiag,num)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),bp(kdiag(neq)))
WRITE(11,'(2(a,i5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); bp=zero; kv=zero; gc=one
!-----------------------global conductivity and "mass" matrix assembly----
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); if(type_2d=='axisymmetric')gc=MATMUL(fun,coord)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)*gc(1)
CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)*gc(1)

END DO gauss_pts
CALL fsparv(kv,kc,num,kdiag); CALL fsparv(bp,mm,num,kdiag)

END DO elements_2
kv=kv*theta*dtim; bp=bp+kv; kv=bp-kv/theta

!-----------------------specify initial and boundary values---------------
READ(10,*)loads(1:); loads(0)=zero; READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)then
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms), &

storbp(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
bp(kdiag(node))=bp(kdiag(node))+penalty; storbp=bp(kdiag(node))

END IF
!-----------------------factorise equations-------------------------------
CALL sparin(bp,kdiag)

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/a,i3,a)')" Time Pressure (node",nres,")"
WRITE(11,'(2e12.4)')0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim; CALL linmul_sky(kv,loads,newlo,kdiag)

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 365

IF(fixed_freedoms/=0)newlo(node)=storbp*value
CALL spabac(bp,newlo,kdiag); loads=newlo
IF(nod==4.AND.j==ntime)THEN; READ(10,*)nci

CALL contour(loads,g_coord,g_num,nci,13); END IF
IF(j/npri*npri==j)WRITE(11,'(2e12.4)')time,loads(nres)

END DO timesteps
STOP
END PROGRAM p82

New scalar integers:
nci number of contour intervals
ndim number of dimensions
nip number of integrating points
nn number of nodes in the mesh
nxe number of elements in x(r)-direction
nye number of elements in y(z)-direction

New scalar reals:
det determinant of the Jacobian matrix
one set to 1.0

Scalar characters:
dir element and node numbering direction
element element type
type 2d type of 2D analysis (‘plane’ or ‘axisymmetric’)

New dynamic integer arrays:
g num global element node numbers matrix

New dynamic real arrays:
coord element nodal coordinates
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
fun shape functions
gc integrating point coordinates
g coord nodal coordinates for all elements
jac Jacobian matrix
kay permeability matrix
points integrating point local coordinates
weights weighting coefficients
x coords x(r)-coordinates of mesh layout
y coords y(z)-coordinates of mesh layout

This program is for the analysis of 2D (ndim=2) first-order transient problems under
plane or axisymmetric conditions, and is closely based on Program 7.2 in Chapter 7. In
order to simplify the data however, the examples presented here use 4-node rectangular ele-
ments only (element=’quadrilateral’ and nod=4). The program includes graphics
subroutines mesh and contour which generate PostScript files containing, respectively,
images of the finite element mesh (held in fe95.msh), and a contour map of the excess

366 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

pore pressure (held in the fe95.con) corresponding to the solution at the requested
time step ntime. The contouring only works currently for meshes made up of 4-node
quadrilateral elements.

The first example chosen is shown in Figure 8.5 and could represent dissipation of
excess porewater pressure from a square block of soil with drainage permitted at the
outside boundaries. Due to 4-fold symmetry only one-quarter of the square is modelled
with excess pore pressure at the outer drained boundaries fixed to zero, and the two inner
boundaries defaulting to “no-flow” boundary conditions.

The first line of data reads type 2d and dir and indicates that a plane analysis is to
be performed with element and node numbering in the x-direction. The second line shows
that the rectangular mesh consists of 5 columns (nxe) and 5 rows (nye) of elements, and
there is only one property type (np types) in this homogeneous example. The third line
reads the 2D coefficients of consolidation cx and cy into the property array prop, and since
there is only one property type in this problem, the etype data is not required. The fourth
and fifth lines give, respectively, the x-(x coords) and y-coordinates (y coords) of the
lines that make up the mesh. The sixth line of data reads the time-stepping and output
parameters with the same meaning as in the data for Program 8.1. The next data read into
loads, is the initial excess pore pressure at all the nodes in the mesh. In this example, the
square block is subjected to an initial uniform excess pore pressure of 100.0, with drainage
immediately effective at the top and right boundaries. The next line of data indicates that
there are 11 (fixed_freedoms) nodes to have fixed values. The next two lines of data

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 m

1 m

cL

Nodes
maintained
at f = 0 for
t>0

cLx(r)

y(z)

All nodes set to f = 100
at time t = 0.

Nodes maintained at f = 0 for t>0

Figure 8.5 Mesh and data for the first Program 8.2 and 8.5 example (Continued on
page 367)

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 367

type_2d dir
’plane’ ’x’

nxe nye np_types
5 5 1

prop(cx,cy)
1.0 1.0

etype(not needed)

x_coords, y_coords
 0.0 0.2 0.4 0.6 0.8 1.0
 0.0 -0.2 -0.4 -0.6 -0.8 -1.0

dtim nstep theta npri nres ntime
0.01 150 0.5 10 31 100

loads(i),i=1,neq
 0.0 0.0 0.0 0.0 0.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
11
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0
12 0.0 18 0.0 24 0.0 30 0.0 36 0.0

nci
10

Figure 8.5 (Continued from page 366)

There are 36 equations and the skyline storage is 246

 Time Pressure (node 31)
 0.0000E+00 0.1000E+03
 0.1000E+00 0.9009E+02
 0.2000E+00 0.5845E+02
 0.3000E+00 0.3580E+02
 0.4000E+00 0.2178E+02
 0.5000E+00 0.1324E+02
 0.6000E+00 0.8051E+01
 0.7000E+00 0.4895E+01
 0.8000E+00 0.2976E+01
 0.9000E+00 0.1809E+01
 0.1000E+01 0.1100E+01
 0.1100E+01 0.6687E+00
 0.1200E+01 0.4065E+00
 0.1300E+01 0.2472E+00
 0.1400E+01 0.1503E+00
 0.1500E+01 0.9135E-01

Figure 8.6 Results from first Program 8.2 example

indicate the node numbers (node) and the values (value) to which they are to be fixed
(zero in the case of drainage boundaries). The final line of data reads nci, indicating that
the contour map of excess pore pressure, corresponding to the situation after ntime time
steps and written to file fe95.con, will include 10 contour intervals.

The output shown in Figure 8.6 gives the excess pore pressure at node nres=31, which
is the centre of the mesh, every npri=10 time steps (every 0.1 s). The normalised result at

368 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

Program 8.2
2-D series solution

f/fο (node 31)

Planar analysis

Carslaw and Jaeger(1959)

Figure 8.7 Comparison of Program 8.2 result for a planar region with 2D series solution

node 31 (after division by the initial value) is plotted against the time factor T in Figure 8.7,
where it is compared with series solution values (Carslaw and Jaeger, 1959). The crude
finite element idealisation gives excellent agreement. The contour map corresponding to
the distribution of excess pore pressure after ntime time steps (t = 1.0 secs) is given in
Figure 8.8.

The second example is of the same problem considered previously, but under axisym-
metric conditions. In soil mechanics, the physical analogue would be a “triaxial” specimen
of soil draining from all its boundaries.

The data shown in Figure 8.9 is very similar to that of the previous example, but with
type 2d set to ‘axisymmetric’ and dir set to ‘r’, because the node and element
numbering is now in the radial direction. The number of integrating points nip remains
equal to 4 for the rectangular 4-node elements considered in this example (see discussion of
nip in Program 7.2). The output at node 31 shown in Figure 8.10, is plotted in Figure 8.11
and compared again with Carslaw and Jaeger’s (1959) axisymmetric solution.

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 369

1.10

0.99

0.88

0.77

0.66

0.55

0.44

0.33

0.22

0.11

0.00

Contour
values

Figure 8.8 Contour map of excess pore pressure after t = 1.0 from first Program 8.2
example

type_2d dir
’axisymmetric’ ’r’

nxe nye np_types
5 5 1

prop(cx,cy)
1.0 1.0

etype(not needed)

x_coords, y_coords
 0.0 0.2 0.4 0.6 0.8 1.0
 0.0 -0.2 -0.4 -0.6 -0.8 -1.0

dtim nstep theta npri nres ntime
0.01 150 0.5 10 31 100

loads(i),i=1,neq
 0.0 0.0 0.0 0.0 0.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
11
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0
12 0.0 18 0.0 24 0.0 30 0.0 36 0.0

nci
10

Figure 8.9 Data for the second Program 8.2 example

370 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

There are 36 equations and the skyline storage is 246

 Time Pressure (node 31)
 0.0000E+00 0.1000E+03
 0.1000E+00 0.8096E+02
 0.2000E+00 0.3798E+02
 0.3000E+00 0.1667E+02
 0.4000E+00 0.7280E+01
 0.5000E+00 0.3176E+01
 0.6000E+00 0.1386E+01
 0.7000E+00 0.6046E+00
 0.8000E+00 0.2638E+00
 0.9000E+00 0.1151E+00
 0.1000E+01 0.5022E-01
 0.1100E+01 0.2191E-01
 0.1200E+01 0.9560E-02
 0.1300E+01 0.4171E-02
 0.1400E+01 0.1820E-02
 0.1500E+01 0.7940E-03

Figure 8.10 Results from second Program 8.2 example

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

Program 8.2
2D series solution

f/fο (node 31)

Cylindrical analysis

Carslaw and Jaeger(1959)

Figure 8.11 Comparison of Program 8.2 result for a cylindrical region with series solution

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 371

8.2 Mesh-free Strategies in Transient Analysis

The first two programs in this Chapter have used implicit integration in time and assembly
strategies for mesh conductivity and “mass” matrices. For very large problems, the demands
on computer storage become significant and, as was the case in Chapters 5 to 7, it is natural
to seek “mesh-free” strategies which avoid the need to store system matrices at all.

Possibly the simplest (and oldest) mesh-free strategy is based on equation (3.98) which
shows that for lumped “mass” matrix [Mm], the solution at a new time can be found
from the solution at the previous time by a simple matrix–vector multiplication, which can
be done element-by-element. Such “explicit” techniques suffer from numerical stability
difficulties and are described later. First we consider the natural extension to Programs 8.1
and 8.2, which were seen to consist of a linear equation solution on every time step. Clearly
this solution can be accomplished iteratively using pcg or some similar technique, and this
is done in Program 8.3.

Program 8.3 Plane or axisymmetric consolidation analysis using 4-node rectangular
quadrilaterals. Mesh numbered in x (r)- or y(z)-direction. Implicit time integration
using the “theta” method. No global stiffness matrix assembly. Diagonal precondi-
tioner conjugate gradient solver.

PROGRAM p83
!---
! Program 8.3 Plane or axisymmetric consolidation analysis using 4-node
! rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-
! direction. Implicit time integration using the "theta"
! method. No global matrix assembly. Diagonal
! preconditioner conjugate gradient solver
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,fixed_freedoms,i,iel,j,k,nci,ndim=2,nels,neq, &
nip=4,nn,nod=4,npri,np_types,nres,nstep,ntime,nxe,nye

REAL(iwp)::alpha,beta,cg_tol,det,dtim,one=1.0_iwp,penalty=1.0e20_iwp, &
theta,time,up,zero=0.0_iwp; LOGICAL::cg_converged

CHARACTER(LEN=15)::dir,element='quadrilateral',type_2d
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:)
REAL(iwp),ALLOCATABLE::coord(:,:),d(:),der(:,:),deriv(:,:), &
diag_precon(:),fun(:),gc(:),g_coord(:,:),jac(:,:),kay(:,:),kc(:,:), &
loads(:),ntn(:,:),p(:),mm(:,:),points(:,:),prop(:,:),r(:),store(:), &
storka(:,:,:),storkb(:,:,:),u(:),value(:),weights(:),x(:),xnew(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)type_2d,dir,nxe,nye,cg_tol,cg_limit,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
WRITE(11,'(a,i5,a)')" There are",neq," equations"
ALLOCATE(points(nip,ndim),weights(nip),kay(ndim,ndim),coord(nod,ndim), &
fun(nod),jac(ndim,ndim),g_coord(ndim,nn),der(ndim,nod),deriv(ndim,nod),&
mm(nod,nod),g_num(nod,nels),kc(nod,nod),ntn(nod,nod),num(nod), &
storka(nod,nod,nels),storkb(nod,nod,nels),etype(nels),x_coords(nxe+1), &

372 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

y_coords(nye+1),prop(ndim,np_types),loads(0:neq),diag_precon(0:neq), &
u(0:neq),d(0:neq),p(0:neq),x(0:neq),r(0:neq),xnew(0:neq),gc(ndim))

READ(10,*)prop; etype=1; IF(np_types>1)read(10,*)etype
READ(10,*)x_coords,y_coords
READ(10,*)dtim,nstep,theta,npri,nres,ntime

!---------------loop the elements to set up element data------------------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord)

END DO elements_1; CALL mesh(g_coord,g_num,12)
CALL sample(element,points,weights); diag_precon=zero; gc=one

!----------element matrix integration, storage and preconditioner------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); IF(type_2d=='axisymmetric')gc=MATMUL(fun,coord)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)*gc(1)
CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)*gc(1)

END DO gauss_pts
storka(:,:,iel)=mm+kc*theta*dtim; storkb(:,:,iel)=mm-kc*(one-theta)*dtim
DO k=1,nod

diag_precon(num(k))=diag_precon(num(k))+storka(k,k,iel)
END DO

END DO elements_2
!-----------------------specify initial and boundary values---------------
READ(10,*)loads(1:); loads(0)=zero; READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms), &

store(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
diag_precon(node)=diag_precon(node)+penalty; store=diag_precon(node)

END IF
diag_precon(1:)=one/diag_precon(1:); diag_precon(0)=zero

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/a,i3,a)')" Time Pressure (node",nres,") cg iters"
WRITE(11,'(2e12.4)')0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim; u=zero
elements_3 : DO iel=1,nels

num=g_num(:,iel); kc=storkb(:,:,iel)
u(num)=u(num)+MATMUL(kc,loads(num))

END DO elements_3
u(0)=zero; r=u; IF(fixed_freedoms/=0)r(node)=store*value
d=diag_precon*r; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO

cg_iters=cg_iters+1; u=zero
elements_4: DO iel=1,nels
num=g_num(:,iel); kc=storka(:,:,iel)
u(num)=u(num)+MATMUL(kc,p(num))

END DO elements_4
IF(fixed_freedoms/=0)u(node)=p(node)*store; up=DOT_PRODUCT(r,d)
alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha; r=r-u*alpha
d=diag_precon*r; beta=DOT_PRODUCT(r,d)/up; p=d+p*beta

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 373

CALL checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg; loads=xnew
IF(nod==4.AND.j==ntime)THEN; READ(10,*)nci

CALL contour(loads,g_coord,g_num,nci,13); END IF
IF(j/npri*npri==j) &
WRITE(11,'(2e12.4,7x,i5)')time,loads(nres),cg_iters

END DO timesteps
STOP
END PROGRAM p83

New scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling
k simple counter

New scalar integers:
alpha α from equations (3.22)
beta β from equations (3.22)
cg tol pcg convergence tolerance
up holds dot product {R}T

k {R}k from equations (3.22)

Scalar logical:
cg converged set to .TRUE. if pcg process has converged

New dynamic real arrays:
d vector used in equation (3.22)
diag precon diagonal preconditioner vector
p “descent” vector used in equations (3.22)
r holds fixed rhs terms in pcg solver
store stores global augmented diagonal terms
storka stores lhs element matrix
storkb stores rhs element matrix
u vector used in equation (3.22)
x “old” solution vector
xnew “new” solution vector

In this program, all the element conductivity and “mass” matrices are stored in the
forms ([mm] + θ�t[kc]) and ([mm] − (1 − θ)�t[kc]) in arrays storka and storkb
respectively, as required by equation (3.94). The diagonal preconditioner is formed from
the diagonal terms of the first of these as it would have been assembled. The only additional
inputs compared to Program 8.2 are the iteration tolerance, cg tol, and the limiting
number of pcg iterations, pcg limit. The data are shown as Figure 8.12 with output
as Figure 8.13. For an iteration tolerance of 0.0001 and the same time step as was used
in Program 8.2, the pcg process converges in at most 3 iterations, and leads to the same
solution as given in Figure 8.6.

374 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

type_2d dir
’plane’ ’x’

nxe nye cg_tol cg_limit np_types
5 5 0.0001 100 1

prop(cx,cy)
1.0 1.0

etype(not needed)

x_coords, y_coords
 0.0 0.2 0.4 0.6 0.8 1.0
 0.0 -0.2 -0.4 -0.6 -0.8 -1.0

dtim nstep theta npri nres ntime
0.01 150 0.5 10 31 100

loads(i),i=1,neq
 0.0 0.0 0.0 0.0 0.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
11
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0
12 0.0 18 0.0 24 0.0 30 0.0 36 0.0

nci
10

Figure 8.12 Data for Program 8.3 example

There are 36 equations

 Time Pressure (node 31) cg iters
 0.0000E+00 0.1000E+03
 0.1000E+00 0.9009E+02 3
 0.2000E+00 0.5845E+02 3
 0.3000E+00 0.3580E+02 2
 0.4000E+00 0.2178E+02 2
 0.5000E+00 0.1324E+02 2
 0.6000E+00 0.8051E+01 2
 0.7000E+00 0.4895E+01 2
 0.8000E+00 0.2976E+01 2
 0.9000E+00 0.1809E+01 2
 0.1000E+01 0.1100E+01 2
 0.1100E+01 0.6687E+00 2
 0.1200E+01 0.4065E+00 2
 0.1300E+01 0.2472E+00 2
 0.1400E+01 0.1503E+00 2
 0.1500E+01 0.9135E-01 2

Figure 8.13 Results from Program 8.3 example

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 375

Program 8.4 Plane or axisymmetric analysis of the consolidation equation using 4-
node rectangular quadrilaterals. Mesh numbered in x (r)- or y(z)-direction. Explicit
time integration using the “theta = 0” method.

PROGRAM p84
!---
! Program 8.4 Plane or axisymmetric analysis of the consolidation equation
! using 4-node rectangular quadrilaterals. Mesh numbered in
! x(r)- or y(z)- direction. Explicit time integration using
! the "theta=0" method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,j,nci,ndim=2,nels,neq,nip=4,nn,nod=4,npri, &
np_types,nres,nstep,ntime,nxe,nye

REAL(iwp)::det,dtim,one=1.0_iwp,time,zero=0.0_iwp
CHARACTER(len=15)::dir,element='quadrilateral',type_2d

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:)
REAL(iwp),ALLOCATABLE::coord(:,:),der(:,:),deriv(:,:),fun(:),gc(:), &
globma(:),g_coord(:,:),jac(:,:),kay(:,:),kc(:,:),loads(:),mass(:), &
newlo(:),ntn(:,:),mm(:,:),points(:,:),prop(:,:),store_mm(:,:,:), &
value(:),weights(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)type_2d,dir,nxe,nye,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
WRITE(11,'(a,i5,a)')" There are",neq," equations"
ALLOCATE(points(nip,ndim),weights(nip),kay(ndim,ndim),globma(0:neq), &
coord(nod,ndim),fun(nod),jac(ndim,ndim),g_coord(ndim,nn),der(ndim,nod),&
deriv(ndim,nod),mm(nod,nod),g_num(nod,nels),kc(nod,nod),ntn(nod,nod), &
num(nod),etype(nels),x_coords(nxe+1),y_coords(nye+1), &
prop(ndim,np_types),gc(ndim),store_mm(nod,nod,nels),mass(nod), &
loads(0:neq),newlo(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)read(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,npri,nres,ntime
CALL sample(element,points,weights); globma=zero; gc=one

!---------create and store element and global lumped mass matrices--------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); if(type_2d=='axisymmetric')gc=MATMUL(fun,coord)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)*gc(1)
CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)*gc(1)

END DO gauss_pts
DO i=1,nod; mass(i)=SUM(mm(i,:)); END DO; mm=zero
DO i=1,nod; mm(i,i)=mass(i); END DO
store_mm(:,:,iel)=mm-kc*dtim; globma(num)=globma(num)+mass

END DO elements_1; globma(1:)=one/globma(1:); CALL mesh(g_coord,g_num,12)
!-----------------------specify initial and boundary values---------------
READ(10,*)loads(1:); loads(0)=zero; READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)then
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)

376 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

END IF
!-----------------------time stepping loop--------------------------------
WRITE(11,'(/a,i3,a)')" Time Pressure (node",nres,")"
WRITE(11,'(2e12.4)')0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim; newlo=zero
elements_2: DO iel=1,nels

num=g_num(:,iel); mm=store_mm(:,:,iel)
newlo(num)=newlo(num)+MATMUL(mm,loads(num))

END DO elements_2; newlo(0)=zero; loads=newlo*globma
IF(fixed_freedoms/=0)loads(node)=value
IF(nod==4.AND.j==ntime)THEN; READ(10,*)nci

CALL contour(loads,g_coord,g_num,nci,13); END IF
IF(j/npri*npri==j)WRITE(11,'(2e12.4)')time,loads(nres)

END DO timesteps
STOP
END PROGRAM p84

New dynamic real arrays:
globma global lumped mass matrix and its inverse (stored as a vector)
mass element lumped mass vector
store mm stores lhs element matrices

Read data
Allocate arrays

For all elements

Find nodal coordinates and steering vector

For all integrating points

Compute shape functions and derivatives in
local coordinates

Convert from local to global coordinates
Form conductivity and lumped ‘mass’
contributions to element matrices

Store [mm]−∆t[kc]
Assemble global lumped mass matrix [Mm]

Specify initial and boundary conditions.
Invert [Mm]

For all time steps

For all elements

Recover [mm]−∆t[kc]
Multiply by appropriate part of {f0}

to give updated values {f1} via [Mm]−1

Print results

Figure 8.14 Structure chart for explicit time integration from Program 8.4

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 377

In non-linear problems which are “ill-conditioned”, pcg iterations could become signif-
icant despite the unconditional stability exhibited by Program 8.3. The oldest and simplest
mesh-free process using lumped mass, is the “explicit” method, based on equation (3.98),
where

{���}1 = [Mm]−1 ([Mm] − �t [Kc]) {���}0 (8.2)

The element integration loop follows the now standard course but the element matrix
([mm] − �t[kc]) is stored in store mm for each element rather than assembled as would
be the case for a traditional implicit technique. Then in the time-stepping loop, element
matrices are recovered from store mm and the product ([Mm] − �t [Kc]) {�}0 formed
“element-by-element” using the summation,

nels∑
i=1

([mm] − �t[kc])i {φφφ}0i

where {φφφ}0i is the appropriate part of {���}0 for element i. The result of this element-by-
element product is called newlo in programming terminology.

This having been done, the global {���}1 called loads is computed by multiplying
newlo by the inverse of the global mass matrix globma. The process is illustrated by
the structure chart in Figure 8.14.

The problem shown on Figure 8.5 has been analysed again with the data shown in
Figure 8.15 with output as Figure 8.16. The only difference from Figure 8.5, is that being

type_2d dir
’plane’ ’x’

nxe nye np_types
5 5 1

prop(cx,cy)
1.0 1.0

etype(not needed)

x_coords, y_coords
 0.0 0.2 0.4 0.6 0.8 1.0
 0.0 -0.2 -0.4 -0.6 -0.8 -1.0

dtim nstep npri nres ntime
0.01 150 10 31 100

loads(i),i=1,neq
 0.0 0.0 0.0 0.0 0.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0
100.0 100.0 100.0 100.0 100.0 0.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
11
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0
12 0.0 18 0.0 24 0.0 30 0.0 36 0.0

nci
10

Figure 8.15 Data for Program 8.4 example

378 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

There are 36 equations

 Time Pressure (node 31)
 0.0000E+00 0.1000E+03
 0.1000E+00 0.8972E+02
 0.2000E+00 0.5881E+02
 0.3000E+00 0.3624E+02
 0.4000E+00 0.2215E+02
 0.5000E+00 0.1353E+02
 0.6000E+00 0.8258E+01
 0.7000E+00 0.5042E+01
 0.8000E+00 0.3078E+01
 0.9000E+00 0.1879E+01
 0.1000E+01 0.1147E+01
 0.1100E+01 0.7005E+00
 0.1200E+01 0.4277E+00
 0.1300E+01 0.2611E+00
 0.1400E+01 0.1594E+00
 0.1500E+01 0.9733E-01

Figure 8.16 Results from Program 8.4 example

an “explicit” algorithm, theta is automatically set to zero and hence it is no longer
required as data.

Program 8.5 Plane or axisymmetric analysis of the consolidation equation using 4-
node rectangular quadrilaterals. Mesh numbered in x (r)- or y(z)-direction. “theta”
method using an element-by-element product algorithm.

PROGRAM p85
!---
! Program 8.5 Plane or axisymmetric analysis of the consolidation equation
! using 4-node rectangular quadrilaterals. Mesh numbered in
! x(r)- or y(z)- direction. "theta" method using an
! element by element (ebe) product algorithm.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,j,nci,ndim=2,nels,neq,nip=4,nn,nod=4,npri, &
np_types,nres,nstep,ntime,nxe,nye

REAL(iwp)::det,dtim,one=1.0_iwp,pt5=0.5_iwp,theta,time,zero=0.0_iwp
CHARACTER(LEN=15)::dir,element='quadrilateral',type_2d

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:)
REAL(iwp),ALLOCATABLE::coord(:,:),der(:,:),deriv(:,:),fun(:),gc(:), &
globma(:),g_coord(:,:),jac(:,:),kay(:,:),kc(:,:),loads(:),ntn(:,:), &
mm(:,:),points(:,:),prop(:,:),store_kc(:,:,:),value(:),weights(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)type_2d,dir,nxe,nye,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
WRITE(11,'(a,i5,a)')" There are",neq," equations"
ALLOCATE(points(nip,ndim),weights(nip),kay(ndim,ndim),coord(nod,ndim), &
fun(nod),jac(ndim,ndim),g_coord(ndim,nn),der(ndim,nod),deriv(ndim,nod),&
mm(nod,nod),g_num(nod,nels),kc(nod,nod),ntn(nod,nod),num(nod), &
globma(0:nn),store_kc(nod,nod,nels),gc(ndim),loads(0:neq), &
x_coords(nxe+1),y_coords(nye+1),prop(ndim,np_types),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 379

READ(10,*)x_coords,y_coords
READ(10,*)dtim,nstep,theta,npri,nres,ntime
CALL sample(element,points,weights); globma=zero; gc=one
!---------create and store element and global lumped mass matrices--------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); if(type_2d=='axisymmetric')gc=MATMUL(fun,coord)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)*gc(1)
CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)*gc(1)

END DO gauss_pts; store_kc(:,:,iel)=kc
DO i=1,nod; globma(num(i))=globma(num(i))+SUM(mm(i,:)); END DO
globma(0)=zero

END DO elements_1; CALL mesh(g_coord,g_num,12)
!-----------------------recover element A and B matrices------------------
elements_2: DO iel=1,nels
num=g_num(:,iel); kc=-store_kc(:,:,iel)*(one-theta)*dtim*pt5
mm=store_kc(:,:,iel)*theta*dtim*pt5
DO i=1,nod

mm(i,i)=mm(i,i)+globma(num(i)); kc(i,i)=kc(i,i)+globma(num(i))
END DO; CALL invert(mm); mm=MATMUL(mm,kc); store_kc(:,:,iel)=mm

END DO elements_2
!-----------------------specify initial and boundary values---------------
READ(10,*)loads(1:); loads(0)=zero; READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)THEN
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)

END IF
!-----------------------time stepping loop--------------------------------
WRITE(11,'(/a,i3,a)')" Time Pressure (node",nres,")"
WRITE(11,'(2e12.4)')0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim

!-----------------------first pass (1 to nels)----------------------------
elements_3: DO iel=1,nels

num=g_num(:,iel); mm=store_kc(:,:,iel)
loads(num)=MATMUL(mm,loads(num)); loads(0)=zero; loads(node)=value

END DO elements_3
!-----------------------second pass (nels to 1)---------------------------

elements_4: DO iel=nels,1,-1
num=g_num(:,iel); mm=store_kc(:,:,iel)
loads(num)=MATMUL(mm,loads(num)); loads(0)=zero; loads(node)=value

END DO elements_4
IF(nod==4.AND.j==ntime)THEN; READ(10,*)nci

CALL contour(loads,g_coord,g_num,nci,13); END IF
IF(j/npri*npri==j)WRITE(11,'(2e12.4)')time,loads(nres)

END DO timesteps
STOP
END PROGRAM p85

New dynamic real arrays:
store kc stores element kc matrices

380 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

There are 36 equations

 Time Pressure (node 31)
 0.0000E+00 0.1000E+03
 0.1000E+00 0.8912E+02
 0.2000E+00 0.6107E+02
 0.3000E+00 0.3894E+02
 0.4000E+00 0.2450E+02
 0.5000E+00 0.1537E+02
 0.6000E+00 0.9644E+01
 0.7000E+00 0.6050E+01
 0.8000E+00 0.3795E+01
 0.9000E+00 0.2380E+01
 0.1000E+01 0.1493E+01
 0.1100E+01 0.9366E+00
 0.1200E+01 0.5875E+00
 0.1300E+01 0.3685E+00
 0.1400E+01 0.2312E+00
 0.1500E+01 0.1450E+00

Figure 8.17 Results from Program 8.5 example

The motivation in using this algorithm is to preserve the storage economy achieved by
the previous explicit technique while attaining the stability properties enjoyed by implicit
methods typified by Programs 8.1, 8.2, and 8.3 without involving solution of sets of global
equations. The process is described in Chapter 3 by equation (3.101) and in structure by
Figure 3.20. The program bears a resemblance to Program 8.4. The element integration
loop is employed to store the element matrices [kc] in a storage array store kc. In
addition, the element consistent mass matrices held in mm are diagonalised and the global
mass vector, globma, assembled. A second loop over the elements is then made, headed
“recover element matrices”. These are the matrices given in Figure 3.20 by [mm] − (1 −
θ)�t[kc]/2 and [mm] + θ�t[kc]/2, and are called kc and mm respectively in the program.
The algorithm calls for [B] (mm) to be inverted, which is done using the library subroutine
invert. Then [A] is formed as [B]−1

[
[mm] − (1 − θ)�t[kc]/2

]
, by multiplying mm and

kc. The result, called mm in the program, is re-stored as store kc.
Initial conditions can then be prescribed and the time-stepping loop entered. Within

that loop, two passes are made over the elements from first to last and back again. Half of
the total �t[kc] increment, operates on each pass, and this has been accounted for already
in forming [A] and [B]. The essential coding recovers each element [B]−1[A] matrix from
store kc and multiplies it by the appropriate part of the solution loads. Note that in
this product algorithm the solution is continually being updated so there is no need for any
“new loads” vector such as had to be employed in the explicit summation algorithm.

The data for this example are identical to those given in Figure 8.5, with results given
in Figure 8.17.

8.3 Comparison of Programs 8.2, 8.3, 8.4, and 8.5

These four programs already described in this chapter can all be used to solve
plane or axisymmetric conduction or uncoupled consolidation problems. Comparison of
Figures 8.10, 8.13, 8.16, and 8.17 shows that for the chosen problem—at the time step used
(that is 0.01)—all solutions are accurate, and indeed the explicit solution (Figure 8.16) is
probably as accurate as any despite being the simplest and cheapest to obtain.

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 381

f/fο (node 31)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

T

−0
.2

−0
.1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

q = 0.5
q = 0.75
q = 1.0
2D series solution

Figure 8.18 Typical solutions from Program 8.2 with varying θ (�t = 0.4)

It must, however, be remembered that as the time step �t is increased, the explicit
algorithm will lead to unstable results (the stability limit for the chosen problem is about
�tcrit = 0.02). At that time step, Program 8.2 with θ = 0.5 will tend to produce oscillatory
results, which can be damped, at the expense of average accuracy, by increasing θ towards
1.0. Typical behaviour of the implicit algorithm is illustrated in Figure 8.18.

Program 8.5, while retaining the storage economies of Program 8.4, allows the time
step to be increased well beyond the explicit limit. For example, in the selected prob-
lem, reasonable results are still produced at �t = 10�tcrit. However, as �t is increased
still further, accuracy becomes poorer and Program 8.2 yields the best solutions for very
large �t .

It will be clear that algorithm choice in this area is not a simple one and depends on
the nature of the problem (degree of non-linearity, etc.) and on the hardware employed.
All the mesh-free methods afford much scope for parallelisation and this is exploited in
Chapter 12.

382 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

Program 8.6 General two- (plane) or three-dimensional analysis of the consolidation
equation. Implicit time integration using the “theta” method.

PROGRAM p86
!---
! Program 8.6 General two- (plane) or three-dimensional analysis of the
! consolidation equation. Implicit time integration using
! the "theta" method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,j,nci,ndim,nels,neq,nip,nn,nod=4,npri, &
np_types,nres,nstep,ntime

REAL(iwp)::det,dtim,penalty=1.0e20_iwp,theta,time,zero=0.0_iwp
CHARACTER(len=15)::element

!----------------------------- dynamic arrays-----------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:),kdiag(:)
REAL(iwp),ALLOCATABLE::bp(:),coord(:,:),der(:,:),deriv(:,:),fun(:), &
g_coord(:,:),jac(:,:),kay(:,:),kc(:,:),kv(:),loads(:),newlo(:), &
ntn(:,:),mm(:,:),points(:,:),prop(:,:),storbp(:),value(:),weights(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)element,nels,nn,nip,nod,ndim,np_types; neq=nn
ALLOCATE(points(nip,ndim),g_coord(ndim,nn),coord(nod,ndim),fun(nod), &
etype(nels),jac(ndim,ndim),weights(nip),num(nod),ntn(nod,nod), &
g_num(nod,nels),der(ndim,nod),deriv(ndim,nod),kc(nod,nod),mm(nod,nod), &
kay(ndim,ndim),kdiag(neq),prop(ndim,np_types),newlo(0:neq),loads(0:neq))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)g_coord; READ(10,*)g_num; READ(10,*)dtim,nstep,theta,npri,nres
IF(ndim==2.AND.nod==4)THEN
READ(10,*)ntime,nci; CALL mesh(g_coord,g_num,12)

END IF; kdiag=0
!-----------loop the elements to set up global geometry and kdiag --------
elements_1: DO iel=1,nels
num=g_num(:,iel); CALL fkdiag(kdiag,num)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(2(a,i5))') &
" There are",neq," equations and the skyline storage is ",kdiag(neq)
ALLOCATE(kv(kdiag(neq)),bp(kdiag(neq)))
CALL sample(element,points,weights); kv=zero; bp=zero

!------------- global conductivity matrix assembly------------------------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)
CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)

END DO gauss_pts
CALL fsparv(kv,kc,num,kdiag); CALL fsparv(bp,mm,num,kdiag)

END DO elements_2; kv=kv*theta*dtim; bp=bp+kv; kv=bp-kv/theta
!---------------initial and boundary conditions data----------------------
READ(10,*)loads(1:); loads(0)=zero; READ(10,*)fixed_freedoms
IF(fixed_freedoms/=0)then
ALLOCATE(node(fixed_freedoms),value(fixed_freedoms), &

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 383

storbp(fixed_freedoms))
READ(10,*)(node(i),value(i),i=1,fixed_freedoms)
bp(kdiag(node))=bp(kdiag(node))+penalty; storbp=bp(kdiag(node))

END IF
!------------------------factorise left hand side-------------------------
CALL sparin(bp,kdiag)

!-------------------time stepping recursion-------------------------------
WRITE(11,'(/a,i3,a)')" Time Pressure (node",nres,")"
WRITE(11,'(2e12.4)')0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim; CALL linmul_sky(kv,loads,newlo,kdiag)
IF(fixed_freedoms/=0)newlo(node)=storbp*value
CALL spabac(bp,newlo,kdiag); loads=newlo
IF(ndim==2.AND.nod==4.AND.j==ntime) &

CALL contour(loads,g_coord,g_num,nci,13)
IF(j/npri*npri==j)WRITE(11,'(2e12.4)')time,loads(nres)

END DO timesteps
STOP
END PROGRAM p86

Program 8.6 is the last of the diffusion or “consolidation” programs in this chapter and
the most general. The program can analyse consolidation over any two- or three-dimensional
domain with non-homogeneous and anisotropic material properties. The program is very
similar to Program 5.5 for general elastic analysis and Program 7.4 for general steady
seepage analysis. As with those programs, a variety of 2D or 3D elements can be chosen
through the data file. The graphics subroutines mesh and contour are only activated for
2D analysis, and in the current versions, contouring is only available when using 4-node
quadrilateral elements.

The main difference from earlier programs in the chapter (e.g. Program 8.2), is that
this program includes no “geometry” subroutine, so all nodal coordinates (g coords) and
element node numbers (g num) must be provided as data. In addition, some of the variables
that were previously fixed in the declaration statements, must now be read as data in order
to identify the dimensionality of the problem and the type of element required. There are
no variables required by this program that have not already been encountered in earlier
programs of this chapter.

A three-dimensional consolidation example is shown in Figure 8.19. The model repre-
sents one-eighth of a symmetrical cube with drainage permitted at all its outer surfaces.
The finite element model uses 8-node hexahedral elements, and includes 64 elements and
125 nodes. The initial condition is that the excess pore pressure at all nodes is set equal
to 100.0. The objective is to compute the excess pore pressure at the centre of the cube as
time passes.

The first line of data identifies the element type, which in this case is a ‘hexa-
hedron’. The next line gives the number of elements nels, the number of nodes nn,
the number of integrating points nip, the number of nodes on each element nod, the
number of dimensions of the problem ndim and the number of property types np types.
It may also be noted that numerical integration of an 8-node hexahedral element usually
involves 8 Gauss points, (2 in each of the three coordinate directions), so nip is read as 8.

The problem is homogeneous and isotropic, so the next line indicates that the soil has
coefficients of consolidation equal to unity in all three coordinate directions (cx = cy =
cz = 1.0). With np types=1, no etype data is required.

384 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

element
’hexahedron’

nels nn nip nod ndim np_types
64 125 8 8 3 1

prop(cx,cy,cz)
1.0 1.0 1.0

etype(not needed)

g_coord
0.00 0.00 0.00 0.25 0.00 0.00 0.50 0.00 0.00 0.75 0.00 0.00
g_coord data for nodes 5-120 omitted here
0.00 1.00 -1.00 0.25 1.00 -1.00 0.50 1.00 -1.00 0.75 1.00 -1.00
1.00 1.00 -1.00

g_num
 6 1 2 7 31 26 27 32 7 2 3 8 32 27 28 33
g_num data for elements 3-62 omitted here
 98 93 94 99 123 118 119 124 99 94 95 100 124 119 120 125

dtim nstep theta npri nres
0.01 150 0.5 10 21

loads(i),i=1,neq
Top, right and back faces set to zero. All other nodes set to 100.0

fixed_freedoms,(node(i),value(i),i=1,fixed_freedoms)
 61
 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 10 0.0 15 0.0 20 0.0
fixed freedom data for 48 nodes omitted here
121 0.0 122 0.0 123 0.0 124 0.0 125 0.0

z

y

x
1 2 3 4 5

6

26
30

101 105

125

50

plane of symmetry

1 2 3 4

5 8

16

17 20

32
9 12

13

24

28

33 36

48

49 52

64
11

16

25

planes of symmetry

21

1.0

1.0

1.0

All nodes set to f = 100
at time t = 0.
Nodes maintained at f = 0 for t>0

Figure 8.19 Mesh and data for Program 8.6 example

The next data involves the 125 (x, y, z) coordinates of the mesh read into g coord,
followed by the 64 groups of 8 node numbers attached to each element read into g num.
If dealing with a three-dimensional 8-node element for example, the order in which the
node numbers are read must follow the ordering described in Appendix B. Due to the
volume of data required in this example, a truncated version of the data is actually shown
in Figure 8.19.

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 385

There are 125 equations and the skyline storage is 3225

 Time Pressure (node 21)
 0.0000E+00 0.1000E+03
 0.1000E+00 0.8528E+02
 0.2000E+00 0.4386E+02
 0.3000E+00 0.2090E+02
 0.4000E+00 0.9878E+01
 0.5000E+00 0.4666E+01
 0.6000E+00 0.2204E+01
 0.7000E+00 0.1041E+01
 0.8000E+00 0.4916E+00
 0.9000E+00 0.2322E+00
 0.1000E+01 0.1097E+00
 0.1100E+01 0.5179E-01
 0.1200E+01 0.2446E-01
 0.1300E+01 0.1155E-01
 0.1400E+01 0.5457E-02
 0.1500E+01 0.2577E-02

Figure 8.20 Results from the Program 8.6 example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

Program 8.6
3D series solution

f/fo (node 21)

Carslaw and Jaeger(1959)

Three-dimensional analysis

Figure 8.21 Comparison of Program 8.6 result for a cube with 3D series solution

The time-stepping and output data follows next, and involve the usual parameters.
Output is requested at node nres=21. It should be noted that ntime and nci are not
read in this case because there is no contouring option in 3D.

The output from the program is shown in Figure 8.20, and gives the rate of pore pressure
dissipation at the centre of the cube. Figure 8.21 shows a plot of this result compared with
the 3D series solution from Carslaw and Jaeger (1959).

386 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

Program 8.7 Plane analysis of the diffusion–convection equation using 4-node rectan-
gular quadrilaterals. Implicit time integration using the “theta” method. Self-adjoint
transformation.

PROGRAM p87
!---
! Program 8.7 Plane analysis of the diffusion-convection equation
! using 4-node rectangular quadrilaterals. Implicit time
! integration using the "theta" method.
! Self-adjoint transformation.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,j,nci,ndim=2,nels,neq,nip=4,nn,nod=4,npri,np_types,nres, &
nstep,ntime,nxe,nye

REAL(iwp)::det,dtim,d6=6.0_iwp,d12=12.0_iwp,f1,f2,pt25=0.25_iwp,theta, &
time,two=2.0_iwp,ux,uy,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),num(:),kdiag(:)
REAL(iwp),ALLOCATABLE::ans(:),bp(:),coord(:,:),der(:,:),deriv(:,:), &
fun(:),g_coord(:,:),jac(:,:),kay(:,:),kc(:,:),kv(:),loads(:),ntn(:,:), &
mm(:,:),points(:,:),prop(:,:),weights(:),x_coords(:),y_coords(:)

!-------------------------input and initialisation------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
ALLOCATE(points(nip,ndim),weights(nip),kay(ndim,ndim),coord(nod,ndim), &
fun(nod),jac(ndim,ndim),g_coord(ndim,nn),der(ndim,nod),deriv(ndim,nod),&
mm(nod,nod),g_num(nod,nels),kc(nod,nod),ntn(nod,nod),num(nod), &
prop(ndim,np_types),x_coords(nxe+1),y_coords(nye+1),etype(nels), &
kdiag(neq),loads(0:neq),ans(0:neq))

READ(10,*)prop; etype=1; if(np_types>1)read(10,*)etype
READ(10,*)x_coords,y_coords
READ(10,*)dtim,nstep,theta,npri,nres,ntime,ux,uy,nci; kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord)
CALL fkdiag(kdiag,num)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),bp(kdiag(neq)))
WRITE(11,'(2(a,i5),/)') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); kv=zero; bp=zero
!-----------------------global conductivity and "mass" matrix assembly----
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)
CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)

END DO gauss_pts
kc=kc+mm*(ux*ux/kay(1,1)+uy*uy/kay(2,2))*pt25; mm=mm/(theta*dtim)

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 387

!-----------------------derivative boundary conditions--------------------
IF(iel==1)THEN

det=x_coords(2)-x_coords(1)
kc(2,2)=kc(2,2)+uy*det/d6; kc(2,3)=kc(2,3)+uy*det/d12
kc(3,2)=kc(3,2)+uy*det/d12; kc(3,3)=kc(3,3)+uy*det/d6

ELSE IF(iel==nels)THEN
det=x_coords(2)-x_coords(1)
kc(1,1)=kc(1,1)+uy*det/d6; kc(1,4)=kc(1,4)+uy*det/d12
kc(4,1)=kc(4,1)+uy*det/d12; kc(4,4)=kc(4,4)+uy*det/d6

END IF; CALL fsparv(kv,kc,num,kdiag); CALL fsparv(bp,mm,num,kdiag)
END DO elements_2;f1=uy*det/(two*theta); f2=f1; bp=bp+kv; kv=bp-kv/theta

!-----------------------factorise equations-------------------------------
CALL sparin(bp,kdiag); loads=zero

!-----------------------time stepping loop--------------------------------
WRITE(11,'(a,i3,a)')" Time Concentration (node",nres,")"
WRITE(11,'(2e12.4)')0.0,loads(nres)
timesteps: DO j=1,nstep
time=j*dtim; CALL linmul_sky(kv,loads,ans,kdiag)
ans(neq)=ans(neq)+f1; ans(neq-1)=ans(neq-1)+f2
CALL spabac(bp,ans,kdiag); loads=ans
IF(nod==4.AND.j==ntime)CALL contour(loads,g_coord,g_num,nci,13)
IF(j/npri*npri==j)WRITE(11,'(2e12.4)') &

time,loads(nres)*exp(-ux*g_coord(1,nres)/two/kay(1,1))* &
exp(-uy*g_coord(2,nres)/two/kay(2,2))

END DO timesteps
STOP
END PROGRAM p87

New scalar reals:
d6 set to 6.0
d12 set to 12.0
f1 used to fix derivative boundary condition
f2 used to fix derivative boundary condition
pt25 set to 0.25
ux velocity in x-direction
uy velocity in y-direction

New dynamic real arrays:
ans rhs vector in equilibrium equations

When convection terms are retained in the simplified flow equations, (2.132) has to
be solved. Again many techniques could be employed but, in the present program, an
implicit algorithm based on equation (3.94) is used. Thus this program is an extension of
Program 8.2.

When the transformation of equation (2.134) is employed, the equation to be solved
becomes,

cx

∂2h

∂x2
+ cy

∂2h

∂y2
−

(
u2

4 cx

+ v2

4 cy

)
h = ∂h

∂t
(8.3)

thus the extra term involving h distinguishes the process from a simple diffusion one.
However, reference to Table 2.1 shows that the semi-discretised “stiffness” matrix for this
problem will still be symmetrical, the h term involving an element matrix of the “mass
matrix” type, namely

∫
NiNj dx dy.

388 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

Comparison with Program 8.2 will show essentially the same array declarations and
input parameters. Extra variables are the velocities u and v in the x and y directions, ux
and uy respectively.

The problem chosen is the one-dimensional example shown in Figure 8.22 consisting of
a 56-m deep bed of fluid discretised by 40, 4-noded elements. There is a steady velocity in

Surface
1 2

3 4

5 6

bed

77 78

79 80

81 82

40 elements @ 1.4
 = 56 m

1.4 m

y

x

∂f
=

∂y

v

cy
f

∂f
=

∂y

v
cy

nxe nye np_types
1 40 1

prop(cx,cy)
1.0e-6 0.49

etype(not needed)

x_coords y_coords
 0.0 1.4
 56.0 54.6 53.2 51.8 50.4 49.0 47.6 46.2 44.8 43.4
 42.0 40.6 39.2 37.8 36.4 35.0 33.6 32.2 30.8 29.4
 28.0 26.6 25.2 23.8 22.4 21.0 19.6 18.2 16.8 15.4
 14.0 12.6 11.2 9.8 8.4 7.0 5.6 4.2 2.8 1.4
 0.0

dtim nstep theta npri nres ntime ux uy
300.0 20 1.0 1 82 5 0.0 0.0135

nci
10

Figure 8.22 Mesh and data for Program 8.7 example

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 389

the y-direction (uy) of 0.0135, and the initial concentration at all points is set to zero. The
dependent variable φ refers to the concentration of sediment picked up by the flow from
the base of the mesh (y = 0.0), and distributed with time in the y-direction. The velocity
in the x-direction (ux) is zero, and for numerical reasons cx is set to a small number,
1 × 10−6, which is effectively zero. After reading the mesh coordinate data x coords
and y coords, the implicit time-stepping parameters dtim, nsteps and theta are
read, followed by the output parameters npri, nres and ntime. In this example, a fully
“implicit” time-stepping scheme is illustrated by setting theta=1. The output calls for
results to be printed every time step at node 82. The steady velocities are read as ux and
uy and the contour map of concentration after ntime time steps will be written to file
fe95.con with nci contour intervals.

The equation to be solved reduces to,

cy

∂2h

∂y2 − v2

4cy

h = ∂h

∂t
(8.4)

subject to the boundary conditions at y = 0 of

∂φ

∂y
= v

cy

= C2 (8.5)

and at y = 56.0 of

∂φ

∂y
= v

cy

φ = C2 φ (8.6)

After transformation, these conditions become

∂h

∂y
= − v

2cy

h + v

cy

(8.7)

and
∂h

∂y
= v

2cy

h (8.8)

Boundary condition (8.8) is clearly of the type described in Section 3.6, equation (3.33),
hence at that boundary, the element matrix will have to be augmented by the matrix
shown in equation (3.37). The multiple C1cy(xk − xj)/6 in (3.37) is just v(xk − xj)/12
or uy*(x coords(2)-x coords(1))/12 in the program. This is carried out in the
section of program headed “derivative boundary conditions”.

The condition (8.7) contains a similar contribution, but in addition the term v/cy is of
the type described by the equation (3.34). Thus, an addition must be made to the right-hand
side of the equations at such a boundary in accordance with equation (3.39). In this case the
terms in equation (3.39) are v(xk − xj)/2 and are incorporated in the program immediately
after the comment “factorise equations”.

This example shows that quite complicated coding would be necessary to permit very
general boundary conditions to be specified in all problems. The authors prefer to write
specialised code when necessary.

390 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

There are 82 equations and the skyline storage is 283

 Time Concentration (node 82)
 0.0000E+00 0.0000E+00
 0.3000E+03 0.2828E+00
 0.6000E+03 0.4011E+00
 0.9000E+03 0.4796E+00
 0.1200E+04 0.5389E+00
 0.1500E+04 0.5867E+00
 0.1800E+04 0.6269E+00
 0.2100E+04 0.6616E+00
 0.2400E+04 0.6920E+00
 0.2700E+04 0.7192E+00
 0.3000E+04 0.7435E+00
 0.3300E+04 0.7656E+00
 0.3600E+04 0.7856E+00
 0.3900E+04 0.8038E+00
 0.4200E+04 0.8204E+00
 0.4500E+04 0.8356E+00
 0.4800E+04 0.8494E+00
 0.5100E+04 0.8621E+00
 0.5400E+04 0.8737E+00
 0.5700E+04 0.8843E+00
 0.6000E+04 0.8941E+00

Figure 8.23 Results from the Program 8.7 example

f = concentration
(as a proportion of final bed concentration)

0 2 4 6 8 10
×103

t

0
0.

2
0.

4
0.

6
0.

8
1

q = 1.0
q = 0.5
Dobbins (1944)

y = 0 (bed)

y = 28

y = 56

Figure 8.24 Graph of concentration versus time from Program 8.7 example

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 391

After insertion of boundary conditions the (constant) global left hand side matrix
(bp) is factorised using sparin. The time-stepping loop follows a familiar course, with
matrix-by-vector multiplication using subroutine linmul_sky followed by forward and
backsubstitution using spabac. Output for twenty steps is listed in Figure 8.23, while
Figure 8.24 shows how the finite element solution compares with an “analytical” one due
to Dobbins (1944).

It should be remembered that solutions are in terms of the transformed variable h, and
the true solution φ has been recovered using (2.134).

Program 8.8 Plane analysis of the diffusion–convection equation using 4-node rect-
angular quadrilaterals. Implicit time integration using the “theta” method. Untrans-
formed solution.

PROGRAM p88
!---
! Program 8.8 Plane analysis of the diffusion-convection equation
! using 4-node rectangular quadrilaterals. Implicit time
! integration using the "theta" method.
! Untransformed solution.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,j,k,nband,ndim=2,nels,neq,fixed_freedoms,nip=4,nn,nod=4, &
npri,np_types,nres,nstep,ntime,nxe,nye

REAL(iwp)::det,dtim,part1,part2,pt2=0.2_iwp,penalty=1.0e20_iwp,theta, &
time,ux,uy,zero=0.0_iwp; CHARACTER(LEN=15)::element='quadrilateral'

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g_num(:,:),node(:),num(:)
REAL(iwp),ALLOCATABLE::ans(:),conc(:),coord(:,:),copy(:,:),der(:,:), &
deriv(:,:),dtkd(:,:),fun(:),g_coord(:,:),jac(:,:),kb(:,:),kc(:,:), &
loads(:),ntn(:,:),pb(:,:),mm(:,:),points(:,:),prop(:,:),storpb(:), &
weights(:),work(:,:),x_coords(:),y_coords(:)

!-------------------------input and initialisation------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); neq=nn
ALLOCATE(points(nip,ndim),weights(nip),coord(nod,ndim),fun(nod), &
jac(ndim,ndim),g_coord(ndim,nn),der(ndim,nod),deriv(ndim,nod), &
mm(nod,nod),g_num(nod,nels),kc(nod,nod),ntn(nod,nod),num(nod), &
dtkd(nod,nod),prop(ndim,np_types),x_coords(nxe+1),y_coords(nye+1), &
etype(nels),conc(nye+1))

READ(10,*)prop; etype=1; if(np_types>1)read(10,*)etype
READ(10,*)x_coords,y_coords
READ(10,*)dtim,nstep,theta,npri,nres,ntime,ux,uy; nband=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord)
IF(nband<bandwidth(num))nband=bandwidth(num)

END DO elements_1; CALL mesh(g_coord,g_num,12)
ALLOCATE(kb(neq,2*nband+1),pb(neq,2*nband+1),work(nband+1,neq), &

copy(nband+1,neq),loads(0:neq),ans(0:neq))
WRITE(11,'(2(a,i5))') &
" There are",neq," equations and the half-bandwidth is",nband
CALL sample(element,points,weights); kb=zero; pb=zero

392 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

!-----------------------global conductivity and "mass" matrix assembly----
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); kc=zero; mm=zero
gauss_pts: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der)
DO j=1,nod; DO k=1,nod

part1=prop(1,etype(iel))*deriv(1,j)*deriv(1,k)+ &
prop(2,etype(iel))*deriv(2,j)*deriv(2,k)

part2=ux*fun(j)*deriv(1,k)+uy*fun(j)*deriv(2,k)
dtkd(j,k)=(part1-part2)*det*weights(i)

END DO; END DO
kc=kc+dtkd; CALL cross_product(fun,fun,ntn); mm=mm+ntn*det*weights(i)

END DO gauss_pts; mm=mm/(theta*dtim)
CALL formtb(kb,kc,num); CALL formtb(pb,mm,num)

END DO elements_2; pb=pb+kb; kb=pb-kb/theta
!-----------------------boundary conditions-------------------------------
READ(10,*)fixed_freedoms
allocate(node(fixed_freedoms),storpb(fixed_freedoms))
READ(10,*)node
pb(node,nband+1)=pb(node,nband+1)+penalty
storpb=pb(node,nband+1)

!-----------------------factorise equations-------------------------------
work=zero; CALL gauss_band(pb,work)
WRITE(11,'(/a,i3,a)')" Time Concentration(node",nres,")"
WRITE(11,'(2e12.4)')0.0,loads(nres); loads=zero

!-----------------------time stepping loop--------------------------------
timesteps: DO j=1,nstep
time=j*dtim; copy=work; CALL bantmul(kb,loads,ans); ans(0)=zero
IF(time<=pt2)THEN; ans(node)=storpb; ELSE; ans(node)=zero; END IF
CALL solve_band(pb,copy,ans); ans(0)=zero; loads=ans
IF(j==ntime)conc(:)=loads(2:neq:2)
IF(j/npri*npri==j)WRITE(11,'(2e12.4)')time,loads(nres)

END DO timesteps
WRITE(11,'(/a,e10.4,a)') &

" Distance Concentration(time=",nstep*dtim,")"
DO i=1,nye+1; WRITE(11,'(2e12.4)')y_coords(i),conc(i); END DO

STOP
END PROGRAM p88

New scalar integers:
nband fixed bandwidth of non-symmetric matrix

New scalar reals:
part1 diffusive part
part2 convective part
pt2 set to 0.2

New dynamic real arrays:
conc concentration distribution after ntime steps
copy working space array
storpb stores augmented diagonal terms
work working space array

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 393

In the previous example, difficulties would have arisen had the ratio of u to cx been
large, because the transformation involving exp(u/cx) would not have been numerically
feasible (Smith et al., 1973). Under these circumstances (and even when cx = cy = 0)
equation (2.132) can still be solved, but with the drawback that the element and system
matrices become unsymmetrical, although the latter are still banded.

Program 8.8 will be used to solve a purely convective problem, that is with cx = cy = 0.
The problem chosen is again one-dimensional as shown in Figure 8.25, so the equation

1 2

3 4

5 6

197 198

200

201 202

100 elements @ 0.02
 = 2 m

0.02 m

y

x

199

convective
velocity
v = 1.0 m/s

f fixed at 1.0 for 0.2 secs,
thereafter fixed at 0.0

 =
∂y

∂f
0

nxe nye np_types
1 100 1

prop(cx,cy)
 0.0 0.0

etype(not needed)

x_coords, y_coords
 0.00 0.02
 0.00 -0.02 -0.04 -0.06 -0.08 -0.10 -0.12 -0.14 -0.16 -0.18
.
y_coords(11-90) data omitted here
.
-1.80 -1.82 -1.84 -1.86 -1.88 -1.90 -1.92 -1.94 -1.96 -1.98
-2.00

dtim nstep theta npri nres ntime ux uy
0.04 25 0.5 1 3 25 0.0 1.0

fixed_freedoms,(node(i),i=1,fixed_freedoms)
2
1 2

Figure 8.25 Mesh and data for Program 8.8 example

394 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

is effectively,

−v
∂φ

∂y
= ∂φ

∂t
(8.9)

in the region 0 ≤ y ≤ 2, subject to the boundary conditions φ = 1 at y = 0 for 0 ≤ t ≤ 0.2,
φ = 0 at y = 0 for t > 0.2 and ∂φ/∂y = 0 at y = 2 for all t .

Comparing with Program 8.7, the usual geometry subroutine for 4-noded elements num-
bered in the x-direction, geom rect with ‘dir = ’x’ is used. Arrays node and storpb
are used to read in the numbers of fixed freedoms and to store information about them dur-
ing the time-stepping process. The system kb matrix is now unsymmetrical and stored as
a rectangular array with the full bandwidth using subroutine formtb (see Figure 3.18).
Although pb is symmetrical, it too is stored as a full band to be compatible with kb.

There are 202 equations and the half-bandwidth is 3

 Time Concentration(node 3)
 0.0000E+00 0.0000E+00
 0.4000E-01 0.3660E+00
 0.8000E-01 0.1116E+01
 0.1200E+00 0.1066E+01
 0.1600E+00 0.9285E+00
 0.2000E+00 0.1017E+01
(some results omitted here)
 0.8800E+00 -0.6148E-02
 0.9200E+00 -0.3116E-02
 0.9600E+00 0.8138E-02
 0.1000E+01 -0.4934E-02

 Distance Concentration(time=0.1000E+01)
 0.0000E+00 0.3289E-24
-0.2000E-01 -0.4934E-02
-0.4000E-01 0.1548E-01
-0.6000E-01 -0.4225E-02
-0.8000E-01 -0.2975E-01
-0.1000E+00 0.3345E-01
(some results omitted here)
-0.7000E+00 -0.9004E-01
-0.7200E+00 0.1104E+00
-0.7400E+00 0.3613E+00
-0.7600E+00 0.6202E+00
-0.7800E+00 0.8459E+00
-0.8000E+00 0.1009E+01
-0.8200E+00 0.1095E+01
-0.8400E+00 0.1105E+01
-0.8600E+00 0.1051E+01
-0.8800E+00 0.9513E+00
-0.9000E+00 0.8246E+00
-0.9200E+00 0.6881E+00
-0.9400E+00 0.5551E+00
-0.9600E+00 0.4344E+00
-0.9800E+00 0.3306E+00
-0.1000E+01 0.2453E+00
-0.1020E+01 0.1779E+00
-0.1040E+01 0.1262E+00
-0.1060E+01 0.8776E-01
-0.1080E+01 0.5989E-01
-0.1100E+01 0.4017E-01
-0.1120E+01 0.2650E-01
(some results omitted here).
-0.1900E+01 0.1688E-11
-0.1920E+01 0.8274E-12
-0.1940E+01 0.4025E-12
-0.1960E+01 0.1973E-12
-0.1980E+01 0.9360E-13
-0.2000E+01 0.4779E-13

Figure 8.26 Results from Program 8.8 example

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 395

In the element integration and assembly loop, part1 accumulates the diffusive part of
the element “stiffness” and part2 the convective part. The part2 contribution to the kc
matrix is the only one in the present example and it is unsymmetrical (skew-symmetrical
in fact).

The structure of the program is modelled on the previous one. The solution routines
are gauss band and solve band which use an extra array work as working space.
Matrix-by-vector multiplication needs the subroutine bantmul (see Table 3.5).

In the section “time-stepping loop” it can be seen that the solution at nodes 1 and 2 is
held at the value 1.0 for the first 0.2 s of convection and at zero subsequently.

After reading the mesh coordinate data x coords and y coords, the conventional
implicit time-stepping parameters dtim, nsteps and theta are read, followed by the
output control parameters. The output calls for results to be printed every time step at
node 3. No contour map is produced in this case, but instead the output produces the
spatial concentration after ntime=25 time steps. The velocities are read as ux=0.0 and
uy=1.0, followed by the number of fixed freedoms fixed freedoms, and the node
numbers to be fixed.

The variation of concentration with time at node 3 and the concentration distribution
after 1.0 s are shown in the results file in Figure 8.26. Figure 8.27 gives a plot of the

0 −0.2 −0.4 −0.6 −0.8 −1 −1.2 −1.4 −1.6 −1.8
y

−0
.4

−0
.2

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

Exact solution
Program 8.8

f (concentration)

Figure 8.27 Concentration versus distance after 1 s from Program 8.8 example

396 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

computed solution after 1 s together with the correct solution to the problem as described by
a rectangular pulse moving with unit velocity in the y-direction. Spurious spatial oscillations
are seen to have been introduced by the numerical solution. Measures to improve the
solutions are beyond the scope of the present treatment (Smith, 1976, 1979). Of course, in
the present case improvements can be achieved by simply reducing the element size in the
y-direction and the time step size �t .

Glossary of variable names used in Chapter 8

Scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling
fixed freedoms number of fixed total heads
i simple counter
iel simple counter
iwp SELECTED REAL KIND(15)
j simple counter
k simple counter
nband full bandwidth of non-symmetric matrix
nci number of contour intervals
ndim number of dimensions
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points
nn number of nodes in the mesh
nod number of nodes per element
npri output printed every npri time steps
nprops number of material properties
np types number of different property types
nres node number at which time history is to be printed
nstep number of time steps required
ntime time step number at which spatial distribution is to be printed

or contoured
nxe number of elements in x(r)-direction
nye number of elements in y(z)-direction

Scalar reals:
alpha α from equations (3.22)
at holds area beneath isochrone by Trapezoid Rule at time t

a0 holds area beneath isochrone by Trapezoid Rule at time t = 0
beta β from equations (3.22)
cg tol pcg convergence tolerance
det determinant of the Jacobian matrix
dtim calculation time step
d6 set to 6.0
d12 set to 12.0

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 397

f1 used to fix derivative boundary condition
f2 used to fix derivative boundary condition
one set to 1.0
part1 diffusive part
part2 convective part
penalty set to 1 × 1020

pt2 set to 0.2
pt25 set to 0.25
pt5 set to 0.5
theta time integration weighting parameter
time holds elapsed time t

up holds dot product (Rk)T(Rk) from equations (3.22)
ux velocity in x-direction
uy velocity in y-direction
zero set to 0.0

Scalar characters:
dir element and node numbering direction
element element type
type 2d type of 2D analysis

Scalar logical:
cg converged set to .TRUE. if pcg process has converged

Dynamic integer arrays:
etype element property types
g num global element node numbers matrix
kdiag diagonal term locations
node nodes with fixed values
num element node numbers

Dynamic real arrays:
ans rhs vector in equilibrium equations
bp global “mass” matrix
conc concentration distribution after ntime steps
coord element nodal coordinates
copy working space array
d vector used in equation (3.22)
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
diag precon diagonal preconditioner vector
ell element lengths
fun shape functions
gc integrating point coordinates
globma global lumped mass matrix (stored as a vector)

398 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

g coord nodal coordinates for all elements
jac Jacobian matrix
kay permeability matrix
kc element conductivity matrix
kv global conductivity matrix
loads excess pore pressure values
mass element lumped mass vector
mm element “mass” matrix
newlo new excess pore pressure values
p “descent” vector used in equation (3.22)
points integrating point local coordinates
press excess pore pressure values after ntime time steps
prop element properties
r holds fixed rhs terms in pcg solver
storpb stores augmented diagonal terms
store stores global augmented diagonal terms
storka stores lhs element matrix
storkb stores rhs element matrix
store kc stores element kc matrices
store mm stores lhs element matrices
u vector used in equation (3.22)
value fixed boundary values of excess pore pressure
weights weighting coefficients
work working space array
x “old” solution vector
xnew “new” solution vector
x coords x(r)-coordinates of mesh layout
y coords y(z)-coordinates of mesh layout

8.4 Exercises

1. A layer of clay of thickness 2D, free draining at its top and bottom surfaces is
subjected to a suddenly applied distributed load of one unit. Working in terms of a
dimensionless Time Factor given by T = cvt/D

2, and using a single finite element,
use the Crank–Nicolson approach (θ = 0.5) with a time step of �T = 0.1 to estimate
the mid-depth pore pressure when T = 0.3. Compare this result with the analytical
solution to your equation.
(Ans: Numerical 0.40; Analytical 0.41)

2. A rod of length 1 unit and thermal diffusivity 1 unit is initially at a temperature of
zero degrees along its entire length. One end of the rod is then suddenly subjected
to a temperature of 100◦ and is maintained at that value. You may assume that the
other end of the rod is perfectly insulated (i.e. there is no temperature gradient at
that point). Using two 1D ‘rod’ elements, and assuming time-stepping parameters �t

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 399

and θ , set up (but do not solve) the recursive matrix equations that will model the
change in temperature along the rod as a function of time.
(Ans: ([Mm] + θ�t [Kc]) {���}1 = ([Mm] − (1 − θ)�t [Kc]) {���}0)

where

[Mm] = 1
12

 2 1 0

1 4 1
0 1 2

 and [Kc] =

 2 −2 0

−2 4 −2
0 −2 2

3. A layer of saturated soil is subjected at time t = 0 to a triangular excess pore pres-
sure distribution varying from 60 units at the top to zero at the bottom. During the
subsequent dissipation phase, the top and bottom of the layer can be considered to
be fully drained. Using the 3-element discretisation shown in Figure 8.28 and a finite
difference scheme with θ = 0.5, estimate the pore pressures at the nodes after 0.1
secs using a single time step of �t = 0.1. You may assume the excess pore pressure
at the top of the stratum equals zero at all times (including t = 0).
(Ans: 35.6, 20.9 (Consistent); 38.6, 20.0 (Lumped); 37.0, 20.0 (Lumped-explicit))

Drained

Drained

60

6

Excess pore pressure
distribution at t = 0

Coefficient of vertical
consolidation cv = 2

Figure 8.28

4. A rod of length 1 unit and thermal diffusivity 1 unit is initially at a temperature
of zero degrees along its entire length. One end of the rod is then subjected to a
temperature, which increases linearly at a rate of 1◦/second while the other end of
the rod is maintained at 0◦.

Using two 1D ‘rod’ elements as shown in Figure 8.29, and assuming a time step of
�t = 1 and a weighting factor of θ = 0.5, use two steps to estimate the temperature
at the central node after 2 s.
(Ans: T (1) = 0.393, T (2) = 0.969)

400 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

0.5 0.5

T = 0T = t

Figure 8.29

5. The rod shown in Figure 8.30 has an initially triangular temperature distribution
varying linearly from zero degrees at each end to 100 degrees at the centre. The rod
also has a variable diffusivity property as indicated. The rod is allowed to cool while
maintaining the ends at zero degrees. Using a single finite element, and a “lumped
mass” discretisation, estimate the temperature after 0.2 s at x = 2 and x = 4 along
the rod.

Use one time step of �t = 0.2 with a time scaling parameter θ = 0.5.
(Ans: 2-element solution, 47.2, 88.6; 1-element solution, 46.4, 92.8)

T

100

0 2 4 6 8

rod

temperature distribution
at time t = 0

0 2 4 6 8

rod

cx

4

2

variation of cx along rod

x

x

Figure 8.30

6. Starting with the governing 2D diffusion equation, go through the Galerkin weighted
residual approach to derive terms k34 and m34 of the conductivity and “mass” matrices
of the element shown in Figure 8.31.
(Ans: k34 = cxb/(6a) − cya/(3b) m34 = ab/18)

TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED) 401

b

a

cx

cy

1

2 3

4

Figure 8.31

7. A rod of length D and thermal diffusivity cx is initially at a uniform temperature
of qo when it is suddenly subjected to a boundary temperature of q = 0 at one end.
Assuming the other end of the rod is perfectly insulated, use a single finite element
and a lumped “mass” discretisation to estimate the dimensionless time it will take
for the temperature at the insulated end of the rod to cool to one half of its initial
value.
(Ans: T = 0.35)

8. A rod of unit length and unit thermal diffusivity is at an initial temperature, which
varies linearly from zero degrees at one end to 100 degrees at the other. The cold
end of the rod is perfectly insulated. At time t = 0 the hot end of the rod is sud-
denly changed to a temperature of zero degrees and maintained at that value. Use
a 2-element discretisation and an explicit “lumped mass” algorithm to estimate the
temperature at the insulated end of the rod after 0.01 and 0.02 s.
(Ans: T (0.01) = 4.0, T (0.02) = 7.4)

9. The rectangular plate shown in Figure 8.32 is initially at zero degrees when the
boundaries are suddenly set to 50 degrees and maintained at that value. Select a
simple 2D finite element discretisation, and hence estimate the time it takes for the
temperature at the centre of the plate to rise to 25 degrees. Use an implicit scheme
and consistent “mass” with θ = 0.5 and �t = 0.05 s.
(Ans: t50% = 0.264 secs.)

8

4 x

y cx = 10

cy = 1

Figure 8.32

402 TRANSIENT PROBLEMS: FIRST ORDER (UNCOUPLED)

10. A rectangle of saturated soil has an x-dimension of 4 units and a y-dimension of 2
units. If drainage is allowed from all four faces of the rectangle and the initial excess
pore pressure is set at all points to u = 1.0, use a single finite element and assume
symmetry, to estimate the variation of u with time at the centre of the rectangle if
cx = 10 and cy = 1.
(Ans: Analytical, u = e−21t/2)

11. A layer of saturated clay of Depth D and coefficient of consolidation cv is drained at
its top surface only. The layer is subjected to a sudden excess pore pressure which
varies linearly from zero at the surface to Uo at the base. Using two 1D elements
across the soil depth and a dimensionless time step of �T = 0.1, estimate the average
degree of consolidation when T = 0.2.
(Ans: Using consistent “mass”, U = 0.4)

References

Carslaw HS and Jaeger JC 1959 Conduction of Heat in Solids. Clarendon Press, Oxford.
Dobbins WE 1944 Effect of turbulence on sedimentation. Trans Am Soc Civil Eng 109, 629–656.
Smith IM 1976 Integration in time of diffusion and diffusion-convection equations. Finite Elements

in Water Resources, vol. 1. Pentech Press, Plymouth, pp. 3–20.
Smith IM 1979 The diffusion-convection equation. Summary of Numerical Methods for Partial Dif-

ferential Equations. Oxford University Press. Chapter 11, pp. 195–211.
Smith IM, Farraday RV and O’Connor BA 1973 Rayleigh-Ritz and Galerkin finite elements for

diffusion-convection problems. Water Resour Res 9(3), 593–606.

9

Coupled Problems

9.1 Introduction

In the previous Chapter, flow problems were treated in terms of a single dependent variable,
for example the “potential” or “total head”, and solutions involved only 1 degree of freedom
per node in the finite element mesh. While this simplification may be adequate in some
cases, it may be necessary to solve problems in which several degrees of freedom exist at the
nodes of the mesh and the several dependent variables, for example velocities and pressures,
or displacements and pressures, are “coupled” in the differential equations. Strictly speaking,
the equations of two- and three-dimensional elasticity involve coupling between the various
components of displacement, but the term “coupled problems” is really reserved for those
in which variables of entirely different types are interdependent.

Both steady state and transient problems are considered in this Chapter. As usual,
the former involves the solution of sets of simultaneous equations, as in Chapters 4 to
7. Program 9.1 describes a steady state solution of the Navier–Stokes equations (see
Sections 2.16, 3.11), in which the simultaneous equations are non-linear. An iterative pro-
cess is therefore necessary during which the equations are solved repeatedly until the
velocities and pressures have converged. As discussed in Section 3.11, these equations will
have unsymmetrical coefficient matrices.

Program 9.2 solves the same problem without any global matrix assembly using a
BiCGStab(l) iterative solver. In this case nested iterative processes are employed, with an
internal one for BiCGStab iterations and an external one until convergence of velocities
and pressures is obtained. The BiCGStab process is described in Section 3.5.3.

The remaining three programs describe coupled transient problems governed by the
“Biot” equations (see Sections 2.18, 3.12). These coupled equations are cast as (linear)
first order differential equations in the time variable, and solved by the implicit integration
techniques introduced in Chapter 8.

Program 9.3 describes analysis of poro-elastic materials subjected to incremental time-
dependent external loading (see Section 3.12.2). Program 9.4 enables investigations to be
made of poro-elastic-plastic materials and transient collapse problems, by extending the

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

404 COUPLED PROBLEMS

previous program to include non-linear material behaviour governed by a Mohr–Coulomb
failure criterion. Program 9.5 returns to poro-elasticity, and illustrates an absolute loading
version of the Biot algorithm (see Section 3.12.1) using a “mesh free” approach involving
a pcg solver.

Program 9.1 Analysis of the plane steady state Navier–Stokes equation using 8-node
rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals
for pressures. Mesh numbered in x - or y-direction. Freedoms numbered in the order
u-p-v .
PROGRAM p91
!---
! Program 9.1 Analysis of the plane steady state Navier-Stokes equation
! using 8-node rectangular quadrilaterals for velocities
! coupled to 4-node rectangular quadrilaterals for pressures.
! Mesh numbered in x- or y-direction. Freedoms numbered in the
! order u-p-v.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::fixed_freedoms,i,iel,iters,k,limit,nband,ndim=2,nels,neq,nip=4, &
nn,nod=8,nodf=4,nodof=3,nr,ntot=20,nxe,nye

REAL(iwp)::det,one=1.0_iwp,penalty=1.e20_iwp,pt5=0.5_iwp,rho,tol,ubar, &
vbar,visc,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::g(:),g_g(:,:),g_num(:,:),nf(:,:),no(:),node(:), &
num(:),sense(:)

REAL(iwp),ALLOCATABLE::coord(:,:),coordf(:,:),c11(:,:),c12(:,:),c21(:,:),&
c23(:,:),c32(:,:),der(:,:),derf(:,:),deriv(:,:),derivf(:,:),fun(:), &
funf(:),g_coord(:,:),jac(:,:),kay(:,:),ke(:,:),loads(:),nd1(:,:), &
nd2(:,:),ndf1(:,:),ndf2(:,:),nfd1(:,:),nfd2(:,:),oldlds(:),pb(:,:), &
points(:,:),uvel(:),value(:),vvel(:),weights(:),work(:,:),x_coords(:), &
y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,tol,limit,visc,rho
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf),uvel(nod), &
jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod),vvel(nod), &
derf(ndim,nodf),funf(nodf),coordf(nodf,ndim),g_g(ntot,nels), &
c11(nod,nod),c12(nod,nodf),c21(nodf,nod),c23(nodf,nod),g(ntot), &
c32(nod,nodf),ke(ntot,ntot),fun(nod),x_coords(nxe+1),y_coords(nye+1), &
nf(nodof,nn),g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip), &
nd1(nod,nod),nd2(nod,nod),ndf1(nod,nodf),ndf2(nod,nodf),nfd1(nodf,nod),&
nfd2(nodf,nod))

READ(10,*)x_coords,y_coords
uvel=zero; vvel=zero; kay=zero; kay(1,1)=visc/rho; kay(2,2)=visc/rho
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
CALL sample(element,points,weights); nband=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g(1:8)=nf(1,num(1:8)); g(9:12)=nf(2,num(1:7:2)); g(13:20)=nf(3,num(1:8))
g_num(:,iel)=num;g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
IF(nband<bandwidth(g))nband=bandwidth(g)

COUPLED PROBLEMS 405

END DO elements_1; CALL mesh(g_coord,g_num,12)
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the full bandwidth is",2*(nband+1)-1

ALLOCATE(pb(neq,2*(nband+1)-1),loads(0:neq),oldlds(0:neq), &
work(nband+1,neq)); loads=zero; oldlds=zero; iters=0

READ(10,*)fixed_freedoms
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &
value(fixed_freedoms), no(fixed_freedoms))

READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
!-----------------------iteration loop------------------------------------
iterations: DO
iters=iters+1; converged=.FALSE.; pb=zero; work=zero; ke=zero

!-----------------------global matrix assembly----------------------------
elements_2: DO iel=1,nels

num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
coordf=coord(1:7:2,:); uvel=(loads(g(1:nod))+oldlds(g(1:nod)))*pt5
DO i=nod+nodf+1,ntot
vvel(i-nod-nodf)=(loads(g(i))+oldlds(g(i)))*pt5

END DO; c11=zero; c12=zero; c21=zero; c23=zero; c32=zero
gauss_points_1: DO i=1,nip

!-----------------------velocity contribution-----------------------------
CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der)
ubar=DOT_PRODUCT(fun,uvel); vbar=DOT_PRODUCT(fun,vvel)
IF(iters==1)THEN; ubar=one; vbar=zero; END IF
CALL cross_product(fun,deriv(1,:),nd1)
CALL cross_product(fun,deriv(2,:),nd2)
c11=c11+det*weights(i)*(MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)+&

nd1*ubar+nd2*vbar)
!-----------------------pressure contribution-----------------------------

CALL shape_fun(funf,points,i); CALL shape_der(derf,points,i)
jac=MATMUL(derf,coordf); det=determinant(jac); CALL invert(jac)
derivf=MATMUL(jac,derf)
CALL cross_product(fun,derivf(1,:),ndf1)
CALL cross_product(fun,derivf(2,:),ndf2)
CALL cross_product(funf,deriv(1,:),nfd1)
CALL cross_product(funf,deriv(2,:),nfd2)
c12=c12+ndf1*det*weights(i)/rho; c32=c32+ndf2*det*weights(i)/rho
c21=c21+nfd1*det*weights(i); c23=c23+nfd2*det*weights(i)

END DO gauss_points_1
CALL formupv(ke,c11,c12,c21,c23,c32); CALL formtb(pb,ke,g)

END DO elements_2; loads=zero
!-----------------------specify pressure and velocity boundary values-----

DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
pb(no,nband+1)=pb(no,nband+1)+penalty; loads(no)=pb(no,nband+1)*value

!-----------------------equation solution---------------------------------
CALL gauss_band(pb,work); CALL solve_band(pb,work,loads); loads(0)=zero
CALL checon(loads,oldlds,tol,converged)
IF(converged.OR.iters==limit)EXIT

END DO iterations
WRITE(11,'(/A)')" Node u-velocity pressure v-velocity"
DO k=1,nn; WRITE(11,'(I5,A,3E12.4)')k," ",loads(nf(:,k)); END DO
WRITE(11,'(/A,I3,A)')" Converged in",iters," iterations."
nf(2,:)=nf(3,:); CALL vecmsh(loads,nf,0.3_iwp,0.05_iwp,g_coord,g_num,14)

STOP
END PROGRAM p91

406 COUPLED PROBLEMS

Scalar integers:
fixed freedoms number of fixed freedoms
i simple counter
iel simple counter
iters iteration counter
iwp SELECTED REAL KIND(15)
k simple counter
limit iteration ceiling
nband full bandwidth of non-symmetric matrix
ndim number of dimensions
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points
nn number of nodes in the mesh
nod number of nodes per solid element
nodf number of nodes per fluid element
nodof number of degrees of freedom per node
nr number of restrained nodes
ntot total number of degrees of freedom per element
nxe number of elements in x-direction
nye number of elements in y-direction

Scalar reals:
det determinant of the Jacobian matrix
one set to 1.0
penalty set to 1 × 1020

pt5 set to 0.5
rho fluid density
tol convergence tolerance
ubar average x-velocity
vbar average y-velocity
visc molecular viscosity
zero set to 0.0

Character variables:
element element type

Scalar logical:
converged set to .TRUE. if solution converged

Dynamic integer arrays:
g element “steering” vector
g g global element steering matrix
g num global element node numbers matrix
nf nodal freedoms
no freedoms to be fixed

COUPLED PROBLEMS 407

node nodes with fixed values
num element node numbers
sense sense of freedom to be fixed

Dynamic real arrays:
coord solid element nodal coordinates
coordf fluid element nodal coordinates
c11 element submatrix (2.115)
c12 element submatrix (2.115)
c21 element submatrix (2.115)
c23 element submatrix (2.115)
c32 element submatrix (2.115)
der solid shape function derivatives wrt local coordinates
derf fluid shape function derivatives wrt local coordinates
deriv solid shape function derivatives wrt global coordinates
derivf fluid shape function derivatives wrt global coordinates
fun solid shape functions
funf fluid shape functions
g coord nodal coordinates for all elements
jac Jacobian matrix
kay property matrix
ke element “stiffness” matrix
loads nodal velocities and pressures
nd1 product [fun]T[deriv(1, :)]
nd2 product [fun]T[deriv(2, :)]
ndf1 product [fun]T[derivf(1, :)]
ndf2 product [fun]T[derivf(2, :)]
nfd1 product [funf]T[deriv(1, :)]
nfd2 product [funf]T[deriv(2, :)]
oldlds nodal velocities and pressures from previous iteration
pb unsymmetric global band “stiffness” matrix
points integrating point local coordinates
uvel element nodal x-velocity
value fixed vales of freedoms
vvel element nodal y-velocity
weights weighting coefficients
work working space
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

The (steady state) Navier–Stokes equations were developed in Chapter 2, (Section 2.16).
The equilibrium equations to be solved are (2.114), whose coefficients are themselves
functions of the velocities u and v so that the equations are non-linear. Furthermore, the
coefficient submatrices [cij] are not, in general, symmetrical and reference to Section 3.11
shows that the subroutines gauss band and solve band will be required to operate
on the banded equation coefficients.

408 COUPLED PROBLEMS

Section 3.11 illustrates how the element submatrices [cij] are assembled and uses much
of the program terminology already developed for uncoupled flow problems in Chapters 7
and 8.

The simple problem chosen to illustrate this program is shown in Figure 9.1. Flow is
confined to a rectangular cavity and driven by a uniform horizontal velocity at the top. The
velocities at the other three boundaries are set to zero. Eight node elements are used to
model the vector field of velocities, and 4-node elements are used to model the scalar field
of pressures. Note that a dummy freedom has been inserted at all mid-side nodes where

1.0

1.0

1 11

1712

86 96

x-velocity
u = 1.0

nxe nye tol limit visc rho
5 5 0.001 30 0.01 1.0

x_coords, y_coords
0.0 0.2 0.4 0.6 0.8 1.0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0

nr,(k,nf(:,k),i=1,nr)
81
 1 1 0 0 2 1 0 0 3 1 1 0 4 1 0 0 5 1 1 0 6 1 0 0
 7 1 1 0 8 1 0 0 9 1 1 0 10 1 0 0 11 1 1 0 12 0 0 0
13 1 0 1 14 1 0 1 15 1 0 1 16 1 0 1 17 0 0 0 18 0 1 0
19 1 0 1 21 1 0 1 23 1 0 1 25 1 0 1 27 1 0 1 28 0 1 0
29 0 0 0 30 1 0 1 31 1 0 1 32 1 0 1 33 1 0 1 34 0 0 0
35 0 1 0 36 1 0 1 38 1 0 1 40 1 0 1 42 1 0 1 44 1 0 1
45 0 1 0 46 0 0 0 47 1 0 1 48 1 0 1 49 1 0 1 50 1 0 1
51 0 0 0 52 0 1 0 53 1 0 1 54 1 1 1 55 1 0 1 57 1 0 1
59 1 0 1 61 1 0 1 62 0 1 0 63 0 0 0 64 1 0 1 65 1 0 1
66 1 0 1 67 1 0 1 68 0 0 0 69 0 1 0 70 1 0 1 72 1 0 1
74 1 0 1 76 1 0 1 78 1 0 1 79 0 1 0 80 0 0 0 81 1 0 1
82 1 0 1 83 1 0 1 84 1 0 1 85 0 0 0 86 0 1 0 87 0 0 0
88 0 1 0 89 0 0 0 90 0 1 0 91 0 0 0 92 0 1 0 93 0 0 0
94 0 1 0 95 0 0 0 96 0 1 0

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
11
 1 1 1.0 2 1 1.0 3 1 1.0 4 1 1.0 5 1 1.0
 6 1 1.0 7 1 1.0 8 1 1.0 9 1 1.0 10 1 1.0
11 1 1.0

zero velocity

z
e
r
o

v
e
l
o
c
i
t
y

z
e
r
o

v
e
l
o
c
i
t
y

Figure 9.1 Mesh and data for Program 9.1 example

COUPLED PROBLEMS 409

there is no p variable. Thus, the second freedom (nodal freedoms are in the order u, p,
v) at all mid-side nodes is eliminated from the analysis through the “restrained freedom”
(nf) data.

The first line of data reads the number of elements in each direction of the rectangular
mesh (nxe and nye), the tolerance (tol) and iteration ceiling (limit) for the non-linear
iterations, and the fluid properties given by the molecular viscosity (visc) and density
(rho). The second and third lines give the coordinate data x coords and y coords,
and this is followed by the node freedom data, which involves nr=81 restrained nodes in
this example. The final lines of data give the fixed velocity boundary condition of u = 1.0
along the 11 top nodes of the mesh.

The structure of the program is described by the structure chart in Figure 9.2. After the
data has been read in, various arrays must be initialised to zero. Note that the kay matrix
which, in the previous chapter, held coefficients of consolidation cx and so on, now holds
viscosity and density in the form µ/ρ, which represents the reciprocal of the Reynolds
number for this cavity size.

The iteration loop is then entered, controlled by the counter iters. System arrays pb
and work must be nulled together with the element “stiffness” matrix ke. Element matrix

Read data
Allocate arrays

Find problem size

For all iterations

Null global array

For all elements

Find nodal coordinates and steering vector
Set nodal velocities to average of old and new

Null [cij] submatrices and [ke]

For all Gauss points

Form velocity contribution [c11] using
8-node shape functions fun

Form coupled contributions
[c12], [c21], [c32], [c23]

 using 4-node shape functions funf

Build [ke] from [cij]
Assemble into unsymmetric band matrix pb

Insert prescribed boundary conditions of
velocity and/or pressure

Solve simultaneous equations and check convergence

Print the solution and number of iterations taken

Figure 9.2 Structure chart for Navier–Stokes analysis with global matrix assembly in
Program 9.1

410 COUPLED PROBLEMS

integration and assembly then proceeds as usual. The nodal coordinates and steering vector
are formed as usual by the geometry library subroutine geom rect with numbering in this
case in the x-direction. Nodal velocities used to form u and v in equation (2.115) are taken
to be the average of those computed in the last two iterations. Element submatrices c11,
and so on, are set to zero and the numerical integration loop entered. Average velocities u

and v are recovered form uvel and vvel, except in the first iteration where the “guess”
u = 1.0 and v = 0.0 is used.

The submatrix c11 is formed as required by equations (3.103–3.104), followed by
submatrices c12, c32, c21, and c23 as demanded by equation (3.105–3.106). The ele-
ment “stiffness” ke is built from the submatrices (2.114) by the subroutine formupv
and assembled into the global unsymmetrical band matrix pb by the assembly subroutine
formtb.

It remains only to specify the fixed freedoms by the “penalty” technique (see Section 3.6)
and to complete the equation solution using subroutines gauss band and solve band.
The maximum number of iterations allowed is 30 (limit) but a convergence check of 0.001
(tol) is invoked by subroutine checon.

The results are listed as Figure 9.3 and velocity vectors generated by subroutine vecmsh
and output to file fe95.vec illustrated in Figure 9.4. Regridding strategies (Kidger, 1994)
can further enhance the visualisation. As the Reynolds number increases, convergence of
this algorithm will be slower.

 There are 158 equations and the full bandwidth is 79

 Node u-velocity pressure v-velocity
 1 0.1000E+01 0.0000E+00 0.0000E+00
 2 0.1000E+01 0.0000E+00 0.0000E+00
 3 0.1000E+01 0.2429E+00 0.0000E+00
 4 0.1000E+01 0.0000E+00 0.0000E+00
 5 0.1000E+01 0.1704E+00 0.0000E+00
 6 0.1000E+01 0.0000E+00 0.0000E+00
 7 0.1000E+01 0.2096E+00 0.0000E+00
 8 0.1000E+01 0.0000E+00 0.0000E+00
 9 0.1000E+01 0.2101E+00 0.0000E+00
 10 0.1000E+01 0.0000E+00 0.0000E+00
 11 0.1000E+01 0.8023E+00 0.0000E+00
 12 0.0000E+00 0.0000E+00 0.0000E+00
 13 0.2073E+00 0.0000E+00 0.5662E-01
 14 0.3854E+00 0.0000E+00 0.5448E-01
 15 0.4901E+00 0.0000E+00 -0.7326E-02
.
.
.
 90 0.0000E+00 0.2199E+00 0.0000E+00
 91 0.0000E+00 0.0000E+00 0.0000E+00
 92 0.0000E+00 0.2236E+00 0.0000E+00
 93 0.0000E+00 0.0000E+00 0.0000E+00
 94 0.0000E+00 0.2275E+00 0.0000E+00
 95 0.0000E+00 0.0000E+00 0.0000E+00
 96 0.0000E+00 0.2201E+00 0.0000E+00

 Converged in 7 iterations.

Figure 9.3 Results from Program 9.1 example

COUPLED PROBLEMS 411

Figure 9.4 Velocity vectors at convergence from Program 9.1 example

Program 9.2 Analysis of the plane steady state Navier–Stokes equation using 8-node
rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals
for pressures. Mesh numbered in x - or y-direction. Freedoms numbered in the order
u-p-v . Element-by-element solution using BiCGStab(l) with no preconditioning. No
global matrix assembly.

PROGRAM p92
!--
! Program 9.2 Analysis of the plane steady state Navier-Stokes equation
! using 8-node rectangular quadrilaterals for velocities
! coupled to 4-node rectangular quadrilaterals for pressures.
! Mesh numbered in x- or y-direction. Freedoms numbered in the
! order u-p-v. Element by element solution using BiCGStab(l).
! with no preconditioning. No global matrix assembly,
!--
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,cg_tot,ell,fixed_freedoms,i,iel,iters,j,k, &
limit,ndim=2,nels,neq,nip=4,nn,nod=8,nodf=4,nodof=3,nr,ntot=20,nxe,nye

REAL(iwp)::alpha,beta,cg_tol,det,error,gama,kappa,norm_r,omega, &
one=1.0_iwp,penalty=1.e5_iwp,pt5=0.5_iwp,rho,rho1,r0_norm,tol,ubar, &
vbar,visc,x0,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
LOGICAL::converged,cg_converged

!------------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::g(:),g_g(:,:),g_num(:,:),nf(:,:),no(:),node(:), &
num(:),sense(:)

REAL(iwp),ALLOCATABLE::b(:),coord(:,:),coordf(:,:),c11(:,:),c12(:,:), &
c21(:,:),c23(:,:),c32(:,:),der(:,:),derf(:,:),deriv(:,:),derivf(:,:), &
diag(:),fun(:),funf(:),gamma(:),gg(:,:),g_coord(:,:),hh(:,:),jac(:,:), &
kay(:,:),ke(:,:),loads(:),nd1(:,:),nd2(:,:),nfd1(:,:),nfd2(:,:), &

412 COUPLED PROBLEMS

ndf1(:,:),ndf2(:,:),oldlds(:),points(:,:),r(:,:),rt(:),s(:),store(:), &
storke(:,:,:),u(:,:),uvel(:),value(:),vvel(:),weights(:),x_coords(:), &
y(:),y1(:),y_coords(:)

!------------------------input and initialisation-------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,tol,limit,visc,rho,cg_tol,cg_limit,x0,ell,kappa
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf), &
jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
derf(ndim,nodf),funf(nodf),coordf(nodf,ndim),nd1(nod,nod),nd2(nod,nod),&
ndf1(nod,nodf),ndf2(nod,nodf),nfd1(nodf,nod),nfd2(nodf,nod), &
g_g(ntot,nels),c11(nod,nod),c12(nod,nodf),c21(nodf,nod),g(ntot), &
ke(ntot,ntot),fun(nod),x_coords(nxe+1),y_coords(nye+1),nf(nodof,nn), &
g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip),c32(nod,nodf), &
c23(nodf,nod),uvel(nod),vvel(nod),storke(ntot,ntot,nels),s(ell+1), &
gg(ell+1,ell+1),gamma(ell+1))

READ(10,*)x_coords,y_coords
uvel=zero; vvel=zero; kay=zero; kay(1,1)=visc/rho; kay(2,2)=visc/rho
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
CALL sample(element,points,weights)

!------------------------loop the elements to set up global arrays---------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g(:8)=nf(1,num(:8)); g(9:12)=nf(2,num(1:7:2)); g(13:20)=nf(3,num(:8))
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1; CALL mesh(g_coord,g_num,12)
WRITE(11,'(A,I5,A)')" There are",neq," equations"
ALLOCATE(loads(0:neq),rt(0:neq),r(0:neq,ell+1),u(0:neq,ell+1),b(0:neq), &
diag(0:neq),oldlds(0:neq),y(0:neq),y1(0:neq))

READ(10,*)fixed_freedoms
ALLOCATE(node(fixed_freedoms),sense(fixed_freedoms), &
value(fixed_freedoms),no(fixed_freedoms),store(fixed_freedoms))

READ(10,*)(node(i),sense(i),value(i),i=1,fixed_freedoms)
iters=0; cg_tot=0; loads=zero; oldlds=zero

!------------------------iteration loop------------------------------------
iterations: do
iters=iters+1; converged=.FALSE.; ke=zero; diag=zero; b=zero

!------------------------element stiffness integration and storage --------
elements_2: DO iel=1,nels

num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
coordf=coord(1:7:2,:); uvel=(loads(g(:nod))+oldlds(g(:nod)))*pt5
DO i=nod+nodf+1,ntot
vvel(i-nod-nodf)=(loads(g(i))+oldlds(g(i)))*pt5

END DO; c11=zero; c12=zero; c21=zero; c23=zero; c32=zero
gauss_points_1: DO i=1,nip

!------------------------velocity contribution-----------------------------
CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der)
ubar=DOT_PRODUCT(fun,uvel); vbar=DOT_PRODUCT(fun,vvel)
IF(iters==1)THEN; ubar=one; vbar=zero; END IF
CALL cross_product(fun,deriv(1,:),nd1)
CALL cross_product(fun,deriv(2,:),nd2)
c11=c11+det*weights(i)*(MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)+ &

nd1*ubar+nd2*vbar)
!------------------------pressure contribution-----------------------------

CALL shape_fun(funf,points,i); CALL shape_der(derf,points,i)

COUPLED PROBLEMS 413

jac=MATMUL(derf,coordf); det=determinant(jac); CALL invert(jac)
derivf=MATMUL(jac,derf)
CALL cross_product(fun,derivf(1,:),ndf1)
CALL cross_product(fun,derivf(2,:),ndf2)
CALL cross_product(funf,deriv(1,:),nfd1)
CALL cross_product(funf,deriv(2,:),nfd2)
c12=c12+ndf1*det*weights(i)/rho; c32=c32+ndf2*det*weights(i)/rho
c21=c21+nfd1*det*weights(i); c23=c23+nfd2*det*weights(i)

END DO gauss_points_1
CALL formupv(ke,c11,c12,c21,c23,c32); storke(:,:,iel)=ke
DO k=1,ntot; diag(g(k))=diag(g(k))+ke(k,k); END DO

END DO elements_2
!------------------------specify pressure and velocity boundary values-----

DO i=1,fixed_freedoms; no(i)=nf(sense(i),node(i)); END DO
diag(no)=diag(no)+penalty; b(no)=diag(no)*value; store=diag(no)

!---solve the simultaneous equations element by element using BiCGStab(l)-
!------------------------initialisation phase------------------------------

IF(iters==1)loads=x0; loads(0)=zero; y=loads; y1=zero
elements_3: DO iel=1,nels

g=g_g(:,iel); ke=storke(:,:,iel); y1(g)=y1(g)+MATMUL(ke,y(g))
END DO elements_3; cg_iters=0
y1(0)=zero; y1(no)=y(no)*store; y=y1; rt=b-y; r=zero; r(:,1)=rt; u=zero
gama=one; omega=one; k=0; norm_r=norm(rt); r0_norm=norm_r; error=one

!------------------------BiCGStab(l) iterations----------------------------
bicg_iterations: DO

cg_iters=cg_iters+1; cg_converged=error<cg_tol
IF(cg_iters==cg_limit.OR.cg_converged)EXIT
gama=-omega*gama; y=r(:,1)
DO j=1,ell
rho1=DOT_PRODUCT(rt,y); beta=rho1/gama
u(:,1:j)=r(:,1:j)-beta*u(:,1:j); y=u(:,j); y1=zero
elements_4: DO iel=1,nels

g=g_g(:,iel); ke=storke(:,:,iel); y1(g)=y1(g)+MATMUL(ke,y(g))
END DO elements_4
y1(0)=zero; y1(no)=y(no)*store; y=y1; u(:,j+1)=y
gama=DOT_PRODUCT(rt,y); alpha=rho1/gama; loads=loads+alpha*u(:,1)
r(:,1:j)=r(:,1:j)-alpha*u(:,2:j+1); y=r(:,j); y1=zero
elements_5: DO iel=1,nels

g=g_g(:,iel); ke=storke(:,:,iel); y1(g)=y1(g)+MATMUL(ke,y(g))
END DO elements_5; y1(0)=zero; y1(no)=y(no)*store; y=y1; r(:,j+1)=y

END DO; gg=MATMUL(TRANSPOSE(r),r)
CALL form_s(gg,ell,kappa,omega,gamma,s); loads=loads-MATMUL(r,s)
r(:,1)=MATMUL(r,gamma); u(:,1)=MATMUL(u,gamma); norm_r=norm(r(:,1))
error=norm_r/r0_norm; k=k+1

END DO bicg_iterations; cg_tot=cg_tot+cg_iters
!------------------------end of BiCGStab(l) process-----------------------

CALL checon(loads,oldlds,tol,converged)
IF(converged.OR.iters==limit)EXIT

END DO iterations
WRITE(11,'(/A)')" Node u-velocity pressure v-velocity"
DO k=1,nn; WRITE(11,'(I5,A,3E12.4)')k," ",loads(nf(:,k)); END DO
WRITE(11,'(/A,I3,A/A,F6.2,A)')" Converged in",iters," iterations", &
" with an average of", REAL(cg_tot/iters), " BiCGStab(l) iterations."

nf(2,:)=nf(3,:); CALL vecmsh(loads,nf,0.3_iwp,0.05_iwp,g_coord,g_num,14)
STOP
END PROGRAM p92

414 COUPLED PROBLEMS

New scalar integers:
cg iters BiCGStab iteration counter
cg limit BiCGStab iteration ceiling
cg tot holds total number of BiCGStab iterations
ell BiCGStab parameter; taken as 4 in this example
j simple counter
k simple counter

New scalar reals:
alpha local variable
beta local variable
cg tol BiCGStab convergence tolerance
error measure of error in BiCGStab
gama local variable
kappa BiCGStab parameter; taken as zero in this example
norm r residual norm
omega local variable
rho1 local variable
r0 norm initial residual norm
x0 initialisation value

New scalar logical:
cg converged set to .TRUE if BiCGStab has converged

New dynamic real arrays:

b right-hand side vector
diag diagonal of left-hand side matrix
gamma small local array
gg small local array
r residual vector
rt initial residual vector
s small local vector
store “penalty” degrees of freedom
storke element matrix storage
u gather/scatter array
y gather/scatter array
y1 gather/scatter array

The non-symmetric structures of the element and global matrices generated by
Program 9.1 require a different iterative algorithm to the pcg methods used for symmetric
equations earlier in the text. In Program 9.2 the BiCGStab(l) algorithm (see Section 3.5.3)
is used to re-solve the same cavity flow problem analysed by the previous program. The
iterative algorithm requires no global matrix assembly and achieves all global matrix–vector
products via gather/scatter algorithms at the element level. Compared with Figure 9.1 the
data shown in Figure 9.5 includes an additional line which reads cg tol, cg limit, x0,
ell and kappa described in the notation section above. The results shown in Figure 9.6
are essentially identical to those in Figure 9.3 using Program 9.1. The output in this case

COUPLED PROBLEMS 415

nxe nye tol limit visc rho
5 5 0.001 30 0.01 1.0

cg_tol cg_limit x0 ell kappa
1.0e-5 200 1.0 4 0.0

x_coords, y_coords
0.0 0.2 0.4 0.6 0.8 1.0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0

nr,(k,nf(:,k),i=1,nr)
81
 1 1 0 0 2 1 0 0 3 1 1 0 4 1 0 0 5 1 1 0 6 1 0 0
 7 1 1 0 8 1 0 0 9 1 1 0 10 1 0 0 11 1 1 0 12 0 0 0
13 1 0 1 14 1 0 1 15 1 0 1 16 1 0 1 17 0 0 0 18 0 1 0
19 1 0 1 21 1 0 1 23 1 0 1 25 1 0 1 27 1 0 1 28 0 1 0
29 0 0 0 30 1 0 1 31 1 0 1 32 1 0 1 33 1 0 1 34 0 0 0
35 0 1 0 36 1 0 1 38 1 0 1 40 1 0 1 42 1 0 1 44 1 0 1
45 0 1 0 46 0 0 0 47 1 0 1 48 1 0 1 49 1 0 1 50 1 0 1
51 0 0 0 52 0 1 0 53 1 0 1 54 1 1 1 55 1 0 1 57 1 0 1
59 1 0 1 61 1 0 1 62 0 1 0 63 0 0 0 64 1 0 1 65 1 0 1
66 1 0 1 67 1 0 1 68 0 0 0 69 0 1 0 70 1 0 1 72 1 0 1
74 1 0 1 76 1 0 1 78 1 0 1 79 0 1 0 80 0 0 0 81 1 0 1
82 1 0 1 83 1 0 1 84 1 0 1 85 0 0 0 86 0 1 0 87 0 0 0
88 0 1 0 89 0 0 0 90 0 1 0 91 0 0 0 92 0 1 0 93 0 0 0
94 0 1 0 95 0 0 0 96 0 1 0

fixed_freedoms,(node(i),sense(i),value(i),i=1,fixed_freedoms)
11
 1 1 1.0 2 1 1.0 3 1 1.0 4 1 1.0 5 1 1.0
 6 1 1.0 7 1 1.0 8 1 1.0 9 1 1.0 10 1 1.0
11 1 1.0

Figure 9.5 Data for Program 9.2 example

 There are 158 equations

 Node u-velocity pressure v-velocity
 1 0.1000E+01 0.0000E+00 0.0000E+00
 2 0.1000E+01 0.0000E+00 0.0000E+00
 3 0.1000E+01 0.2429E+00 0.0000E+00
 4 0.1000E+01 0.0000E+00 0.0000E+00
 5 0.1000E+01 0.1704E+00 0.0000E+00
 6 0.1000E+01 0.0000E+00 0.0000E+00
 7 0.1000E+01 0.2096E+00 0.0000E+00
 8 0.1000E+01 0.0000E+00 0.0000E+00
 9 0.1000E+01 0.2101E+00 0.0000E+00
 10 0.1000E+01 0.0000E+00 0.0000E+00
 11 0.1000E+01 0.8023E+00 0.0000E+00
 12 0.0000E+00 0.0000E+00 0.0000E+00
 13 0.2073E+00 0.0000E+00 0.5662E-01
 14 0.3854E+00 0.0000E+00 0.5448E-01
 15 0.4901E+00 0.0000E+00 -0.7326E-02
.
.
.
 90 0.0000E+00 0.2199E+00 0.0000E+00
 91 0.0000E+00 0.0000E+00 0.0000E+00
 92 0.0000E+00 0.2236E+00 0.0000E+00
 93 0.0000E+00 0.0000E+00 0.0000E+00
 94 0.0000E+00 0.2275E+00 0.0000E+00
 95 0.0000E+00 0.0000E+00 0.0000E+00
 96 0.0000E+00 0.2201E+00 0.0000E+00

 Converged in 7 iterations
 with an average of 32.00 BiCGStab(l) iterations.

Figure 9.6 Results from Program 9.2 example

416 COUPLED PROBLEMS

indicates that with ell=4, an average of 32 internal BiCGStab iterations were require for
each of the seven external Navier–Stokes iterations.

Program 9.3 Plane strain consolidation analysis of a Biot poro-elastic solid using
8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular
quadrilaterals for pressures. Freedoms numbered in the order u-v -uw . Incremental
version.

PROGRAM p93
!---
! Program 9.3 Plane strain consolidation analysis of a Biot elastic
! solid using 8-node rectangular quadrilaterals for
! displacements coupled to 4-node rectangular quadrilaterals
! for pressures. Incremental load version.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,j,k,loaded_nodes,ndim=2,ndof=16,nels,neq,nip=4,nlfp,nls, &
nn,nod=8,nodf=4,nodof=3,npri,nprops=4,np_types,nr,nres,nst=3,nstep, &
ntot=20,nxe,nye

REAL(iwp)::det,dtim,theta,time,tot_load,zero=0.0_iwp
CHARACTER(LEN=15)::element='quadrilateral'

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
no(:),num(:)

REAL(iwp),ALLOCATABLE::al(:),ans(:),bee(:,:),c(:,:),coord(:,:),dee(:,:), &
der(:,:),derf(:,:),deriv(:,:),derivf(:,:),eld(:),fun(:),funf(:),gc(:), &
g_coord(:,:),jac(:,:),kay(:,:),ke(:,:),km(:,:),kc(:,:),kv(:),lf(:,:), &
loads(:),phi0(:),phi1(:),points(:,:),prop(:,:),sigma(:), &
store_kc(:,:,:),val(:,:),vol(:),volf(:,:),weights(:),x_coords(:), &
y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(dee(nst,nst),points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf),&
jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
derf(ndim,nodf),funf(nodf),bee(nst,ndof),km(ndof,ndof),kc(nodf,nodf), &
g_g(ntot,nels),ke(ntot,ntot),c(ndof,nodf),x_coords(nxe+1), &
y_coords(nye+1),vol(ndof),nf(nodof,nn),g(ntot),volf(ndof,nodf), &
g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip), &
store_kc(nodf,nodf,nels),phi0(nodf),phi1(nodf),prop(nprops,np_types), &
etype(nels),eld(ndof),gc(ndim),sigma(nst),fun(nod))

READ(10,*)prop; etype=1; if(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,theta,npri,nres
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),ans(0:neq))
READ(10,*)loaded_nodes; ALLOCATE(no(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(no(i),val(i,:),i=1,loaded_nodes)
READ(10,*)nlfp; ALLOCATE(lf(2,nlfp))
READ(10,*)lf; nls=FLOOR(lf(1,nlfp)/dtim); IF(nstep>nls)nstep=nls
ALLOCATE(al(nstep)); CALL load_function(lf,dtim,al); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g(1:15:2)=nf(1,num(:)); g(2:16:2)=nf(2,num(:)); g(17:)=nf(3,num(1:7:2))
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

COUPLED PROBLEMS 417

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

CALL sample(element,points,weights); loads=zero; kv=zero
!-----------------------global matrix assembly----------------------------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
CALL deemat(dee,prop(3,etype(iel)),prop(4,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; c=zero; kc=zero

gauss_points_1: DO i=1,nip
!-----------------------elastic solid contribution------------------------

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
vol(:)=bee(1,:)+bee(2,:)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

!-----------------------fluid contribution--------------------------------
CALL shape_fun(funf,points,i); CALL shape_der(derf,points,i)
derivf=MATMUL(jac,derf)
kc=kc+MATMUL(MATMUL(TRANSPOSE(derivf),kay),derivf)*det*weights(i)*dtim
CALL cross_product(vol,funf,volf); c=c+volf*det*weights(i)

END DO gauss_points_1; store_kc(:,:,iel)=kc
CALL formke(km,kc,c,ke,theta); CALL fsparv(kv,ke,g,kdiag)

END DO elements_2
!-----------------------factorise equations-------------------------------
CALL sparin_gauss(kv,kdiag)

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5)')" Results at node",nres
WRITE(11,'(A)') &

" time load x-disp y-disp porepressure"
WRITE(11,'(5E12.4)')0.0,0.0,loads(nf(:,nres))
time_steps: DO j=1,nstep
tot_load=SUM(al(1:j)); time=j*dtim; ans=zero
elements_3: DO iel=1,nels

g=g_g(:,iel); kc=store_kc(:,:,iel)
phi0=loads(g(ndof+1:)); phi1=MATMUL(kc,phi0)
ans(g(ndof+1:))=ans(g(ndof+1:))+phi1

END DO elements_3
!-----------------------apply loading increment---------------------------

DO i=1,loaded_nodes; ans(nf(1:2,no(i)))=val(i,:)*al(j); END DO
!-----------------------equation solution---------------------------------

CALL spabac_gauss(kv,ans,kdiag); loads=loads+ans; loads(0)=zero
IF(j/npri*npri==j)WRITE(11,'(5E12.4)')time,tot_load,loads(nf(:,nres))

!-----------------------recover stresses at nip integrating points--------
nip=1; DEALLOCATE(points,weights)
ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights)

! WRITE(11,'(A,I2,A)')" The integration point (nip=",nip,") stresses are:"
! WRITE(11,'(A,A)')" Element x-coord y-coord", &
! " sig_x sig_y tau_xy"

elements_4: DO iel=1,nels
CALL deemat(dee,prop(3,etype(iel)),prop(4,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
eld=loads(g(:ndof)); gauss_pts_2: DO i=1,nip
CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)

418 COUPLED PROBLEMS

sigma=MATMUL(dee,MATMUL(bee,eld))
! IF(j/npri*npri==j)WRITE(11,'(I5,6E12.4)')iel,gc,sigma

END DO gauss_pts_2
END DO elements_4

END DO time_steps
CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p93

New scalar integers:
j simple counter
loaded nodes number of loaded nodes
ndof number of displacement degrees of freedom per element
nlfp number of load function points
nls maximum number of load steps
npri output printed every npri time steps
nprops number of material properties
np types number of different property types
nres node number at which time history is to be printed
nst number of stress/strain terms
nstep number of time steps required

New scalar reals:
dtim calculation time step
theta time integration weighting parameter
time holds time elapsed t

tot load accumulated load

New dynamic integer arrays:
etype element property types
kdiag diagonal term locations

New dynamic real arrays:
al load steps at resolution of calculation time step
ans rhs “load” increment vector
bee strain-displacement matrix
c coupling matrix
dee stress–strain matrix
eld element nodal displacements
gc integrating point coordinates
km element stiffness matrix
kc element conductivity matrix
kv global stiffness matrix
lf input load/time function
phi0 used in element-by-element “gather” algorithm
phi1 used in element-by-element “scatter” algorithm
sigma stress terms

COUPLED PROBLEMS 419

store kc stores element kc matrices
val nodal loads weighting factors
vol related to the volumetric strain
volf used to compute coupling matrix

The analysis of the behaviour of porous elastic solids (Biot 1941) under load is in
many ways analogous to the coupled flow analysis described in the previous program. The
displacements of the soil skeleton take over the role of the velocities u and v, and the
excess porewater pressure (now called uw) the role of the fluid pressure p (nodal freedoms
are in the order u, v, uw).

The differential equations to be solved are (2.136) and (2.137). Due to the coupling of
fluid and solid phases there arises the complication that the applied “total” stresses, {σσσ },
are divided between a portion carried by the soil skeleton, called effective stress

{
σ ′σ ′σ ′}, and

a portion carried by the pore water, called in soil mechanics the pore pressure and denoted
in Chapter 2 by {uw}.

After discretisation in space by finite elements, the coupled equations are given by
(2.139). These can be seen to be partly algebraic equations and partly first order differential
equations in time. In the incremental load method used here, discretisation in time by the
θ -method leads to equations (3.115), which are in principle no different to (3.94) for
uncoupled problems. If using an assembly approach, solutions will involve setting up the
coupled global “stiffness” matrix on the left side of these equations (kv), followed by an
equation solution for every time step to obtain the incremental solutions followed by an
update of the variables from (3.116). For constant element properties and time step �t , the
left hand side matrix kv needs to be factorised only once, the remainder of the solution
involving matrix-by-vector multiplication on the right hand side, followed by forward and
back substitution.

Closer examination of equation (3.115) will reveal that some of the diagonal terms
of the left hand side matrix will be negative, thus the usual Cholesky solution strat-
egy will fail due to the need to take square roots. The subroutines sparin gauss and
spabac gauss which operate on the skyline kv vector use Gaussian [L][D][L]T factori-
sation are therefore introduced for the first time (see Section 3.8). Other new subroutines
include, load function, which reads the input load-time function and linearly interpo-
lates the function to produce a load-time function at the calculation time-step resolution
held in al, and formke which forms the lhs element matrix ke from equation (3.115).
The structure chart describing the algorithm is shown in Figure 9.7.

The problem chosen is of a plane strain “oedometer” specimen as shown by the mesh
and input data given in Figure 9.8. The base and sides of the mesh are impermeable “no-
flow” boundaries, and “smooth” roller boundary conditions are imposed on the sides. The
top of the specimen is drained and subjected to a “ramp” loading of the form shown in
Figure 9.9.

The first line of data reads the number of elements in each direction of the rectangular
mesh (nxe and nye), and the number of property types (np types). The properties are
read next in the order kx/γw, ky/γw, E′ and ν′. Since np types=1 in this homogeneous
example, the etype data is not needed. Next comes the rectangular mesh coordinate data
x coords and y coords, followed by the time stepping and output data. In this case,
the data calls for nstep=300 calculation steps, with a time step of dtim=0.01. The

420 COUPLED PROBLEMS

Read data
Allocate arrays
Find problem size

Null global array

For all elements

Find nodal coordinates and steering vector
Null element [km] [kc] and [c] matrices

For all integrating points

Compute shape functions and derivatives in
local coordinates

Convert from local to global coordinates
Form stiffness contribution [km] using

8-node elements
Form conductivity and coupling contributions

[kc] and [c] using 4-node shape functions funf

Form element [ke] matrix and assemble
into global symmetric band matrix kv

Factorise the left-hand-side

For all the time steps

Form the right-hand-side from
applied loads and fluid ‘loads’
Complete the equation solution

Update the displacements and pore pressures

For all elements

Calculate and print effective stresses

Figure 9.7 Structure chart for incremental form of Biot analysis with global matrix assem-
bly in Program 9.3

time stepping parameter is set to theta=0.5. Displacement and pore pressure output is
requested at node nres=21 at every tenth time step npri=10. The nodal freedom data
comes next, fixing the pore pressures at the top of the mesh to zero (drained) and also
the x-displacements at each side of the mesh to zero (smooth). This implies “oedometer”
conditions, with drainage at the top only. As with Programs 9.1 and 9.2, no pressures are
computed at the mid-side nodes, so the third freedom at all mid-side nodes is removed from
the analysis. The next data provide the load weightings corresponding to a unit pressure
(Appendix A) applied to the 3 nodes at the top of the mesh. The final data define the
load-time function to be applied at the top of the mesh. The bilinear function described in
Figure 9.9 is defined by just three coordinates and is interpolated linearly at each calculation
time step. The example given in Figure 9.8 is for a ramp load that reaches its maximum
value of 1.0 after to = 0.5 seconds.

COUPLED PROBLEMS 421

nxe nye np_types
1 4 1

prop(kx/gw,ky/gw,e,v)

1.0 1.0 1.0 0.0

etype(not needed)

x_coords y_coords
0.0 0.25
0.0 -0.25 -0.50 -0.75 -1.00

dtim nstep theta npri nres
0.01 300 0.5 10 21

nr,(k,nf(:,k),i=1,nr)
23
 1 0 1 0 2 1 1 0 3 0 1 0 4 0 1 0 5 0 1 0
 6 0 1 1 7 1 1 0 8 0 1 1 9 0 1 0 10 0 1 0
11 0 1 1 12 1 1 0 13 0 1 1 14 0 1 0 15 0 1 0
16 0 1 1 17 1 1 0 18 0 1 1 19 0 1 0 20 0 1 0
21 0 0 1 22 0 0 0 23 0 0 1

loaded_nodes,(no(i),val(i,:),i=1,loaded_nodes)
3
1 0.0 -0.041667 2 0.0 -0.166667 3 0.0 -0.041667

nlfp,(lf(:,i),i=1,nlfp)
3
0.0 0.0 0.5 1.0 3.0 1.0

1 m

1 2 3

4 5

6 7 8

9 10

11 12 13

14 15

16 17 18

19 20

21 2322

Drained
on this side
uw =0

Undrained
on these sides
∂uw/∂n=o

Ramp load

Undrained
on this side
∂uw/∂n=o

E=1 kN/m2

u=0.0
kx=ky=gw

0.25 m

Figure 9.8 Mesh and data for Program 9.3 example

422 COUPLED PROBLEMS

t0

Ramp
load

1.0

t

Figure 9.9 Ramp loading

 There are 32 equations and the skyline storage is 280

 Results at node 21
 time load x-disp y-disp porepressure
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.1000E+00 0.2000E+00 0.0000E+00 0.0000E+00 -0.1994E+00
 0.2000E+00 0.4000E+00 0.0000E+00 0.0000E+00 -0.3743E+00
 0.3000E+00 0.6000E+00 0.0000E+00 0.0000E+00 -0.5125E+00
 0.4000E+00 0.8000E+00 0.0000E+00 0.0000E+00 -0.6203E+00
 0.5000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.7043E+00
 0.6000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.5703E+00
 0.7000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.4463E+00
 0.8000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.3478E+00
 0.9000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.2709E+00
 0.1000E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2110E+00
 0.1100E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1643E+00
 0.1200E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1280E+00
 0.1300E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.9968E-01
 0.1400E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.7764E-01
 0.1500E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.6047E-01
 0.1600E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.4709E-01
 0.1700E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.3668E-01
 0.1800E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2857E-01
 0.1900E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2225E-01
 0.2000E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1733E-01
 0.2100E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1350E-01
 0.2200E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1051E-01
 0.2300E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.8187E-02
 0.2400E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.6377E-02
 0.2500E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.4966E-02
 0.2600E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.3868E-02
 0.2700E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.3013E-02
 0.2800E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2346E-02
 0.2900E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1827E-02
 0.3000E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1423E-02

Figure 9.10 Results from Program 9.3 example

Turning to the program, the nodal coordinates and steering vector are again provided
by subroutine geom rect with numbering in the x-direction, and the subroutine formke
builds up the ke matrix which is then assembled into the (symmetric) global skyline
matrix kv.

COUPLED PROBLEMS 423

The subroutine sparin gauss is used to factorise the symmetric left hand side global
matrix kv and the time stepping loop is entered. The right hand side vector is summed
element-by-element from the fluid “loading” and the external load increment held in al.
The subroutine spabac gauss completes the solution and the element effective stresses
can be recovered at the element Gauss points if required.

The results are shown as Figure 9.10, and the pore pressure at the base of the mesh
(node 21) is plotted against time in Figure 9.11 for two different ramp rise-times, to = 0.1
and to = 0.5. The “time-factor” T in Figure 9.11 is the dimensionless number

T = cvt

D2 (9.1)

where D is the “maximum drainage path” of 1.0 in the present instance. The coefficient of
consolidation cv is found from,

cv = k

mvγw

(9.2)

where

mv = (1 + ν ′)(1 − 2ν′)
E′(1 − ν ′)

(9.3)

k is the soil permeability (Chapter 7) and γw is the unit weight of water. In the present
example ν′ = 0 and E′ = 1.0, so mv = 1.0. Similarly, k/γw = 1.0 so that T = t . The
results are in very close agreement with Schiffman (1960), and problems of practical
importance have been solved since (Smith and Hobbs, 1976).

E
x
c
e
s
s

m
i
d
-
p
l
a
n
e

p
o
r
e

p
r
e
s
s
u
r
e

10−2

2 3 4 5 6 7 89

10−1

2 3 4 5 6 7 89

100

2 3 4 5 6 7 89

101

T

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

to = 0.1

to = 0.5

Figure 9.11 Mid-plane pore pressure response to ramp loading from Program 9.3

424 COUPLED PROBLEMS

Program 9.4 Plane strain consolidation analysis of a Biot poro-elastic-plastic (Mohr–
Coulomb) material using 8-node rectangular quadrilaterals for displacements coupled
to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order
u-v -uw . Incremental version. Viscoplastic strain method.

PROGRAM p94
!---
! Program 9.4 Plane strain consolidation analysis of a Biot elastic-plastic
! (Mohr-Coulomb) material using 8-node rectangular
! quadrilaterals for displacements coupled to 4-node
! rectangular quadrilaterals for pressures. Incremental
! version. Viscoplastic strain method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,iters,j,k,limit,loaded_nodes,ndim=2,ndof=16,nels,neq, &
nip=4,nlfp,nls,nn,nod=8,nodf=4,nodof=3,npri,nprops=7,np_types,nr,nres, &
nst=4,nstep,ntot=20,nxe,nye

REAL(iwp)::coh,cons,ddt,det,dpore,dq1,dq2,dq3,dsbar,dt,dtim,d4=4.0_iwp, &
d180=180.0_iwp,e,f,lode_theta,one=1.0_iwp,phi,pi,psi,sigm,snph, &
start_dt=1.e15_iwp,theta,time,tol,tot_load,two=2.0_iwp,v,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::nf(:,:),g(:),num(:),g_num(:,:),g_g(:,:),etype(:), &
kdiag(:),no(:)

REAL(iwp),ALLOCATABLE::al(:),ans(:),bee(:,:),bdylds(:),bload(:),c(:,:), &
coord(:,:),dee(:,:),der(:,:),derf(:,:),deriv(:,:),derivf(:,:),devp(:), &
disps(:),eld(:),eload(:),eps(:),erate(:),evp(:),evpt(:,:,:),flow(:,:), &
funf(:),g_coord(:,:),jac(:,:),kay(:,:),ke(:,:),km(:,:),kp(:,:),kv(:), &
lf(:,:),loads(:),m1(:,:),m2(:,:),m3(:,:),newdis(:),oldis(:),phi0(:), &
phi1(:),points(:,:),prop(:,:),sigma(:),store_kp(:,:,:),stress(:), &
tensor(:,:,:),val(:,:),vol(:),volf(:,:),weights(:),x_coords(:), &
y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(dee(nst,nst),points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf),&
jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
derf(ndim,nodf),funf(nodf),bee(nst,ndof),km(ndof,ndof),eld(ndof), &
sigma(nst),kp(nodf,nodf),g_g(ntot,nels),ke(ntot,ntot),c(ndof,nodf), &
x_coords(nxe+1),phi0(nodf),y_coords(nye+1),vol(ndof),nf(nodof,nn), &
volf(ndof,nodf),g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip),&
phi1(nodf),store_kp(nodf,nodf,nels),tensor(nst+1,nip,nels),eps(nst), &
evp(nst),evpt(nst,nip,nels),bload(ndof),eload(ndof),erate(nst),g(ntot),&
devp(nst),m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst), &
stress(nst),etype(nels),prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)cons,x_coords,y_coords; READ(10,*)dtim,nstep,theta,npri,nres
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),loads(0:neq),ans(0:neq),bdylds(0:neq),disps(0:neq), &
newdis(0:neq),oldis(0:neq))

READ(10,*)loaded_nodes; ALLOCATE(no(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(no(i),val(i,:),i=1,loaded_nodes); READ(10,*)tol,limit,nlfp
ALLOCATE(lf(2,nlfp)); READ(10,*)lf; nls=FLOOR(lf(1,nlfp)/dtim)
IF(nstep>nls)nstep=nls; ALLOCATE(al(nstep))
CALL load_function(lf,dtim,al); kdiag=0

!-----------------------loop the elements to find global arrays sizes-----
elements_1: DO iel=1,nels

COUPLED PROBLEMS 425

CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g(1:15:2)=nf(1,num(:)); g(2:16:2)=nf(2,num(:)); g(17:)=nf(3,num(1:7:2))
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO; ALLOCATE(kv(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

loads=zero; disps=zero; tensor=zero
CALL sample(element,points,weights); kv=zero

!-----------------------global matrix assembly----------------------------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
CALL deemat(dee,prop(3,etype(iel)),prop(4,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; c=zero; kp=zero
gauss_points_1: DO i=1,nip

!-----------------------elastic solid contribution------------------------
CALL shape_der(der,points,i); jac=MATMUL(der,coord)
det=determinant(jac); CALL invert(jac); deriv=MATMUL(jac,der)
tensor(1:2,i,iel)=cons; tensor(4,i,iel)=cons; tensor(5,i,iel)=zero
CALL beemat(bee,deriv); vol(:)=bee(1,:)+bee(2,:)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

!-----------------------fluid contribution--------------------------------
CALL shape_fun(funf,points,i); CALL shape_der(derf,points,i)
derivf=MATMUL(jac,derf)
kp=kp+MATMUL(MATMUL(TRANSPOSE(derivf),kay),derivf)*det*weights(i)*dtim
DO k=1,nodf; volf(:,k)=vol(:)*funf(k); END DO; c=c+volf*det*weights(i)

END DO gauss_points_1; store_kp(:,:,iel)=kp
CALL formke(km,kp,c,ke,theta); CALL fsparv(kv,ke,g,kdiag)

END DO elements_2
!-----------------------factorise equations-------------------------------
CALL sparin_gauss(kv,kdiag)

!---
pi=ACOS(-one); dt=start_dt
DO i=1,np_types
phi=prop(5,i); snph=SIN(phi*pi/d180); e=prop(3,i); v=prop(4,i)
ddt=d4*(one+v)*(one-two*v)/(e*(one-two*v+snph**2)); IF(ddt<dt)dt=ddt

END DO; bdylds=zero; evpt=zero; oldis=zero; time=zero
!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5)')" Results at node",nres
WRITE(11,'(A)') &

" time load x-disp y-disp porepressure iters"
WRITE(11,'(5E12.4)')0.0,0.0,0.0,0.0,0.0
time_steps: DO j=1,nstep
time=time+dtim; tot_load=SUM(al(1:j)); ans=zero; bdylds=zero
evpt=zero; newdis=zero

elements_3: DO iel=1,nels
g=g_g(:,iel); kp=store_kp(:,:,iel)
phi0=disps(g(ndof+1:)); phi1=MATMUL(kp,phi0)
ans(g(ndof+1:))=ans(g(ndof+1:))+ phi1; ans(0)=zero

END DO elements_3
!-----------------------apply loading increment---------------------------

DO i=1,loaded_nodes; ans(nf(1:2,no(i)))=val(i,:)*al(j); END DO; iters=0
!-----------------------plastic iteration loop----------------------------

its: DO
iters=iters+1
WRITE(*,'(A,I6,A,I4)')" time step",j," iteration",iters
loads=ans+bdylds; CALL spabac_gauss(kv,loads,kdiag)

426 COUPLED PROBLEMS

!-----------------------check plastic convergence-------------------------
newdis=loads; newdis(nf(3,:))=zero
CALL checon(newdis,oldis,tol,converged); IF(iters==1)converged=.FALSE.
IF(converged.OR.iters==limit)bdylds=zero

!-----------------------go round the Gauss Points ------------------------
elements_4: DO iel=1,nels
phi=prop(5,etype(iel)); coh=prop(6,etype(iel))
psi=prop(7,etype(iel))
CALL deemat(dee,prop(3,etype(iel)),prop(4,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
eld=loads(g(1:ndof)); bload=zero
gauss_points_2: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
eps=MATMUL(bee,eld); eps=eps-evpt(:,i,iel); sigma=MATMUL(dee,eps)
stress=sigma+tensor(1:4,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!-----------------------check whether yield is violated-------------------
CALL mocouf(phi,coh,sigm,dsbar,lode_theta,f)
IF(converged.OR.iters==limit)THEN; devp=stress; ELSE
IF(f>=zero)THEN

CALL mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(stress,m1,m2,m3)
flow=f*(m1*dq1+m2*dq2+m3*dq3); erate=MATMUL(flow,stress)
evp=erate*dt; evpt(:,i,iel)=evpt(:,i,iel)+evp
devp=MATMUL(dee,evp)

END IF
END IF
IF(f>=zero)THEN; eload=MATMUL(TRANSPOSE(bee),devp)
bload=bload+eload*det*weights(i)

END IF
IF(converged.OR.iters==limit)THEN

!--------------update the Gauss Point stresses and porepressures----------
tensor(1:4,i,iel)=stress; dpore=zero
CALL shape_fun(funf,points,i)
DO k=1,nodf; dpore=dpore+funf(k)*loads(g(k+ndof)); END DO
tensor(5,i,iel)=tensor(5,i,iel)+dpore

END IF
END DO gauss_points_2

!-----------------------compute the total bodyloads vector ---------------
bdylds(g(1:ndof))=bdylds(g(1:ndof))+bload; bdylds(0)=zero

END DO elements_4; IF(converged.OR.iters==limit)EXIT
END DO its; disps=disps+loads
IF(j/npri*npri==j.OR.iters==limit)WRITE(11,'(5E12.4,I5)') &

time,tot_load,disps(nf(:,nres)),iters
IF(iters==limit)EXIT

END DO time_steps
CALL dismsh(loads,nf,0.05_iwp,g_coord,g_num,13)
CALL vecmsh(loads,nf,0.05_iwp,0.1_iwp,g_coord,g_num,14)

STOP
END PROGRAM p94

New scalar reals:
coh soil cohesion
cons consolidating stress (σ3)
ddt used to find the critical time step

COUPLED PROBLEMS 427

dpore holds the accumulated pore pressure
dq1 plastic potential derivative, ∂Q/∂σm

dq2 plastic potential derivative, ∂Q/∂J2
dq3 plastic potential derivative, ∂Q/∂J3
dsbar invariant, σ

dt critical viscoplastic time step
d4 set to 4.0
d180 set to 180.0
e Young’s Modulus
f yield function
load theta Lode angle, θ

phi friction angle (degrees)
pi set to π

psi dilation angle (degrees)
sigm mean stress, σm

snph sin of phi
start dt starting value of dt
tol plastic convergence tolerance
v Poisson’s ratio

New dynamic real arrays:
bdylds self-equilibrating global body loads
bload self-equilibrating element body loads
devp product [De] {���εεεvp}
disps global displacements and pore pressures
eload integrating point contribution to bload
eps strain terms
erate viscoplastic strain rate,

{
ε̇̇ε̇εvp}

evp viscoplastic strain rate increment, {δδδεεεvp}
evpt holds running total of viscoplastic strains,

{
�ε�ε�εvp}

flow holds {∂Q/∂σσσ }
m1 used to compute {∂σm/∂σσσ }
m2 used to compute {∂J2/∂σσσ }
m3 used to compute {∂J3/∂σσσ }
newdis “new” displacements and pore pressures
oldis “old” displacements and pore pressures
stress stress terms
tensor holds running total of all integrating point stress terms

For non-linear problems involving elastic–plastic solid skeletons in a Biot analysis,
the advantage of an incremental form of the equations, which was not strictly necessary
for an elastic material, becomes apparent. The resulting program is an amalgamation of
Programs 9.3 and 6.3 which used the viscoplastic strain method for redistributing excess
internal stresses (Griffiths, 1994).

The three-dimensional array tensor is used to store the element integrating point
stresses, with the four effective stress components coming first, followed by the pore water
pressure as the fifth component.

428 COUPLED PROBLEMS

nxe nye np_types
2 2 1

prop(kx/gw,ky/gw,e,v,phi,c,psi)
1.0e-6 1.0e-6 1.0e4 0.25 30.0 0.0 0.0

etype(not needed)

cons
-100.0

x_coords, y_coords
0.0 0.5 1.0
0.0 -0.5 -1.0

dtim nstep theta npri nres
0.5 200 0.5 1 1

nr,(k,nf(:,k),i=1,nr)
20
 1 0 1 0 2 1 1 0 3 1 1 0 4 1 1 0 5 1 1 0
 6 0 1 0 7 1 1 0 8 1 1 0 9 0 1 1 10 1 1 0
12 1 1 0 13 1 1 0 14 0 1 0 15 1 1 0 16 1 1 0
17 0 0 1 18 1 0 0 19 1 0 1 20 1 0 0 21 1 0 0

loaded_nodes,(no(i),val(i,:),i=1,loaded_nodes)
5
1 0.0 -0.08333 2 0.0 -0.33333 3 0.0 -0.16667
4 0.0 -0.33333 5 0.0 -0.08333

tol limit
0.001 250

nlfp,(lf(:,i),i=1,nlfp)
2
0.0 0.0 10.0 150.0

1 m

2 3 4 5

10 11 12 13

18 19 20 21

6 7 8

14

17

1

9

drained
on these sides
uw= 0

time dependent
deviator stress D

undrained
on these sides
∂uw/∂n=o

1615

E’ = 104 kN/m2

υ’ = 0.25
kx = ky = gw

f’ = 30°
c’= 0
y’= 0
s3 = -100 kN/m2

1 m

Figure 9.12 Mesh and data for Program 9.4 example

The illustrative problem shown in Figure 9.12 involves compression of a plane strain
block of saturated elastic–plastic cohesionless soil by a time-dependent “deviator” stress D

which is the difference between the vertical and (constant) horizontal stresses on the soil.
The data follows a similar course to that followed for Program 9.3. The number of

properties has expanded to seven (nprops=7) with the addition of the friction angle φ′,

COUPLED PROBLEMS 429

the cohesion c′ and the dilation angle ψ . The “permeability” property k/γw of the soil
in this example is isotropic and set to 1 × 10−6. The current example models a cohesion-
less soil with φ′ = 30◦ and no dilation. The soil is initially consolidated to an isotropic
compressive stress (σ3) of -100 kN/m2 read as cons. The coordinate data for x coords
and y coords is followed by the familiar time stepping and output control parameters.
The current example calls for nstep=200 calculation time steps of dtim=0.5 secs with
theta=0.5 (Crank–Nicolson). Output is required every time step (npri=1) at node
nres=1. The nr data indicate 20 restrained nodes, which include rollers on the left and
bottom boundaries, drainage conditions on the top and right boundaries and removal of the
third freedom at all mid-side nodes, as described in Program 9.3. The next data provide
the load weightings corresponding to a unit pressure (Appendix A), to be applied to the 5
nodes at the top of the mesh. The next line reads the tolerance and iteration ceiling (tol
and limit) for plastic iterations, as was first used in Program 4.5 and again extensively
in Chapter 6. The final data define the load-time function to be applied at the top of the
mesh. In this example the deviator stress is to increase linearly with time at a “fast” rate
given by dD/dt = 15 kNm−2 s−1, so just two load function coordinates are required.

The results from this analysis are listed as Figure 9.13 and plotted in Figure 9.14,
together with the results of a second analysis in which a “slow” loading rate of dD/dt =
0.02 kNm−2 s−1 was applied. The deviator stress at failure Df was computed to be about
100 kN/m2 for the “fast” loading rate and 200 kN/m2 for the “slow” loading rate.

For plane strain compression of a non-dilative saturated soil, Griffiths(1985) produced
the solution,

Df = σ3(Kp − 1)(2βps + 1)

(Kp + 1)βps + 1
(9.4)

in which βps → ∞ and βps = 0 give undrained and drained limiting conditions respec-
tively.

In this example, Kp = tan2(45◦ + φ′/2) = 3, so for a consolidating stress of σ3 =
100 kN/m2, (9.4) with βps → ∞ gives Df ≈ 100 kN/m2, indicating that “fast” loading
in this case is giving essentially “undrained” conditions. The “slow” loading result of

 There are 36 equations and the skyline storage is 466

 Results at node 1
 time load x-disp y-disp porepressure iters
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.5000E+00 0.7500E+01 0.0000E+00 -0.5025E-03 0.0000E+00 2
 0.1000E+01 0.1500E+02 0.0000E+00 -0.1009E-02 0.0000E+00 2
 0.1500E+01 0.2250E+02 0.0000E+00 -0.1520E-02 0.0000E+00 2
 0.2000E+01 0.3000E+02 0.0000E+00 -0.2035E-02 0.0000E+00 2
 0.2500E+01 0.3750E+02 0.0000E+00 -0.2555E-02 0.0000E+00 2
 0.3000E+01 0.4500E+02 0.0000E+00 -0.3078E-02 0.0000E+00 2
 0.3500E+01 0.5250E+02 0.0000E+00 -0.3606E-02 0.0000E+00 2
 0.4000E+01 0.6000E+02 0.0000E+00 -0.4138E-02 0.0000E+00 2
 0.4500E+01 0.6750E+02 0.0000E+00 -0.4674E-02 0.0000E+00 2
 0.5000E+01 0.7500E+02 0.0000E+00 -0.5213E-02 0.0000E+00 2
 0.5500E+01 0.8250E+02 0.0000E+00 -0.5757E-02 0.0000E+00 2
 0.6000E+01 0.9000E+02 0.0000E+00 -0.6304E-02 0.0000E+00 2
 0.6500E+01 0.9750E+02 0.0000E+00 -0.6886E-02 0.0000E+00 9
 0.7000E+01 0.1050E+03 0.0000E+00 -0.4326E-01 0.0000E+00 250

Figure 9.13 Results from Program 9.4 example with dD/dt = 15

430 COUPLED PROBLEMS

D
e
v
i
a
t
o
r

s
t
r
e
s
s
,

D

Axial displacement, d1

0 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

dD/dt = 15 (undrained)
dD/dt = 0.02 (drained)

Figure 9.14 Response for different loading rates from Program 9.4

Df ≈ 200 kN/m2 corresponds essentially to the classical drained solution, also given by
(9.4) with βps = 0.

Program 9.5 Plane strain consolidation analysis of a Biot poro-elastic solid using
8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular
quadrilaterals for pressures. Freedoms numbered in the order u-v -uw. Absolute load
version. No global stiffness matrix assembly. Diagonally preconditioned conjugate gra-
dient solver.

PROGRAM p95
!---
! Program 9.5 Plane strain consolidation analysis of a Biot elastic
! solid using 8-node rectangular quadrilaterals for
! displacements coupled to 4-node rectangular quadrilaterals
! for pressures. Absolute load version.
! No global stiffness matrix assembly.
! Diagonally preconditioned conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,i,iel,j,k,loaded_nodes,ndim=2,ndof=16,nels, &
neq,nip=4,nlfp,nls,nn,nod=8,nodf=4,nodof=3,npri,nprops=4,np_types,nr, &
nres,nst=3,nstep,ntot=20,nxe,nye

REAL(iwp)::alpha,beta,cg_tol,det,dtim,one=1.0_iwp,theta,time,tot_load,up,&
zero=0.0_iwp

COUPLED PROBLEMS 431

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::cg_converged
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),no(:), &
num(:)

REAL(iwp),ALLOCATABLE::al(:),ans(:),bee(:,:),c(:,:),coord(:,:),d(:), &
dee(:,:),der(:,:),derf(:,:),deriv(:,:),derivf(:,:),diag_precon(:), &
eld(:),fun(:),funf(:),gc(:),g_coord(:,:),jac(:,:),kay(:,:),kd(:,:), &
ke(:,:),km(:,:),kc(:,:),lf(:,:),loads(:),p(:),points(:,:),prop(:,:), &
sigma(:),storkd(:,:,:),storke(:,:,:),u(:),val(:,:),vol(:),volf(:,:), &
weights(:),x(:),xnew(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,cg_tol,cg_limit,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(dee(nst,nst),points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf),&
jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
derf(ndim,nodf),funf(nodf),bee(nst,ndof),km(ndof,ndof),kc(nodf,nodf), &
g_g(ntot,nels),ke(ntot,ntot),kd(ntot,ntot),c(ndof,nodf),fun(nod), &
x_coords(nxe+1),y_coords(nye+1),vol(ndof),nf(nodof,nn),g(ntot), &
volf(ndof,nodf),g_coord(ndim,nn),g_num(nod,nels),num(nod),weights(nip),&
storke(ntot,ntot,nels),storkd(ntot,ntot,nels),etype(nels), &
prop(nprops,np_types),gc(ndim),sigma(nst),eld(ndof))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,theta,npri,nres
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(loads(0:neq),ans(0:neq),p(0:neq),x(0:neq),xnew(0:neq),u(0:neq), &
diag_precon(0:neq),d(0:neq))

READ(10,*)loaded_nodes; ALLOCATE(no(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(no(i),val(i,:),i=1,loaded_nodes)
READ(10,*)nlfp; ALLOCATE(lf(2,nlfp))
READ(10,*)lf; nls=FLOOR(lf(1,nlfp)/dtim); IF(nstep>nls)nstep=nls
ALLOCATE(al(nstep)); CALL load_function(lf,dtim,al)

!-----------------------loop the elements to set up element data----------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'x')
g(1:15:2)=nf(1,num(:)); g(2:16:2)=nf(2,num(:)); g(17:)=nf(3,num(1:7:2))
g_num(:,iel)=num; g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1; CALL mesh(g_coord,g_num,12)
WRITE(11,'(A,I5,A)')" There are",neq," equations"
CALL sample(element,points,weights); diag_precon=zero

!----------element matrix integration, storage and preconditioner---------
elements_2: DO iel=1,nels
kay=zero; DO i=1,ndim; kay(i,i)=prop(i,etype(iel)); END DO
CALL deemat(dee,prop(3,etype(iel)),prop(4,etype(iel))); num=g_num(:,iel)
coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel); km=zero; c=zero; kc=zero
gauss_points_1: DO i=1,nip

!-----------------------elastic solid contribution------------------------
CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
vol(:)=bee(1,:)+bee(2,:)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

!-----------------------fluid contribution--------------------------------
CALL shape_fun(funf,points,i); CALL shape_der(derf,points,i)
derivf=MATMUL(jac,derf)

432 COUPLED PROBLEMS

kc=kc+MATMUL(MATMUL(TRANSPOSE(derivf),kay),derivf)*det*weights(i)*dtim
CALL cross_product(vol,funf,volf); c=c+volf*det*weights(i)

END DO gauss_points_1; CALL fmkdke(km,kc,c,ke,kd,theta)
storke(:,:,iel)=ke; storkd(:,:,iel)=kd
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+theta*km(k,k); END DO
DO k=1,nodf

diag_precon(g(ndof+k))=diag_precon(g(ndof+k))-theta*theta*kc(k,k)
END DO

END DO elements_2
diag_precon(1:)=one/diag_precon(1:); diag_precon(0)=zero

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5)')" Results at node",nres; loads=zero
WRITE(11,'(4X,A)') &

"time load x-disp y-disp porepressure cg iters"
WRITE(11,'(5E12.4)')0.0,0.0,loads(nf(:,nres))
tot_load=zero; time=zero
time_steps: DO j=1,nstep
ans=zero; time=time+dtim
elements_3: DO iel=1,nels

g=g_g(:,iel); kd=storkd(:,:,iel); ans(g)=ans(g)+MATMUL(kd,loads(g))
END DO elements_3; ans(0)=zero

!-----------------------apply absolute loading----------------------------
DO i=1,loaded_nodes

ans(nf(1:2,no(i)))=ans(nf(1:2,no(i)))+val(i,:)*(tot_load+theta*al(j))
END DO
tot_load=tot_load+al(j); d=diag_precon*ans; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO

cg_iters=cg_iters+1; u=zero
elements_4: DO iel=1,nels
g=g_g(:,iel); ke=storke(:,:,iel); u(g)=u(g)+MATMUL(ke,p(g))

END DO elements_4
up=DOT_PRODUCT(ans,d); alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha
ans=ans-u*alpha; d=diag_precon*ans; beta=DOT_PRODUCT(ans,d)/up
p=d+p*beta; CALL checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg; loads=xnew; loads(0)=zero
IF(j/npri*npri==j)WRITE(11,'(5E12.4,I7)') &

time,tot_load,loads(nf(:,nres)),cg_iters
!-----------------------recover stresses at nip integrating points--------

nip=1; DEALLOCATE(points,weights)
ALLOCATE(points(nip,ndim),weights(nip))
CALL sample(element,points,weights)

! WRITE(11,'(A,I2,A)')" The integration point (nip=",nip,") stresses are:"
! WRITE(11,'(A,A)')" Element x-coord y-coord", &
! " sig_x sig_y tau_xy"

elements_5: DO iel=1,nels
CALL deemat(dee,prop(3,etype(iel)),prop(4,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
eld=loads(g(:ndof))
gauss_pts_2: DO i=1,nip
CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
gc=MATMUL(fun,coord); jac=MATMUL(der,coord); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
sigma=MATMUL(dee,MATMUL(bee,eld))

COUPLED PROBLEMS 433

! IF(j/npri*npri==j)WRITE(11,'(I5,6E12.4)')iel,gc,sigma
END DO gauss_pts_2

END DO elements_5
END DO time_steps

STOP
END PROGRAM p95

New scalar reals:
up holds dot product {R}T

k {R}k from (3.22)

New dynamic real arrays:
d vector used in (3.22)
diag precon diagonal preconditioner vector
kd right hand side element matrix from “Biot” analysis
storkd stores augmented diagonal terms
x “old” solution vector
xnew “new” solution vector

For the final program of this chapter, we return to the analysis of a poro-elastic “Biot”
material, but this time using a “mesh free” approach with a pcg solver that involves no
global matrix assembly. The absolute loading version is demonstrated this time as described
by equation (3.112), in which each time step involves matrix–vector multiplication followed
by equation solution. The process may be written as,

[ke] {φφφ}1 = [kd] {φφφ}0 + {f} (9.5)

which can all be performed at the element level using the pcg algorithm. The subroutine
fmkdke forms the (symmetric) [ke] matrix (ke) on the left hand side and the (unsymmet-
ric) [kd] matrix (kd) to the right. The vectors {φφφ}0 and {φφφ}1, called phi0 and phi1 in
programming terminology, represent the element displacements and excess pore pressures
at the “old” and “new” time steps.

Inspection of equation (3.112) shows that the left hand side matrix [ke] in this analyses
is not positive definite due to the negative [kc] terms. Simple diagonal preconditioning does
yield a symmetric positive definite preconditioned matrix however, and this is the method
used in Program 9.5. It is recognised that alternative preconditioning and iterative strategies
may well be more efficient. The ke and kd element matrices are stored as storke and
storkd for use later in the generation of right hand side “loading” and pcg solution
iterations.

The problem solved is the same as was solved by Program 9.3, and data are listed as
Figure 9.15. The extra data items are just the conjugate gradient iteration tolerance and
iteration limit, cg tol and cg limit respectively. The results are listed as Figure 9.16
which are essentially identical to those in Figure 9.10. The output in Figure 9.16 indicates
that approximately 19 pcg iterations were needed at each calculation time step.

434 COUPLED PROBLEMS

nxe nye cg_tol cg_limit np_types
1 4 1.0e-5 200 1

prop(kx/gw,ky/gw,e,v)
1.0 1.0 1.0 0.0

etype(not needed)

x_coords y_coords
0.0 0.25
0.0 -0.25 -0.50 -0.75 -1.00

dtim nstep theta npri nres
0.01 300 0.5 10 21

nr,(k,nf(:,k),i=1,nr)
23
 1 0 1 0 2 1 1 0 3 0 1 0 4 0 1 0 5 0 1 0
 6 0 1 1 7 1 1 0 8 0 1 1 9 0 1 0 10 0 1 0
11 0 1 1 12 1 1 0 13 0 1 1 14 0 1 0 15 0 1 0
16 0 1 1 17 1 1 0 18 0 1 1 19 0 1 0 20 0 1 0
21 0 0 1 22 0 0 0 23 0 0 1

loaded_nodes,(no(i),val(i,:),i=1,loaded_nodes)
3
1 0.0 -0.041667 2 0.0 -0.166667 3 0.0 -0.041667

nlfp,(lf(:,i),i=1,nlfp)
3
0.0 0.0 0.5 1.0 3.0 1.0

Figure 9.15 Data for Program 9.5 example

There are 32 equations

 Results at node 21
 time load x-disp y-disp porepressure cg iters
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.1000E+00 0.2000E+00 0.0000E+00 0.0000E+00 -0.1994E+00 17
 0.2000E+00 0.4000E+00 0.0000E+00 0.0000E+00 -0.3743E+00 19
 0.3000E+00 0.6000E+00 0.0000E+00 0.0000E+00 -0.5125E+00 19
 0.4000E+00 0.8000E+00 0.0000E+00 0.0000E+00 -0.6203E+00 19
 0.5000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.7043E+00 19
 0.6000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.5703E+00 19
 0.7000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.4463E+00 19
 0.8000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.3478E+00 19
 0.9000E+00 0.1000E+01 0.0000E+00 0.0000E+00 -0.2709E+00 19
 0.1000E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2110E+00 21
 0.1100E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1643E+00 19
 0.1200E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1280E+00 21
 0.1300E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.9968E-01 19
 0.1400E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.7764E-01 19
 0.1500E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.6047E-01 19
 0.1600E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.4710E-01 19
 0.1700E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.3668E-01 19
 0.1800E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2857E-01 19
 0.1900E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2225E-01 19
 0.2000E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1733E-01 19
 0.2100E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1349E-01 19
 0.2200E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1051E-01 19
 0.2300E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.8186E-02 19
 0.2400E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.6375E-02 19
 0.2500E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.4970E-02 19
 0.2600E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.3872E-02 19
 0.2700E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.3015E-02 21
 0.2800E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.2348E-02 19
 0.2900E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1829E-02 19
 0.3000E+01 0.1000E+01 0.0000E+00 0.0000E+00 -0.1425E-02 19

Figure 9.16 Results from Program 9.5 example

COUPLED PROBLEMS 435

Glossary of variable names used in Chapter 9

Scalar integers:
cg iters pcg or BiCGStab iteration counter
cg limit pcg or BiCGStab iteration ceiling
cg tot total number of BiCGStab iterations
ell BiCGStab parameter; taken as 4 in this example
fixed freedoms number of fixed freedoms
i simple counter
iel simple counter
iters iteration counter
iwp SELECTED REAL KIND(15)
j simple counter
k simple counter
limit iteration ceiling
loaded nodes number of loaded nodes
nband full bandwidth of non-symmetric matrix
ndim number of dimensions
ndof number of displacement degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nlfp number of load function points
nls maximum number of load steps
nip number of integrating points
nn number of nodes in the mesh
nod number of nodes per solid element
nodf number of nodes per fluid element
nodof number of degrees of freedom per node
npri output printed every npri time steps
nprops number of material properties
np types number of different property types
nr number of restrained nodes
nres node number at which time history is to be printed
nst number of stress/strain terms
nstep number of time steps required
ntot total number of degrees of freedom per element
nxe number of elements in x-direction
nye number of elements in y-direction

Scalar reals:
alpha local variable
beta local variable
cg tol BiCGStab convergence tolerance
coh soil cohesion
cons consolidating stress (σ3)
ddt used to find the critical time step
det determinant of the Jacobian matrix

436 COUPLED PROBLEMS

dpore holds the accumulated pore pressure
dq1 plastic potential derivative, ∂Q/∂σm

dq2 plastic potential derivative, ∂Q/∂J2
dq3 plastic potential derivative, ∂Q/∂J3
dsbar invariant, σ

dt critical viscoplastic time step
dtim calculation time step
d4 set to 4.0
d180 set to 180.0
e Young’s Modulus
error measure of error in BiCGStab
f yield function
gama local variable
kappa BiCGStab parameter; taken as zero in this example
load theta Lode angle, θ

norm r residual norm
omega local variable
one set to 1.0
penalty set to 1 × 1020

phi friction angle (degrees)
pi set to π

psi dilation angle (degrees)
pt5 set to 0.5
rho fluid density
rho1 local variable
r0 norm initial residual norm
sigm mean stress, σm

snph sin of phi
start dt starting value of dt
theta time integration weighting parameter
time holds time elapsed t

tol convergence tolerance
tot load accumulated load at time t

ubar average x-velocity
up holds dot product {R}T

k {R}k from (3.22)
v Poisson’s ratio
x0 initialisation value
vbar average y-velocity
visc molecular viscosity
zero set to 0.0

Character variables:
element element type

Scalar logicals:
converged set to .TRUE. if solution converged
cg converged set to .TRUE if BiCGStab has converged

COUPLED PROBLEMS 437

Dynamic integer arrays:
etype element property types
g element “steering” vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term locations
nf nodal freedoms
no freedoms to be fixed
node nodes with fixed values
num element node numbers
sense sense of freedom to be fixed

Dynamic real arrays:
al load steps at resolution of calculation time step
ans rhs “load” increment vector
b right-hand side vector
bdylds self-equilibrating global body loads
bee strain-displacement matrix
bload self-equilibrating element body loads
c coupling matrix
coord solid element nodal coordinates
coordf fluid element nodal coordinates
c11 element submatrix (2.115)
c12 element submatrix (2.115)
c21 element submatrix (2.115)
c23 element submatrix (2.115)
c32 element submatrix (2.115)
d vector used in (3.22)
dee stress–strain matrix
der solid shape function derivatives wrt local coordinates
derf fluid shape function derivatives wrt local coordinates
deriv solid shape function derivatives wrt global coordinates
derivf fluid shape function derivatives wrt global coordinates
devp product [De]

{
�ε�ε�εvp}

diag diagonal of left hand side matrix
diag precon diagonal preconditioner vector
disps global displacements and pore pressures
eld element nodal displacements
eload integrating point contribution to bload
eps strain terms
erate viscoplastic strain rate,

{
ε̇̇ε̇εvp}

evp viscoplastic strain rate increment,
{
δεδεδεvp}

evpt holds running total of viscoplastic strains,
{
�ε�ε�εvp}

flow holds {∂Q/∂σσσ }
fun solid shape functions
funf fluid shape functions
gamma small local array

438 COUPLED PROBLEMS

gc integrating point coordinates
gg small local array
g coord nodal coordinates for all elements
jac Jacobian matrix
kay property matrix
kd right-hand side element matrix from “Biot” analysis
ke element “stiffness” matrix
km element stiffness matrix
kc element conductivity matrix
kv global stiffness matrix
lf input load/time function
loads nodal velocities and pressures
m1 holds holds ∂σm/∂σ

m2 holds holds ∂J2/∂σ

m3 holds holds ∂J3/∂σ

nd1 product [fun]T[deriv(1,:)]
nd2 product [fun]T[deriv(2,:)]
ndf1 product [fun]T[derivf(1,:)]
ndf2 product [fun]T[derivf(2,:)]
nfd1 product [funf]T[deriv(1,:)]
nfd2 product [funf]T[deriv(2,:)]
newdis “new” displacements and pore pressures
oldis “old” displacements and pore pressures
oldlds nodal velocities and pressures from previous iteration
p “descent” vector used in (3.22)
pb unsymmetric global band “stiffness” matrix
phi0 used in element-by-element “gather” algorithm
phi1 used in element-by-element “scatter” algorithm
points integrating point local coordinates
prop element properties
r residual vector
rt initial residual vector
s small local vector
sigma stress terms
stress stress terms
store “penalty” degrees of freedom
storkd stores augmented diagonal terms
storke element matrix storage
store kc stores element kc matrices
tensor holds running total of all integrating point stress terms
u gather/scatter array
utemp gather/scatter array
uvel element nodal x-velocity
val nodal loads weighting factors
value fixed vales of freedoms
vol related to the volumetric strain

COUPLED PROBLEMS 439

volf used to compute coupling matrix
vvel element nodal y-velocity
weights weighting coefficients
work working space
x “old” solution vector
xmul gather/scatter array
xnew “new” solution vector
x coords x-coordinates of mesh layout
y gather/scatter array
y1 gather/scatter array
y coords y-coordinates of mesh layout

9.2 Exercises

1. The mesh shown in Figure 9.17 is to be used to model 1D flow in the x-direction
between two horizontal plates situated at y = 0.0 and y = −3.0. Velocity boundary
conditions are that the top plate is moved with a velocity of u = 3.0 relative to
the bottom plate which is fixed at u = 0. Pressure boundary conditions are that
the pressure on the left and right vertical boundaries are set to p = 1.0 and p =
−1.0 respectively, giving a pressure gradient of ∂p/∂x = −2.0. Given that µ = ρ =

1.0

u=3.0

u=0

3.0

p=1.0 p=-1.0

Figure 9.17

440 COUPLED PROBLEMS

1.0 (visc and rho respectively in programming terminology), use Program 9.1 to
estimate the steady state mid-plane velocity.
(Ans: u = 3.75)

2. Use Program 9.3 to reproduce the Mandel–Cryer effect (see e.g. Lambe and Whitman,
1969, Fig 27.10), in which the excess pore pressures beneath the center of a uniformly
loaded flexible strip footing temporarily rise before they start to dissipate.

3. Use a trial and error approach with the example accompanying Program 9.4 in this
chapter to estimate the deviator stress loading rate that gives a failure load exactly
half way between the drained and undrained solutions.
(Ans: dD/dt ≈ 2.17 gives Df ≈ 150 kN/m2)

References

Biot MA 1941 General theory of three-dimensional consolidation. J Appl Phys 12, 155–164.
Griffiths DV 1985 The effect of pore fluid compressibility on failure loads in elasto-plastic soils. Int

J Numer Anal Methods Geomech 9, 253–259.
Griffiths DV 1994 Coupled analyses in geomechanics. In Visco-Plastic Behavior of Geomaterials

(eds. Cristescu ND and Gioda G). Springer-Verlag, Wien, New York, pp. 245–317. Chapter 5.
Kidger DJ 1994 Visualisation of three-dimensional processes in geomechanics computations. In

Proceedings of the 8th International Conference on Computational Methods and Advances in
Geomechanics (eds. Siriwardane H and Zaman M). A. A. Balkema, Rotterdam, pp. 453–457.

Lambe T and Whitman R 1969 Soil Mech. John Wiley & Sons, Chichester, New York.
Schiffman RL 1960 Field applications of soil consolidation, time-dependent loading and variable

permeability. Technical Report 248, Highway Research Board, Washington, D.C.
Smith IM and Hobbs R 1976 Biot analysis of consolidation beneath embankments. Géotechnique 26,

149–171.

10

Eigenvalue Problems

10.1 Introduction

The ability to solve eigenvalue problems is important in many aspects of finite element
work. For example, the number of zero eigenvalues of an element “stiffness” matrix (its
rank deficiency) is an important guide to the suitability of that element. In that context, the
problem to be solved is just:

[k] {u} = λ {u} (10.1)

which is the eigenvalue problem in “standard form” (3.83). More often, the eigenvalue
equation will describe a physical situation such as free vibration of a solid or fluid. For
example, (2.19) after assembly, for a freely vibrating elastic solid becomes,

[Km] {X} = ω2[Mm] {X} (10.2)

which can readily be converted to “standard form” by the procedure outlined in
Section 3.9.1. In this case, the global mass matrix [Mm] may be “lumped” or “consistent”
(Section 3.7.7).

The present Chapter describes four programs for the determination of eigenvalues and
eigenvectors of such elastic structures and solids. Different algorithms and storage strategies
are employed in the various cases. Since elastic solids are considered, the programs can be
viewed as extensions of the programs described in Chapters 4 and 5. The same terminology
is used. Program 10.1 computes the natural frequencies and mode shapes of strings of
beam elements, and Program 10.2 does the same for planar elastic solids using 4- or 8-
node quadrilaterals. Both programs use Jacobi’s method. Programs 10.3 and 10.4 use the
Lanczos algorithm (Section 3.9.2) to calculate natural frequencies and mode shapes of
elastic solids. The first of these two programs uses a global assembly strategy while the
second adopts an element-by-element approach looking forward to the parallelised example
in Chapter 12.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

442 EIGENVALUE PROBLEMS

Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam elements.
Lumped mass.

PROGRAM p101
!---
! Program 10.1 Eigenvalue analysis of elastic beams using 2-node
! beam elements. Lumped mass.
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,idiag,iel,ifail,j,k,nband,ndof=4,nels,neq,nmodes,nn,nod=2, &
nodof=2,nprops=2,np_types,nr

REAL(iwp)::d12=12.0_iwp,one=1.0_iwp,pt5=0.5_iwp,penalty=1.e20_iwp, &
etol=1.0e-30_iwp,zero=0.0_iwp

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),kdiag(:),nf(:,:),num(:)
REAL(iwp),ALLOCATABLE::diag(:),ell(:),kh(:),km(:,:),ku(:,:),kv(:), &
mm(:,:),prop(:,:),rrmass(:),udiag(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,np_types; nn=nels+1
ALLOCATE(nf(nodof,nn),km(ndof,ndof),num(nod),g(ndof),mm(ndof,ndof), &
ell(nels),etype(nels),g_g(ndof,nels),prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype; READ(10,*)ell
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(diag(0:neq),udiag(0:neq),kdiag(neq),rrmass(0:neq))

!-----------------------loop the elements to find global array sizes------
nband=0; kdiag=0
elements_1: DO iel=1,nels
num=(/iel,iel+1/); CALL num_to_g(num,nf,g); g_g(:,iel)=g
IF(nband<bandwidth(g))nband=bandwidth(g); CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(A,I5,A,/,A,I5,/,A,I5)')" There are",neq," equations", &
" The half-bandwidth (including diagonal) is",nband+1, &
" The skyline storage is",kdiag(neq)

!-----------------------global stiffness and mass matrix assembly---------
ALLOCATE(ku(neq,nband+1),kv(kdiag(neq)),kh(kdiag(neq)))
diag=zero; ku=zero
elements_2: DO iel=1,nels
g=g_g(:,iel); mm=zero; mm(1,1)=pt5*prop(2,etype(iel))*ell(iel)
mm(3,3)=mm(1,1); mm(2,2)=mm(1,1)*ell(iel)**2/d12; mm(4,4)=mm(2,2)
CALL formlump(diag,mm,g); CALL beam_km(km,prop(1,etype(iel)),ell(iel))
CALL formku(ku,km,g)

END DO elements_2
!-----------------------reduce to standard eigenvalue problem-------------
rrmass(1:)=one/SQRT(diag(1:))
DO i=1,neq; IF(i<=neq-nband)THEN; k=nband+1; ELSE; k=neq-i+1; END IF
DO j=1,k; ku(i,j)=ku(i,j)*rrmass(i)*rrmass(i+j-1); END DO

END DO
!-----------------------convert to skyline form---------------------------
kh(1)=ku(1,1); k=1
DO i=2,neq; idiag=kdiag(i)-kdiag(i-1)
DO j=1,idiag; k=k+1; kh(k)=ku(i+j-idiag,1-j+idiag); END DO

END DO
!-----------------------extract the eigenvalues---------------------------
CALL bandred(ku,diag,udiag); ifail=1; CALL bisect(diag,udiag,etol,ifail)
WRITE(11,'(/A)')" The eigenvalues are:"; WRITE(11,'(6E12.4)')diag(1:)

EIGENVALUE PROBLEMS 443

!-----------------------extract the eigenvectors--------------------------
READ(10,*)nmodes
DO i=1,nmodes
kv=kh;kv(kdiag)=kv(kdiag)-diag(i); kv(1)=kv(1)+penalty
udiag=zero; udiag(1)=kv(1)
CALL sparin_gauss(kv,kdiag); CALL spabac_gauss(kv,udiag,kdiag)
udiag=rrmass*udiag; WRITE(11,'(A,I3,A)')" Eigenvector number",i," is:"
WRITE(11,'(6E12.4)')udiag(1:)/MAXVAL(ABS(udiag(1:)))

END DO
STOP
END PROGRAM p101

Scalar integers:
i simple counter
iel simple counter
idiag skyline bandwidth
iwp SELECTED REAL KIND(15)
ifail warning flag from bisect subroutine
j simple counters
k simple counters
nband bandwidth of upper triangle
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nmodes number of eigenvectors required
nn number of nodes in the mesh
nod number of nodes per elements
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes

Scalar reals:
d12 set to 12.0
one set to 1.0
penalty set to 1 × 1020

pt5 set to 0.5
etol eigenvalue tolerance set to 1 × 10−30

zero set to 0.0

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
kdiag diagonal term location vector
nf nodal freedom matrix
num element node number vector

444 EIGENVALUE PROBLEMS

Dynamic real arrays:
diag global lumped mass vector
ell element lengths vector
kh element stiffness matrix
km element stiffness matrix
ku global stiffness matrix
kv global stiffness matrix
mm element lumped mass matrix
prop element properties matrix
rrmass reciprocal square rooted global lumped mass matrix
udiag working space vector

This program illustrates a natural frequency analysis of a typical “string” of beam
elements, and can be thought of as an extension to Program 4.3. The natural frequencies
of the simple cantilever shown in Figure 10.1 are to be found. The first line of data gives
the number of elements nels which equals 5 in this case. The next line gives the number
of properties np types which for a uniform beam equals 1. The two properties are then
read in as the flexural stiffness EI read as 0.08333 and the mass per unit length ρA read

1 2 3 4 5 6

EI = 0.08333
rA = 1.0

1 2 3 4 5

nels
5

np_types
1

prop(ei,rhoa)
0.08333 1.0

etype(not needed)

ell
0.8 0.8 0.8 0.8 0.8

nr,(k,nf(:,k),i=1,nr)
1
1 0 0

nmodes
3

4.0

Figure 10.1 Mesh and data for Program 10.1 example

EIGENVALUE PROBLEMS 445

as 1.0. With only one property type, the etype data is not needed. The next line reads
the lengths of the elements, which in this case are all equal to 0.8. The nodal freedom data
then follows by fixing the cantilever end to have no translation or rotation. The final line
of data reads nmodes which represents the number of eigenvectors (or mode shapes) to
be computed. In this example the first three are requested.

After the usual preliminary steps to establish the global array size, the elements are
assembled into the global stiffness and mass matrices. In this case, the global stiffness
[Km] is stored in ku as an upper band rectangle by library subroutine formku (see
Figure 3.18), and the global lumped mass matrix [Mm] is stored as a vector in diag by
library subroutine formlump. The structure of the program is shown in Figure 10.2.

The diagonal element mass matrices [mm] are held in mm and use the following lumping
(see e.g. Cook et al., 1989):

[mm] = ρAL

2

1 0 0 0

0 L2/12 0 0

0 0 1 0

0 0 0 L2/12

 (10.3)

By factorising diag and altering the appropriate terms in ku (see Section 3.9.1), the
symmetrical matrix for the standard eigenvalue problem is retrieved (still called ku). The

Read data
Allocate arrays

Find problem size
Null global stiffness and mass matrices

For all elements

Find steering vector
Compute element stiffness matrix

Compute element (lumped) mass matrix
Assemble global stiffness

and mass matrices

Reduce to standard eigenvalue problem
Solve eigenvalue problem using
routines bandred and bisect

Print eigenvalues

For nmodes eigenvectors

Retrieve eigenvector from
corresponding eigenvalue

Transform to correct vector space
Print eigenvector

Figure 10.2 Structure chart for Program 10.1

446 EIGENVALUE PROBLEMS

 There are 10 equations, the half-bandwidth is 3
 and the skyline storage is 31

 The eigenvalues are:
 0.3823E-02 0.1278E+00 0.8511E+00 0.2765E+01 0.6323E+01 0.1147E+02

 0.1748E+02 0.2324E+02 0.2756E+02 0.3225E+02
 Eigenvector number 1 is:

 0.6303E-01 0.1499E+00 0.2275E+00 0.2539E+00 0.4579E+00 0.3154E+00
 0.7229E+00 0.3423E+00 0.1000E+01 0.3485E+00

 Eigenvector number 2 is:
 0.2307E+00 0.4535E+00 0.5431E+00 0.2347E+00 0.5094E+00 -0.3411E+00

 0.2270E-01 -0.8308E+00 -0.7287E+00 -0.1000E+01
 Eigenvector number 3 is:

 0.2888E+00 0.4155E+00 0.3179E+00 -0.3976E+00 -0.1579E+00 -0.5696E+00
 -0.2684E+00 0.3779E+00 0.3425E+00 0.1000E+01

Figure 10.3 Results from Program 10.1 example

eigenvalues of this band matrix (ω2) are then calculated using Jacobi’s method, which
employs library subroutines bandred and bisect.

The first nmodes eigenvectors are then extracted by finding the relevant non-trivial
solutions to the homogeneous equations and transforming them back to the correct vector
space. In order to do this the global matrix is converted to skyline vector storage form (kv)
and the eigenvectors solved for using subroutines sparin_gauss and spabac_gauss.
In this example, the first three eigenvectors are computed and normalised to a vector length
(Euclidean norm) of unity. The results are all shown in Figure 10.3.

As a check, the computed results indicate a fundamental frequency ω = √
0.0038 =

0.062 which should be compared with the analytical result (e.g. Chopra, 1995) for a slender
beam of,

ω = 3.516

L2

√
EI

ρA
= 0.063 (10.4)

Program 10.2 Eigenvalue analysis of an elastic solid in plane strain using 4- or 8-node
rectangular quadrilaterals. Lumped mass. Mesh numbered in x - or y-direction.

PROGRAM p102
!---
! Program 10.2 Eigenvalue analysis of an elastic solid in plane strain
! using 4- or 8-node rectangular quadrilaterals. Lumped mass.
! Mesh numbered in x- or y-direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,idiag,iel,ifail,j,k,nband,ndim=2,ndof,nels,neq,nmodes,nn,nod, &
nodof=2,nprops=3,np_types,nr,nxe,nye

REAL(iwp)::area,etol=1.e-30_iwp,one=1.0_iwp,penalty=1.e20_iwp,zero=0.0_iwp
CHARACTER(LEN=15)::element='quadrilateral'

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g (:,:),g_num(:,:),kdiag(:),nf(:,:),&
num(:)

REAL(iwp),ALLOCATABLE::coord(:,:),diag(:),g_coord(:,:),kh(:),km(:,:), &
ku(:,:),kv(:),mm(:,:),prop(:,:),rrmass(:),udiag(:),x_coords(:), &
y_coords(:)

!-----------------------input and initialisation--------------------------

EIGENVALUE PROBLEMS 447

OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,nod,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); ndof=nod*nodof
ALLOCATE(nf(nodof,nn),g_coord(ndim,nn),coord(nod,ndim),mm(ndof,ndof), &
g_num(nod,nels),num(nod),km(ndof,ndof),g(ndof),g_g(ndof,nels), &
prop(nprops,np_types),x_coords(nxe+1),y_coords(nye+1),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(diag(0:neq),udiag(0:neq),kdiag(neq),rrmass(0:neq))

!-----------------------loop the elements to find global array sizes------
nband=0; kdiag=0
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)
IF(nband<bandwidth(g))nband=bandwidth(g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(A,I5,A,/,A,I5,/,A,I5)')" There are",neq," equations", &
" The half-bandwidth (including diagonal) is",nband+1, &
" The skyline storage is",kdiag(neq)

!-----------------------global stiffness and mass matrix assembly---------
ALLOCATE(ku(neq,nband+1),kv(kdiag(neq)),kh(kdiag(neq)))
diag=zero; ku=zero
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
CALL rect_km(km,coord,prop(1,etype(iel)),prop(2,etype(iel)))
CALL formku(ku,km,g)
area=(MAXVAL(coord(:,1))-MINVAL(coord(:,1)))* &

(MAXVAL(coord(:,2))-MINVAL(coord(:,2)))
CALL elmat(area,prop(3,etype(iel)),mm); CALL formlump(diag,mm,g)

END DO elements_2
!-----------------------reduce to standard eigenvalue problem-------------
rrmass(1:)=one/SQRT(diag(1:))
DO i=1,neq; IF(i<=neq-nband)THEN; k=nband+1; ELSE; k=neq-i+1; END IF
DO j=1,k; ku(i,j)=ku(i,j)*rrmass(i)*rrmass(i+j-1); END DO

END DO
!-----------------------convert to skyline form---------------------------
kh(1)=ku(1,1); k=1
DO i=2,neq; idiag=kdiag(i)-kdiag(i-1)
DO j=1,idiag; k=k+1; kh(k)=ku(i+j-idiag,1-j+idiag); END DO

END DO
!-----------------------extract the eigenvalues---------------------------
CALL bandred(ku,diag,udiag); ifail=1; CALL bisect(diag,udiag,etol,ifail)
WRITE(11,'(/A)')" The eigenvalues are:"; WRITE(11,'(6E12.4)')diag(1:)

!-----------------------extract the eigenvectors--------------------------
READ(10,*)nmodes
DO i=1,nmodes
kv=kh;kv(kdiag)=kv(kdiag)-diag(i); kv(1)=kv(1)+penalty
udiag=zero; udiag(1)=kv(1)
CALL sparin_gauss(kv,kdiag); CALL spabac_gauss(kv,udiag,kdiag)
udiag=rrmass*udiag; WRITE(11,'(A,I3,A)')" Eigenvector number",i," is:"
WRITE(11,'(6E12.4)')udiag(1:)/MAXVAL(ABS(udiag(1:)))
IF(i==1)CALL dismsh(udiag,nf,0.1_iwp,g_coord,g_num,13)

END DO
STOP
END PROGRAM p102

448 EIGENVALUE PROBLEMS

New scalar integers:
ndim number of dimensions
nxe number of elements in the x-direction
nye number of elements in the y-direction

New scalar reals:
area element area

Scalar character:
element element type

New dynamic integer arrays:
g num global element node numbers matrix

New dynamic real arrays:
coord element nodal coordinates
g coord nodal coordinates for all elements
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

This program is an extension of Program 5.1 for the analysis of elastic solids in plane
strain. The element coordinates and steering information are produced by the geometry
subroutine geom rect otherwise the structure of the program has much in common with
Program 10.1 (see Figure 10.2).

The example problem shown in Figure 10.4 is nominally the same as the beam analysed
in Figure 10.1, namely an elastic solid cantilever 4.0 units long in the x-direction with a
flexural rigidity of 0.08333. The solid modelled by the five 4-node elements in Figure 10.4
is two-dimensional however, so Poisson’s ratio has been set to zero to remove the stiffening
effect of plane strain. The mass density is set to unity.

Rather than performing the usual numerical integration loops, this program introduces
the new subroutine rect km which computes the stiffness matrix (km) of an elastic 4-
or 8-node rectangular element in “closed form” based on nip=4. Subroutine elmat
forms the lumped mass matrix (mm) for a 4- or 8-node quadrilateral based on its area.
For a 4-node element, the lumped mass matrix mm is readily formed with eight diagonal

4.0

1.0

1

2

3

4 12

E = 1.0
u = 0.0
r = 1.0

Figure 10.4 Mesh and data for first Program 10.2 example (Continued on page 449)

EIGENVALUE PROBLEMS 449

nxe nye nod
5 1 4

np_types
1

prop(e,v,rho)
1.0 0.0 1.0

etype (not needed)

x_coords, y_coords
0.0 0.8 1.6 2.4 3.2 4.0
0.0 -1.0

nr,(k,nf(:,k),i=1,nr)
2
1 0 0 2 0 0

nmodes
5

Figure 10.4 (Continued from page 448)

terms, in which one quarter of the total mass of the element is lumped at each node in
each direction. The element stiffness and mass matrices are assembled into their global
counterparts ku and diag as discussed previously, and the remainder of the program is
identical to Program 10.1.

The first line of data provides the number of elements in the x- and y-directions (nxe
and nye) and the number of nodes per element (nod). Three properties are required in a
problem such as this, namely, Young’s modulus E, Poisson’s ratio ν and the mass density
ρ. This is followed by the mesh coordinate data (x coords and y coords) and the
boundary condition data, which involves fully fixing the nodes at the built-in end of the
cantilever. The final line of data as before reads nmodes, which represents the number
of eigenvectors (or mode shapes) to be computed. In this example, five eigenvectors are
requested.

From the results shown in Figure 10.5, it can be seen that the fundamental frequency,
printed as ω = √

0.004595 = 0.068, is rather higher than the value of 0.062 calculated by
Program 10.1 for a slender beam. Thus, the 2D solid, represented by 4-node elements with
full integration, is a poor representation of a slender beam, at least in the flexural modes.
The elements are too “stiff ”. The longitudinal modes as indicated by the third eigenvalue
and eigenvector are more accurately modelled by this element however; the computed fre-
quency, printed as ω = √

0.1529 = 0.391 is in good agreement with the analytical solution
of ω = π/2L

√
E/ρ = 0.393.

A much better representation of flexural modes of “beams” made up of solid elements
is achieved by the use of 8-node quadrilaterals, so the second example uses this superior
element to solve the same problem, however the process of mass lumping is not obvi-
ous in this case. For example, the summation of rows of the consistent matrix leads to
negative values at the corners. It can be shown however, (Smith, 1977) that a reasonable
approximation is to lump the mass to the mid-point and corner nodes in the ratio 4:1,

450 EIGENVALUE PROBLEMS

thus 1/20 of the total mass is assigned to each corner node and 1/5 to each mid-side
node in each direction. This weighting is assigned to the 8-node element by subroutine
elmat.

The mesh and data shown in Figure 10.6 are virtually identical to those used for the
analysis with 4-node elements. The only differences lies in the data for nod, which is now
read as 8, and the boundary condition data at the built-in end of the cantilever involves 3
fixed nodes.

 There are 20 equations, the half-bandwidth is 7
 and the skyline storage is 114

 The eigenvalues are:
 0.4595E-02 0.1053E+00 0.1529E+00 0.5169E+00 0.1226E+01 0.1288E+01
 0.2058E+01 0.2352E+01 0.2415E+01 0.2710E+01 0.2719E+01 0.3114E+01
 0.3125E+01 0.3188E+01 0.3381E+01 0.3665E+01 0.3960E+01 0.4211E+01
 0.4962E+01 0.6097E+01
 Eigenvector number 1 is:
 0.7195E-01 -0.6932E-01 -0.7195E-01 -0.6932E-01 0.1224E+00 -0.2362E+00
 -0.1224E+00 -0.2362E+00 0.1526E+00 -0.4662E+00 -0.1526E+00 -0.4662E+00
 0.1662E+00 -0.7285E+00 -0.1662E+00 -0.7285E+00 0.1695E+00 -0.1000E+01
 -0.1695E+00 -0.1000E+01
 Eigenvector number 2 is:
 0.2487E+00 -0.4240E+00 -0.2487E+00 -0.4240E+00 0.1022E+00 -0.8727E+00
 -0.1022E+00 -0.8727E+00 -0.2584E+00 -0.7980E+00 0.2584E+00 -0.7980E+00
 -0.5732E+00 -0.7556E-01 0.5732E+00 -0.7556E-01 -0.6870E+00 0.1000E+01
 0.6870E+00 0.1000E+01
 Eigenvector number 3 is:
 0.3090E+00 0.1555E-14 0.3090E+00 0.1572E-14 0.5878E+00 0.3059E-14
 0.5878E+00 0.2986E-14 0.8090E+00 0.2674E-14 0.8090E+00 0.2728E-14
 0.9511E+00 -0.5347E-16 0.9511E+00 0.0000E+00 0.1000E+01 -0.3174E-14
 0.1000E+01 -0.3478E-14
 Eigenvector number 4 is:
 0.2413E+00 -0.9151E+00 -0.2413E+00 -0.9151E+00 -0.4612E+00 -0.8557E+00
 0.4612E+00 -0.8557E+00 -0.5141E+00 0.3742E+00 0.5141E+00 0.3742E+00
 0.4120E+00 0.6579E+00 -0.4120E+00 0.6579E+00 0.1000E+01 -0.7050E+00
 -0.1000E+01 -0.7050E+00
 Eigenvector number 5 is:
 0.2575E+00 0.9693E+00 -0.2575E+00 0.9693E+00 0.8105E+00 -0.2304E+00
 -0.8105E+00 -0.2304E+00 -0.3806E+00 -0.5583E+00 0.3806E+00 -0.5583E+00
 -0.6787E-01 0.6923E+00 0.6787E-01 0.6923E+00 0.1000E+01 -0.2476E+00
 -0.1000E+01 -0.2476E+00

Figure 10.5 Results from first Program 10.2 example

4.0

1.0

1

28

E = 1.0
u = 0.0
r = 1.0

2

3

4

5

6

Figure 10.6 Mesh and data for second Program 10.2 example (Continued on page 451)

EIGENVALUE PROBLEMS 451

nxe nye nod
5 1 8

np_types
1

prop(e,v,rho)
1.0 0.0 1.0

etype (not needed)

x_coords, y_coords
0.0 0.8 1.6 2.4 3.2 4.0
0.0 -1.0

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 2 0 0 3 0 0

nmodes
5

Figure 10.6 (Continued from page 450)

 There are 50 equations, the half-bandwidth is 15
 and the skyline storage is 515

 The eigenvalues are:
 0.3641E-02 0.9363E-01 0.1532E+00 0.4932E+00 0.1255E+01 0.1270E+01
 0.1524E+01 0.2390E+01 0.3006E+01 0.3321E+01 0.3803E+01 0.4927E+01
 0.5010E+01 0.5648E+01 0.5844E+01 0.6508E+01 0.6935E+01 0.7054E+01
 0.7097E+01 0.7420E+01 0.9235E+01 0.9569E+01 0.9828E+01 0.9873E+01
 0.1050E+02 0.1056E+02 0.1079E+02 0.1082E+02 0.1101E+02 0.1119E+02
 0.1124E+02 0.1152E+02 0.1172E+02 0.1178E+02 0.1388E+02 0.1582E+02
 0.1634E+02 0.1793E+02 0.1915E+02 0.1998E+02 0.2072E+02 0.2263E+02
 0.2639E+02 0.3313E+02 0.3879E+02 0.4823E+02 0.5123E+02 0.5894E+02
 0.6294E+02 0.7198E+02
 Eigenvector number 1 is:
 0.3907E-01 -0.2065E-01 -0.3907E-01 -0.2065E-01 0.7253E-01 -0.7030E-01
 -0.2551E-13 -0.7029E-01 -0.7253E-01 -0.7030E-01 0.1004E+00 -0.1444E+00
 -0.1004E+00 -0.1444E+00 0.1228E+00 -0.2385E+00 -0.3805E-13 -0.2384E+00
 -0.1228E+00 -0.2385E+00 0.1401E+00 -0.3480E+00 -0.1401E+00 -0.3480E+00
 0.1524E+00 -0.4691E+00 -0.3349E-13 -0.4690E+00 -0.1524E+00 -0.4691E+00
 0.1606E+00 -0.5976E+00 -0.1606E+00 -0.5976E+00 0.1652E+00 -0.7307E+00
 -0.3567E-13 -0.7306E+00 -0.1652E+00 -0.7307E+00 0.1672E+00 -0.8651E+00
 -0.1672E+00 -0.8651E+00 0.1677E+00 -0.1000E+01 -0.3424E-13 -0.9998E+00
 -0.1677E+00 -0.1000E+01
.
.
.

 Eigenvector number 5 is:
 0.1827E+00 0.6303E-02 0.1827E+00 -0.6303E-02 0.3434E+00 0.1255E-01
 0.3188E+00 -0.1552E-12 0.3434E+00 -0.1255E-01 0.4397E+00 0.2189E-01
 0.4397E+00 -0.2189E-01 0.4831E+00 -0.1363E-01 0.3530E+00 0.7292E-13
 0.4831E+00 0.1363E-01 0.2961E+00 -0.5326E-01 0.2961E+00 0.5326E-01
 0.7352E-01 0.1180E-01 0.1981E+00 0.8243E-13 0.7352E-01 -0.1180E-01
 0.2596E-01 0.8228E-01 0.2596E-01 -0.8228E-01 -0.2472E-01 -0.3080E-01
 -0.3033E+00 -0.1238E-12 -0.2472E-01 0.3080E-01 -0.5452E+00 -0.1962E+00
 -0.5452E+00 0.1962E+00 -0.1000E+01 0.5836E+00 -0.8896E-01 0.1023E-12
 -0.1000E+01 -0.5836E+00

Figure 10.7 Results from second Program 10.2 example

The output shown in Figure 10.7 indicates a fundamental frequency of ω =√
0.003641 = 0.060, which is in closer agreement with the value of 0.062 produced by

Program 10.1. The program outputs the fundamental mode shape to the graphics output
file fe95.dis and this is shown in Figure 10.8.

452 EIGENVALUE PROBLEMS

w1 = 0.060 s
−1

Figure 10.8 Fundamental mode shape from second Program 10.2 example

Program 10.3 Eigenvalue analysis of an elastic solid in plane strain using 4-node
rectangular quadrilaterals. Lanczos Method. Consistent mass. Mesh numbered in x -
or y-direction.

PROGRAM p103
!---
! Program 10.3: Eigenvalue analysis of an elastic solid in plane strain
! using 4-node rectangular quadrilaterals. Lanczos Method.
! Consistent mass. Mesh numbered in x- or y-direction.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,iflag=-1,iters,jflag,k,lalfa,leig,lp=6,lx,lz,nband=0, &
ndim=2,ndof,neig=0,nels,neq,nip=4,nmodes,nn,nod,nodof=2,nprops=3, &
np_types,nr,nst=3,nxe,nye

REAL(iwp)::acc,det,el,er,zero=0.0_iwp
CHARACTER(LEN=15)::element='quadrilateral'

!----------------------------- dynamic arrays-----------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),jeig(:,:),nf(:,:),&
nu(:),num(:)

REAL(iwp),ALLOCATABLE::alfa(:),bee(:,:),beta(:),coord(:,:),dee(:,:), &
del(:),der(:,:),deriv(:,:),diag(:),ecm(:,:),eig(:),fun(:),g_coord(:,:),&
jac(:,:),kb(:,:),km(:,:),mb(:,:),mm(:,:),points(:,:),prop(:,:),ua(:), &
udiag(:),va(:),v_store(:,:),weights(:),w1(:),x(:),x_coords(:),y(:,:), &
y_coords(:),z(:,:)

!---------------------------input and initialisation----------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,nod,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); ndof=nod*nodof
ALLOCATE(nf(nodof,nn),points(nip,ndim),dee(nst,nst),g_coord(ndim,nn), &
coord(nod,ndim),fun(nod),jac(ndim,ndim),weights(nip),g_num(nod,nels), &
der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),num(nod),km(ndof,ndof), &
g(ndof),g_g(ndof,nels),mm(ndof,ndof),ecm(ndof,ndof), &
prop(nprops,np_types),x_coords(nxe+1),y_coords(nye+1),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
READ(10,*)nmodes,el,er,lalfa,laig,lx,lz,acc
ALLOCATE(eig(leig),x(lx),del(lx),nu(lx),jeig(2,leig),alfa(lalfa), &
beta(lalfa),z(lz,leig))

!-------- loop the elements to find nband and set up global arrays -------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')

EIGENVALUE PROBLEMS 453

CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
IF(nband<bandwidth(g))nband=bandwidth(g)

END DO elements_1
WRITE(11,'(A,I5,A,/,A,I5,/,A,I5)')" There are",neq," equations", &
" The half-bandwidth (including diagonal) is",nband+1

ALLOCATE(kb(neq,nband+1),mb(neq,nband+1),ua(0:neq),va(0:neq), &
diag(0:neq),udiag(0:neq),w1(0:neq),y(0:neq,leig),v_store(0:neq,lalfa))

kb=zero; mb=zero; ua=zero; va=zero; eig=zero; jeig=0; x=zero; del=zero
nu=0; alfa=zero; beta=zero; diag=zero; udiag=zero; w1=zero; y=zero; z=zero
CALL sample(element,points,weights)

!----------------- element stiffness integration and assembly-------------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
km=zero; mm=zero
integrating_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); call beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
call ecmat(ecm,fun,ndof,nodof)
mm=mm+ecm*det*weights(i)*prop(3,etype(iel))

END DO integrating_pts_1
CALL formkb(kb,km,g); CALL formkb(mb,mm,g)

END DO elements_2; CALL cholin(mb)
!------------------------------find eigenvalues---------------------------
DO iters=1,lalfa
call lancz1(neq,el,er,acc,leig,lx,lalfa,lp,iflag,ua,va,eig,jeig,neig,x,&
del,nu,alfa,beta,v_store)
IF(iflag==0)EXIT
IF(iflag>1)THEN; WRITE(11,'(A,I5)') &

" Lancz1 is signalling failure, with iflag = ", iflag; STOP
END IF

!--- iflag = 1 therefore form u + a * v (candidate for ebe) -----------
udiag=va; CALL chobk2(mb,udiag); CALL banmul(kb,udiag,diag)
CALL chobk1(mb,diag); ua=ua+diag

END DO
!--- iflag = 0 therefore write out the spectrum -------------------------
WRITE(11,'(A,I5,A/)')" It took",iters," iterations"
WRITE(11,'(3(A,E12.4))')" Eigenvalues in the range",el," and",er," are:"
WRITE(11,'(6E12.4)')eig(1:neig)

!------------------- calculate the eigenvectors --------------------------
IF(neig>10)neig=10
call lancz2(neq,lalfa,lp,eig,jeig,neig,alfa,beta,lz,jflag,y,w1,z,v_store)

!-------------------if jflag is zero calculate the eigenvectors ---------
IF(jflag==0)THEN
DO i=1,nmodes

udiag(:)=y(:,i); CALL chobk2(mb,udiag)
WRITE(11,'(" Eigenvector number",I4," is:")')i
WRITE(11,'(6E12.4)')udiag(1:)/MAXVAL(ABS(udiag(1:)))

END DO
ELSE

! lancz2 fails
WRITE(11,'(A,I5)')" Lancz2 is signalling failure with jflag = ",jflag

END IF
STOP
END PROGRAM p103

454 EIGENVALUE PROBLEMS

New scalar integers:
iflag no start vector specified, set to −1
iters number of Lanczos iterations
jflag equals zero if eigenvectors computed properly
lalfa Lanczos iteration ceiling
leig maximum number of eigenvalues in range
lp unit number for diagnostic messages
lx set to at least 3*leig
lz holds first dimension of array z
neig holds the number of eigenvalues in eig
nst number of stress (strain) terms

New scalar reals:
acc convergence tolerance relative to largest eigenvalue
det determinant of the Jacobian matrix
el lower limit of eigenvalue spectrum
er upper limit of eigenvalue spectrum

New dynamic integer arrays:
jeig used to get the eigenvectors
nu working array

New dynamic real arrays:
alfa working array holding Lanczos tridiagonal matrix
bee strain-displacement matrix
beta working array holding Lanczos tridiagonal matrix
dee stress–strain matrix
del working array
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
ecm Gauss point contribution to consistent mass matrix
eig holds the computed eigenvalues in increasing order
fun shape functions
jac Jacobian matrix
kb global stiffness matrix
mb global mass matrix
points integrating point local coordinates
ua working space vector
udiag eigenvector
va working space vector
v store holds the Lanczos vectors
weights weighting coefficients
w1 working vector
x working space vector
y working space vector
z working space vector

EIGENVALUE PROBLEMS 455

Read data
Allocate arrays

Find problem size
Null global stiffness and mass matrices

For all elements

Find element geometry
and steering vector

For all Gauss points

Compute element stiffness and
(consistent) mass contributions

to km and mm

Assemble km into kb
Assemble mm into mb

Reduce to standard eigenvalue problem
by factorising mb using cholin
Lanczos method for eigenvalues

Form {U}=[A]{V} + {U}
If converged, print eigenvalues

in specified range
Lanczos method for eigenvectors

Print eigenvectors

Figure 10.9 Structure chart for Program 10.3

In Programs 10.1 and 10.2 Jacobi transformation was used to solve the eigenvalue
problem. Although reliable and robust this method is time consuming for large problems.
For such problems, iterative methods are more attractive, for example the Lanczos method
(Parlett and Reid, 1981). The process is described in Chapter 3, Section 3.9.2, and is used
in the present program, whose structure chart is given as Figure 10.9. It should be noted
that for the first time in this chapter, consistent mass has been used. The global mass matrix
is therefore symmetric and banded and stored in array mb in the same way that the global
stiffness matrix is stored in array kb. Assembly is achieved using the subroutine formkb
(see Table 3.7 and Figure 3.18).

The principal new vectors are {U} and {V} (called ua and va in the program) as
described in the structure chart of Figure 10.9. As seen in the above list, many of the
arrays are used for working space. Library subroutines lancz1 and lancz21 are used to
retrieve the eigenvalues and eigenvectors respectively (see also Smith and Heshmati, 1983;
Smith 1984).

The same 4-node problem considered previously is used to demonstrate this program as
shown in Figure 10.10. Additional data read involves el and er which define the range of
the eigenvalue search, and lalfa, leig, lx, lz and acc which are parameters related
to the Lanczos algorithm (see notation section above).

1These names are aliases for ea25a/ad and ea25e/ed of HSL (2002).

456 EIGENVALUE PROBLEMS

nxe nye nod
5 1 4

np_types
1

prop(e,v,rho)
1.0 0.0 1.0

etype (not needed)

x_coords, y_coords
0.0 0.8 1.6 2.4 3.2 4.0
0.0 -1.0

nr,(k,nf(:,k),i=1,nr)
2
1 0 0 2 0 0

nmodes
5

el er lalfa leig lx lz acc
0.0 5.0 500 20 80 500 1.0e-6

Figure 10.10 Data for Program 10.3 and 10.4 examples

 There are 20 equations and the half-bandwidth is 7
 It took 22 iterations

 Eigenvalues in the range 0.0000E+00 and 0.5000E+01 are:
 0.4931E-02 0.1499E+00 0.1555E+00 0.9573E+00 0.1493E+01 0.3043E+01
 0.4688E+01
 Eigenvector number 1 is:
 -0.7275E-01 0.7082E-01 0.7275E-01 0.7082E-01 -0.1229E+00 0.2394E+00
 0.1229E+00 0.2394E+00 -0.1522E+00 0.4700E+00 0.1522E+00 0.4700E+00
 -0.1648E+00 0.7311E+00 0.1648E+00 0.7311E+00 -0.1677E+00 0.1000E+01
 0.1677E+00 0.1000E+01
 Eigenvector number 2 is:
 -0.2156E+00 0.4086E+00 0.2156E+00 0.4086E+00 -0.6107E-01 0.7885E+00
 0.6107E-01 0.7885E+00 0.2617E+00 0.6519E+00 -0.2617E+00 0.6519E+00
 0.5123E+00 -0.5054E-01 -0.5123E+00 -0.5054E-01 0.5925E+00 -0.1000E+01
 -0.5925E+00 -0.1000E+01
 Eigenvector number 3 is:
 0.3090E+00 -0.2022E-06 0.3090E+00 -0.2015E-06 0.5878E+00 -0.3972E-06
 0.5878E+00 -0.3961E-06 0.8090E+00 -0.3516E-06 0.8090E+00 -0.3508E-06
 0.9511E+00 -0.3366E-07 0.9511E+00 -0.3273E-07 0.1000E+01 0.4045E-06
 0.1000E+01 0.4053E-06
 Eigenvector number 4 is:
 -0.1193E+00 0.9255E+00 0.1193E+00 0.9255E+00 0.4733E+00 0.5949E+00
 -0.4733E+00 0.5949E+00 0.3215E+00 -0.6339E+00 -0.3215E+00 -0.6339E+00
 -0.5413E+00 -0.5437E+00 0.5413E+00 -0.5437E+00 -0.1000E+01 0.9777E+00
 0.1000E+01 0.9777E+00
 Eigenvector number 5 is:
 -0.8090E+00 -0.4830E-07 -0.8090E+00 -0.5335E-07 -0.9511E+00 -0.4265E-07
 -0.9511E+00 -0.4216E-07 -0.3090E+00 0.3175E-07 -0.3090E+00 0.3655E-07
 0.5878E+00 0.3762E-07 0.5878E+00 0.4084E-07 0.1000E+01 -0.7482E-07
 0.1000E+01 -0.7508E-07

Figure 10.11 Results from Program 10.3 example

The output from the program is listed as Figure 10.11. It consists of the number of
Lanczos iterations (22 in this case) and the computed eigenvalues in the range 0.0 < ω2 <

5.0. The first five eigenvectors are also printed.
Since the consistent mass assumption was made, the eigenvalues differ somewhat from

those computed by Program 10.2. For example the first eigenvalue is computed as ω =

EIGENVALUE PROBLEMS 457
√

0.004931 = 0.070 as compared with 0.068 previously computed for a similar problem
with lumped mass.

Program 10.4 Eigenvalue analysis of an elastic solid in plane strain using 4-node
rectangular quadrilaterals. Lanczos Method. Lumped mass. Element-by-element for-
mulation. Mesh numbered in x - or y-direction.

PROGRAM p104
!---
! Program 10.4: Eigenvalue analysis of an elastic solid in plane strain
! using 4-node rectangular quadrilaterals. Lanczos Method.
! Lumped mass. Element by element formulation.
! Mesh numbered in x- or y-direction.
!---
USE main; USE geom; iMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,iflag=-1,iters,jflag,k,lalfa,leig,lp=6,lx,lz,ndim=2,ndof, &
neig=0,nels,neq,nip=4,nmodes,nn,nod=4,nodof=2,nprops=3,np_types,nr, &
nst=3,nxe,nye

REAL(iwp)::acc,det,el,er,one=1.0_iwp,zero=0.0_iwp
CHARACTER(LEN=15)::element='quadrilateral'

!--------------------------- dynamic arrays-------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),jeig(:,:),nf(:,:),&
nu(:),num(:)

REAL(iwp),ALLOCATABLE::alfa(:),bee(:,:),beta(:),coord(:,:),dee(:,:), &
del(:),der(:,:),deriv(:,:),diag(:),ecm(:,:),eig(:),fun(:),g_coord(:,:),&
jac(:,:),km(:,:),mm(:,:),points(:,:),prop(:,:),ua(:),udiag(:),va(:), &
vdiag(:),v_store(:,:),weights(:),w1(:),x(:),x_coords(:),y(:,:), &
y_coords(:),z(:,:)

!----------------------input and initialisation---------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,nod,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye); ndof=nod*nodof
ALLOCATE(nf(nodof,nn),points(nip,ndim),dee(nst,nst),g_coord(ndim,nn), &
coord(nod,ndim),fun(nod),jac(ndim,ndim),weights(nip),g_num(nod,nels), &
der(ndim,nod),deriv(ndim,nod),bee(nst,ndof),num(nod),km(ndof,ndof), &
g(ndof),g_g(ndof,nels),mm(ndof,ndof),ecm(ndof,ndof),eig(leig),x(lx), &
del(lx),nu(lx),jeig(2,leig),alfa(lalfa),beta(lalfa),z(lz,leig), &
prop(nprops,np_types),x_coords(nxe+1),y_coords(nye+1),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
READ(10,*)nmodes,el,er,lalfa,leig,lx,lz,acc

!------------------loop the elements to set up global arrays--------------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END do elements_1
WRITE(11,'(A,I5,A)')" There are",neq," equations"
ALLOCATE(ua(0:neq),va(0:neq),vdiag(0:neq),diag(0:neq),udiag(0:neq), &
v_store(0:neq,lalfa),w1(0:neq),y(0:neq,leig))

ua=zero; va=zero; eig=zero; jeig=0; x=zero; del=zero; nu=0; alfa=zero
beta=zero; diag=zero; udiag=zero; w1=zero; y=zero; z=zero
CALL sample(element,points,weights)

!--------------- element stiffness integration and assembly---------------
elements_2: DO iel=1,nels

458 EIGENVALUE PROBLEMS

CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
g=g_g(:,iel); km=zero; mm=zero
integrating_pts_1: DO i=1,nip

CALL shape_fun(fun,points,i); CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); call beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
CALL ecmat(ecm,fun,ndof,nodof)
mm=mm+ecm*det*weights(i)*prop(3,etype(iel))

END DO integrating_pts_1
DO i=1,ndof; diag(g(i))=diag(g(i))+SUM(mm(i,:)); END DO

END DO elements_2
!------------------------------find eigenvalues---------------------------
diag=one/SQRT(diag); diag(0)=zero ! diag holds l**(-1/2)
DO iters=1,lalfa
CALL lancz1(neq,el,er,acc,leig,lx,lalfa,lp,iflag,ua,va,eig,jeig,neig,x, &

del,nu,alfa,beta,v_store)
IF(iflag==0)EXIT
IF(iflag>1)THEN
WRITE(11,'(A,I5)')" Lancz1 is signalling failure, with iflag = ",iflag
STOP

END IF
!----- iflag = 1 therefore form u + a * v (done element by element)----

vdiag=va; vdiag=vdiag*diag ! vdiag is l**(-1/2).va
udiag=zero; vdiag(0)=zero
elements_3: DO iel=1,nels

g=g_g(:,iel); udiag(g)=udiag(g)+MATMUL(km,vdiag(g))
END DO elements_3
udiag=udiag*diag; ua=ua+udiag

END DO
!-------------- iflag = 0 therefore write out the spectrum ---------------
WRITE(11,'(A,I4,A/)')" It took ",iters," iterations"
WRITE(11,'(3(A,E12.4))')" Eigenvalues in the range",el," to",er," are:"
WRITE(11,'(6E12.4)')eig(1:neig)

! calculate the eigenvectors
IF(neig>10)neig=10
CALL lancz2(neq,lalfa,lp,eig,jeig,neig,alfa,beta,lz,jflag,y,w1,z,v_store)

!------------------if jflag is zero calculate the eigenvectors ----------
IF(jflag==0)THEN
DO i=1,nmodes

udiag(:)=y(:,i)
udiag=udiag*diag
WRITE(11,'(" Eigenvector number",I4," is:")')i
WRITE(11,'(6E12.4)')udiag(1:)/MAXVAL(udiag(1:))

END DO
ELSE

! lancz2 fails
WRITE(11,'(A,I5)')" Lancz2 is signalling failure with jflag = ",jflag

END IF
STOP
END PROGRAM p104

New dynamic real arrays:
vdiag used in element-by-element products

EIGENVALUE PROBLEMS 459

 There are 20 equations
 It took 22 iterations

 Eigenvalues in the range 0.0000E+00 to 0.5000E+01 are:
 0.4595E-02 0.1053E+00 0.1529E+00 0.5169E+00 0.1226E+01 0.1288E+01
 0.2058E+01 0.2352E+01 0.2415E+01 0.2710E+01 0.2719E+01 0.3114E+01
 0.3125E+01 0.3188E+01 0.3381E+01 0.3665E+01 0.3960E+01 0.4211E+01
 0.4962E+01
 Eigenvector number 1 is:
 -0.7195E-01 0.6932E-01 0.7195E-01 0.6932E-01 -0.1224E+00 0.2362E+00
 0.1224E+00 0.2362E+00 -0.1526E+00 0.4662E+00 0.1526E+00 0.4662E+00
 -0.1662E+00 0.7285E+00 0.1662E+00 0.7285E+00 -0.1695E+00 0.1000E+01
 0.1695E+00 0.1000E+01
 Eigenvector number 2 is:
 -0.2850E+00 0.4859E+00 0.2850E+00 0.4859E+00 -0.1171E+00 0.1000E+01
 0.1171E+00 0.1000E+01 0.2961E+00 0.9145E+00 -0.2961E+00 0.9145E+00
 0.6568E+00 0.8659E-01 -0.6568E+00 0.8659E-01 0.7873E+00 -0.1146E+01
 -0.7873E+00 -0.1146E+01
 Eigenvector number 3 is:
 0.3090E+00 -0.7493E-07 0.3090E+00 -0.1234E-06 0.5878E+00 0.8338E-07
 0.5878E+00 0.5351E-07 0.8090E+00 0.8965E-08 0.8090E+00 0.8734E-07
 0.9511E+00 -0.3425E-07 0.9511E+00 -0.3034E-09 0.1000E+01 0.7486E-08
 0.1000E+01 -0.1188E-06
 Eigenvector number 4 is:
 -0.2413E+00 0.9151E+00 0.2413E+00 0.9151E+00 0.4612E+00 0.8557E+00
 -0.4612E+00 0.8557E+00 0.5141E+00 -0.3742E+00 -0.5141E+00 -0.3742E+00
 -0.4120E+00 -0.6579E+00 0.4120E+00 -0.6579E+00 -0.1000E+01 0.7050E+00
 0.1000E+01 0.7050E+00
 Eigenvector number 5 is:
 0.2575E+00 0.9693E+00 -0.2575E+00 0.9693E+00 0.8105E+00 -0.2304E+00
 -0.8105E+00 -0.2304E+00 -0.3806E+00 -0.5583E+00 0.3806E+00 -0.5583E+00
 -0.6787E-01 0.6923E+00 0.6787E-01 0.6923E+00 0.1000E+01 -0.2476E+00
 -0.1000E+01 -0.2476E+00

Figure 10.12 Results from Program 10.4 example

The Lanczos algorithm relies on iterations which involve matrix–vector multiplication
followed by vector addition. In the previous program, the matrix–vector product was per-
formed using library subroutine banmul which took account of the storage strategy used
to hold the global stiffness matrix kb.

Program 10.4 performs the same operations, but without the need to assemble and store
a global stiffness matrix. The matrix–vector product described above can be achieved using
element-by-element products as has been demonstrated in earlier programs in this book (e.g.
Program 5.5).

The example and data are exactly the same as in Program 10.3 (Figure 10.10). The
results are listed as Figure 10.12 which essentially reproduce the results from Program 10.2
which also assumed lumped mass. The Lanczos process took 23 iterations to converge in
this case. Note the economy in storage requirements compared with Program 10.2.

Glossary of variable names used in Chapter 10

Scalar integers:
i simple counter
idiag skyline bandwidth
iel simple counter

460 EIGENVALUE PROBLEMS

ifail warning flag from bisect subroutine
iflag no start vector specified, set to −1
iters number of Lanczos iterations
iwp SELECTED REAL KIND(15)
j simple counters
jflag equals zero if eigenvectors computed properly
k simple counters
lalfa Lanczos iteration ceiling
leig maximum number of eigenvalues in range
lp unit number for diagnostic messages
lx set to at least 3*leig
lz holds first dimension of array z
nband bandwidth of upper triangle
ndim bandwidth of upper triangle
ndof number of degrees of freedom per element
neig holds the number of eigenvalues in eig
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points
nmodes number of eigenvectors required
nn number of nodes in the mesh
nod number of nodes per elements
nodof number of degrees of freedom per node
nprops number of material properties
np types number of different property types
nr number of restrained nodes
nst number of stress (strain) terms
nxe number of elements in the x-direction
nye number of elements in the y-direction

Scalar reals:
acc convergence tolerance relative to largest eigenvalue
area element area
det determinant of the Jacobian matrix
d12 set to 12.0
el lower limit of eigenvalue spectrum
er upper limit of eigenvalue spectrum
etol eigenvalue tolerance set to 1 × 10−30

one set to 1.0
penalty set to 1 × 1020

pt5 set to 0.5
zero set to 0.0

Scalar character:
element element type

EIGENVALUE PROBLEMS 461

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
jeig used to get the eigenvectors
nf nodal freedom matrix
nu working array
num element node number vector

Dynamic real arrays:
alfa working array holding Lanczos tridiagonal matrix
bee strain-displacement matrix
beta working array holding Lanczos tridiagonal matrix
coord element nodal coordinates
dee stress–strain matrix
del working array
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
diag global lumped mass vector
ecm Gauss point contribution to consistent mass matrix
eig holds the computed eigenvalues in increasing order
ell element lengths vector
fun shape functions
g coord nodal coordinates for all elements
jac Jacobian matrix
kb global stiffness matrix
kdiag diagonal term location vector
kh element stiffness matrix
km element stiffness matrix
ku global stiffness matrix
kv global stiffness matrix
mb global mass matrix
mm element mass matrix
points integrating point local coordinates
prop element properties matrix
rrmass reciprocal square rooted global lumped mass matrix
ua working space vector
udiag working space vector or eigenvector (in Lanczos)
va working space vector
vdiag used in element-by-element products
v store holds the Lanczos vectors
weights weighting coefficients
w1 working space vector
x working space vector
x coords x-coordinates of mesh layout

462 EIGENVALUE PROBLEMS

y working space vector
y coords y-coordinates of mesh layout
z working space vector

10.2 Exercises

1. Use Program 10.1 to evaluate the lowest two natural frequencies of the beam shown
in Figure 10.13 with the boundary conditions.

a) Pinned at both ends.

b) Fixed at both ends.

c) Fixed at one end and pinned at the other.

d) Fixed at one end and free at the other.

(Ans: Using 8 beam elements of equal length, “exact” solutions in parentheses.

a) ω1 = 223(225) s−1, ω2 = 877(899) s−1

b) ω1 = 506(510) s−1, ω2 = 1364(1405) s−1

c) ω1 = 349(351) s−1, ω2 = 1107(1138) s−1

d) ω1 = 79(80) s−1, ω2 = 480(502) s−1)

E = 2 × 108 kN/m2

r = 7.84 t/m3

I = 2 × 10−9 m4

A = 2.4 × 10−4 m2

0.8 m

Figure 10.13

2. Repeat question 1 using Program 10.2 with 8-node elements.

(Ans: Using a row of 8 square (0.1 × 0.1) 8-node elements with E = 4800.0, ν = 0.0
and ρ = 0.01882, “exact” solutions in parentheses.

a) ω1 = 219(225) s−1, ω2 = 824(899) s−1

b) ω1 = 474(510) s−1, ω2 = 1196(1405) s−1

c) ω1 = 335(351) s−1, ω2 = 1007(1138) s−1

d) ω1 = 80(80) s−1, ω2 = 462(502) s−1)

3. Use Program 10.2 with 4-node elements to estimate the first two axial natural fre-
quencies and mode shapes of the rod shown in Figure 10.14.

(Ans: Using a row of 5 square (0.06 × 0.06) 4-node elements with E = 2.1 × 106,
ν = 0.0 and ρ = 0.0783, “exact” solutions in parentheses. Axial deformation appear
in the third and sixth modes.

EIGENVALUE PROBLEMS 463

ω3 = 2.70 × 104(2.70 × 104) s−1, [0.0 0.31 0.59 0.81 0.95 1.00]T

ω6 = 7.84 × 104(8.10 × 104) s−1, [0.0 0.81 0.95 0.31 −0.59 −1.00]T)

0.3 m

E = 210 × 106 kN/m2

r = 7.83 t/m3

A = 6 × 10−4 m2

Figure 10.14

4. Repeat question 3 using rod elements. Program 10.1 is easily modified to analyse
axial vibrations of rods. Make the following changes:

a) In the declarations change ndof=4 to ndof=2 and nodof=2 to nodof=1.

b) In the elements 2: loop delete the statements that assign values to
mm(2,2)=... and mm(4,4)=... and then change mm(3,3) to mm(2,2).

c) Change routine beam km to rod km.

The data read into prop will now be ea (instead of ei) and rhoa.
(Ans: Using 5 equal rod elements with EA = 1.26 × 105 and ρA = 4.70 × 10−3

answers exactly the same as for question 3.)

5. Using the modified program from the previous question determine the first two natural
frequencies and eigenvectors for the stepped bar shown in Figure 10.15.

(Ans: ω1 = 2.46 × 104 s−1, [0.0 0.50 0.82 0.95 1.00]T

ω2 = 5.94 × 104 s−1, [0.0 0.68 −0.08 −0.74 −1.00]T)

E = 210 × 106 kN/m2

r = 7.83 t/m3

0.254 m 0.127 m

A1= 6.45 × 10−4m2
A2= 3.23 × 10−4m2

Figure 10.15

6. A vital attribute of an element “stiffness matrix” is that it should possess the right
number of “rigid body modes”, that is zero eigenvalues of the stiffness matrix. Test
the 2-node elastic rod element stiffness matrix and prove that it has only one zero
eigenvalue, corresponding to one rigid body mode (translation). If the rod has length
L, cross-sectional area A, modulus E and mass per unit length ρ, calculate its non-
zero eigenvalue and hence natural frequency of free vibration assuming both lumped
and consistent mass. Compare with the “exact” value of π/L

√
E/ρ.

(Ans: Lumped:2/L
√

E/ρ, Consistent: 2
√

3/L
√

E/ρ)

464 EIGENVALUE PROBLEMS

7. Show how dynamic equilibrium of a multi-degree of freedom system vibrating at a
resonant frequency leads to an equation of the form:

[Km]{X} = ω2[Mm]{X}

where [Km], [Mm] = system stiffness and mass matrices, {X} = displacement ampli-
tudes, ω2 = angular frequency. Describe a method for reducing this equation to a
standard eigenvalue equation of the form:

[A]{Z} = ω2{Z}

where [A] is symmetrical.

References

Chopra AK 1995 Dynamics of Structures. Prentice–Hall, Englewood Cliffs, N.J.
Cook RD, Malkus DS and Plesha ME 1989 Concepts and Applications of Finite Element Analysis,

3rd edn. John Wiley & Sons, Chichester, New York.
HSL 2002 A Collection of Fortran Codes for Large Scientific Computation. See http://www.

cse.clrc.ac.uk/nag/hsl/.
Parlett BN and Reid JK 1981 Tracking the progress of the Lanczos algorithm for large symmetric

eigenproblems. IMA J Numer Anal 1, 135–155.
Smith IM 1977 Transient phenomena of offshore foundations. Numerical Methods in Offshore Engi-

neering. John Wiley & Sons, Chichester, New York, Chapter 14, pp. 483–513.
Smith IM 1984 Adaptability of truly modular software. Eng Comput 1(1), 25–35.
Smith IM and Heshmati EE 1983 Use of a Lanczos algorithm in dynamic analysis of structures.

Earthquake Eng Struct Dyn 11(4), 585–588.

11

Forced Vibrations

11.1 Introduction

In the previous chapter, programs were described which enable the calculation of the
intrinsic dynamic properties of systems, namely their undamped natural frequencies and
mode shapes. The next stage in a dynamic analysis is usually the calculation of the response
of the system to an imposed time dependent disturbance. This chapter describes seven
programs which enable such calculations to be made.

The types of equations to be solved were derived early in the book (e.g. 2.13). After
semi-discretisation in space using finite elements, the resulting matrix equations are typified
by (2.17), a set of second order ordinary differential equations in time. On inclusion of
damping, the relevant equations become (3.118) and Section 3.13 describes the principles
behind the various solution procedures used below.

Program 11.1 describes forced vibration analysis of elastic slender beam structures
using direct integration in the “time domain”. Programs 11.2, 11.3, and 11.4 describe
forced vibration analyses of planar 2D elastic solids. Program 11.2 works in the “frequency
domain” using the Modal Superposition Method, and Programs 11.3 and 11.4 work in the
“time domain” utilising two different implicit time-marching algorithms. Program 11.5
illustrates a “mixed” time-marching scheme for 2D analysis in which some parts of the
mesh are integrated “explicitly” and others “implicitly”. Program 11.6 repeats the algo-
rithm of Program 11.3 using a “mesh free” approach with a preconditioned conjugate
gradient solver. Program 11.7 uses a fully explicit time marching scheme to analyse a 2D
elastic–plastic material.

Programs 11.3 and 11.7 have parallel counterparts described in Chapter 12.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

466 FORCED VIBRATIONS

Program 11.1 Forced vibration analysis of elastic beams using 2-node beam ele-
ments. Consistent mass. Newmark time stepping.

PROGRAM p111
!---
! Program 11.1 Forced vibration analysis of elastic beams using 2-node
! beam elements. Consistent mass. Newmark time stepping.
!---
USE main; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,iel,j,k,lnode,lsense,ndof=4,nels,neq,nlf,nn,nod=2,nodof=2,nof,&
nlfp,nprops=2,np_types,nr,nstep

REAL(iwp)::beta,dtim,fk,fm,f1,f2,gamma,one=1.0_iwp,pt5=0.5_iwp, &
zero=0.0_iwp

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),kdiag(:),lf(:),lp(:),nf(:,:),&
node(:),num(:),sense(:)

REAL(iwp),ALLOCATABLE::a(:),acc(:,:),al(:,:),a1(:),b1(:),cv(:),d(:), &
dis(:,:),ell(:),kd(:),km(:,:),kp(:),kv(:),mc(:),mm(:,:),mv(:), &
prop(:,:),rl(:),rt(:),v(:),vc(:),vel(:,:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nels,np_types; nn=nels+1
ALLOCATE(nf(nodof,nn),km(ndof,ndof),mm(ndof,ndof),num(nod),g(ndof), &
prop(nprops,np_types),ell(nels),g_g(ndof,nels),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)ell,dtim,beta,gamma,fm,fk
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag(neq),a1(0:neq),b1(0:neq),vc(0:neq),kd(0:neq),a(0:neq), &
d(0:neq),v(0:neq)); kdiag=0

!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
num=(/iel,iel+1/); CALL num_to_g(num,nf,g); g_g(:,iel)=g
CALL fkdiag(kdiag,g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),cv(kdiag(neq)),mv(kdiag(neq)),mc(kdiag(neq)), &
kp(kdiag(neq)))

WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

kv=zero; mv=zero
!-----------------------global stiffness and mass matrix assembly---------
elements_2: DO iel=1,nels
CALL beam_km(km,prop(1,etype(iel)),ell(iel))
CALL beam_mm(mm,prop(2,etype(iel)),ell(iel)); g=g_g(:,iel)
CALL fsparv(kv,km,g,kdiag); CALL fsparv(mv,mm,g,kdiag)

END DO elements_2; mc=mv
!-----------------------initial conditions, and load functions------------
d=zero; v=zero ! alternatively READ(10,*)d(1:),v(1:)
READ(10,*)nlf; ALLOCATE(lf(nlf))
DO k=1,nlf
READ(10,*)lnode,lsense,nlfp; ALLOCATE(rt(nlfp),rl(nlfp))
lf(k)=nf(lsense,lnode); READ(10,*)(rt(j),rl(j),j=1,nlfp)
IF(k==1)THEN

nstep=NINT((rt(nlfp)-rt(1))/dtim)+1; ALLOCATE(al(nstep,nlf))
END IF; CALL interp(k,dtim,rt,rl,al,nstep); DEALLOCATE(rt,rl)

END DO
f1=beta*dtim**2; f2=beta*dtim; cv=fm*mv+fk*kv; kp=mv/f1+gamma*cv/f2+kv
CALL sparin(mc,kdiag); CALL sparin(kp,kdiag); a=zero; a(lf(:))=al(1,:)
CALL linmul_sky(cv,v,vc,kdiag); CALL linmul_sky(kv,d,kd,kdiag); a=a-vc-kd

FORCED VIBRATIONS 467

CALL spabac(mc,a,kdiag); READ(10,*)nof
ALLOCATE(node(nof),sense(nof),lp(nof),dis(nstep,nof),vel(nstep,nof), &
acc(nstep,nof)); READ(10,*)(node(i),sense(i),i=1,nof)

DO i=1,nof; lp(i)=nf(sense(i),node(i)); END DO
dis(1,:)=d(lp); vel(1,:)=v(lp); acc(1,:)=a(lp)

!-----------------------time stepping loop--------------------------------
DO j=2,nstep
a1=d/f1+v/f2+a*(pt5/beta-one)
b1=gamma*d/f2-v*(one-gamma/beta)-dtim*a*(one-pt5*gamma/beta)
CALL linmul_sky(mv,a1,vc,kdiag); CALL linmul_sky(cv,b1,kd,kdiag)
d=vc+kd; d(lf(:))=d(lf(:))+al(j,:); CALL spabac(kp,d,kdiag)
v=gamma*d/f2-b1; a=d/f1-a1
dis(j,:)=d(lp); vel(j,:)=v(lp); acc(j,:)=a(lp)

END DO
DO i=1,nof
WRITE(11,'(/,2(A,I3))')" Output at node",node(i),", sense",sense(i)
WRITE(11,'(A)')" time disp velo accel"
DO j=1,nstep; WRITE(11,'(4E12.4)')(j-1)*dtim,dis(j,i),vel(j,i),acc(j,i)
END DO

END DO
STOP
END PROGRAM p111

Scalar integers:
i simple counter
iel simple counter
iwp SELECTED REAL KIND(15)
j simple counter
k simple counter
lnode loaded node number
lsense sense of freedom to be loaded at node lnode
ndof number of degrees of freedom per element
nels number of elements
neq number of degrees of freedom in the mesh
nlfp number of load function points
nln number of loaded freedoms
nn number of nodes in the mesh
nod number of nodes per elements
nodof number of degrees of freedom per node
nof number of output freedoms
nprops number of material properties
np_types number of different property types
nr number of restrained nodes
nstep number of calculation time steps

Scalar reals:
beta Newmark time stepping parameter
dtim calculation time step
fk Rayleigh damping parameter on stiffness
fm Rayleigh damping parameter on mass
f1 temporary working variable
f2 temporary working variable

468 FORCED VIBRATIONS

gamma Newmark time stepping parameter
one set to 1.0
pt5 set to 0.5
zero set to 0.0

Dynamic integer arrays:
etype element property type vector
g element steering vector
g_g global element steering matrix
kdiag diagonal term locations
lf vector holding loaded freedoms
lp vector holding output freedoms
nf nodal freedom matrix
node output nodes
num element node number vector
sense sense of output nodes

Dynamic real arrays:
a accelerations
acc accelerations at output freedoms
al array holding all loading values at each calculation step
a1 temporary working vector
b1 temporary working vector
cv damping matrix
d displacements
dis displacements at output freedoms
ell element lengths vector
kd vector used to set up initial accelerations
km beam element stiffness matrix
kp modified global “stiffness” matrix
kv global stiffness matrix
mc global mass matrix used to set up initial accelerations
mm element consistent mass matrix
mv global consistent mass matrix
prop element properties matrix
rl input load function load values
rt input load function time values
v velocities
vc vector used to set up initial accelerations
vel velocities at output freedoms

This program computes the response of a string of beam elements to a combina-
tion of time-dependent applied nodal loads. The program allows for (Rayleigh) damping
(Section 3.13) and uses a consistent mass matrix (2.30). Time stepping is achieved using a
direct Newmark method involving time stepping parameters β and γ , the values of which
determine the accuracy and stability characteristics of the algorithm (see e.g. Bathe, 1996).

FORCED VIBRATIONS 469

For the special case of β = 1/4 and γ = 1/2, the method is identical to the Crank–Nicolson
θ = 0.5 method described in Section 3.13.2.

Starting from the assembled form of (3.118), and using a “dot” notation to signify time
derivatives, we have

[Km] {U} + [Cm] ˙{U} + [Mm] ¨{U} = {F} (11.1)

with known initial conditions on displacements and velocities, {U}0 and ˙{U}0.
Let {F}i , {U}i , ˙{U}i and ¨{U}i represent conditions at time t = i�t , where i =

0, 1, 2, . . . ,nstep.
Assuming that [Mm], [Cm], [Km], β, γ and �t are constant, and that {F}i is known for

all i, the following algorithm is used to obtain the values of {U}i , ˙{U}i and ¨{U}i for all i > 0.

1) Compute:

[K′] = [Km] + γ

β�t
[Cm] + 1

β(�t)2
[Mm]

2) Factorise [K′] to facilitate step 8.

3) Solve the linear equations: [Mm] ¨{U}0 = {F}0 − [Cm] ˙{U}0 − [Km] {U}0

4) Set i = 0

5) Compute:

{A}i = 1

β(�t)2
{U}i + 1

β�t
˙{U}i +

(
1

2β
− 1

)
¨{U}i

6) Compute:

{B}i = γ

β�t
{U}i −

(
1 − γ

β

)
˙{U}i −

(
1 − γ

2β

)
�t ¨{U}i

7) Compute:
{
F′}

i+1 = {F}i+1 + [Mm] {A}i + [Cm] {B}i

8) Solve the linear equations: [K′] {U}i+1 = {
F′}

i+1

9) Compute:
˙{U}i+1 = γ

β�t
{U}i+1 − {B}i

10) Compute:

¨{U}i+1 = 1

β(�t)2
{U}i+1 − {A}i

11) Increment i and repeat from step 5

Subroutine beam mm (see e.g. Program 4.6) forms the beam element consistent mass
matrix and subroutine interp takes the input load/time function data points and interpo-
lates linearly to give load/time function values at the resolution of the calculation time step.

The example and data shown in Figure 11.1 are of a cantilever of unit length modelled
with a single beam element, subjected to a tip loading given by a half-sine pulse with an

470 FORCED VIBRATIONS

P(t)= 3.194sin(pt) 0 < t ≤ 1.0
P(t)= 0 t > 1.0

nels np_types
1 1

prop(ei,rhoa)
3.194 1.0

etype (not needed)

ell
1.0

dtim beta gamma fm fk
0.05 0.25 0.5 0.0 0.0

nr,(k,nf(:,k),i=1,nr)
1
1 0 0

nlf
1

lnode lsense
2 1

nlfp, (rt(j),rl(j),j=1,nlfp)
12
0.000 0.000 0.100 0.987 0.200 1.877 0.300 2.584
0.400 3.038 0.500 3.194 0.600 3.038 0.700 2.584
0.800 1.877 0.900 0.987 1.000 0.000 1.800 0.000

nof,(node(i),sense(i),i=1,nof)
1
2 1

1 2

EI = 3.194
rA = 1.0

1.0
P(t)

P(t)

3

2.5

1.5

1

0.5

0 0.4 0.8

t

1.2 1.6

2

Figure 11.1 Mesh and data for Program 11.1 example

amplitude of EI and a duration equal to T , the fundamental period of the cantilever. The
properties of the beam are given by an EI of 3.194 and a mass per unit length ρA of
1.0. The fundamental frequency of the beam from equation (10.4) is therefore given by
ω = 3.516

√
3.194 = 6.284, and the fundamental period by T = 2π/ω = 1.00.

The first line of data reads the number of elements nels followed by the number of
property groups and the properties EI and ρA. The next line reads the element lengths
ell and the next line gives the time-stepping data. In this case the calculation time step
is dtim=0.05 and the conventional Newmark time-stepping parameters are used, namely

FORCED VIBRATIONS 471

β = 0.25 and γ = 0.5 (read as beta and gamma respectively). The beam is undamped,
thus the Rayleigh damping parameters (fm and fk) are both set to zero. The boundary
condition data indicate one restrained node at the built-in end of the cantilever, where both
freedoms are restrained. There is one loaded freedom (nlf=1) in this example at node 2,
sense 1 (the translational freedom). The sinusoidal loading function to be applied has been
input using a total of 12 coordinates comprising 11 coordinates at 0.1 s intervals up to 1
s, followed by a “quiet zone” involving a single interval of 0.8 s up to 1.8 s. The program
linearly interpolates this load/time function at the calculation step length of 0.05 s for the
Newmark algorithm. The final data gives the freedoms at which output is required. In this
example, the displacement, velocity and acceleration under the load are of interest, so there
is just one output required (nof=1), again at node 2 sense 1.

The output from Program 11.1 is shown in Figure 11.2 and a plot of the computed
displacement/time history of the cantilever tip is shown in Figure 11.3. For comparison,

 There are 2 equations and the skyline storage is 3

 Output at node 2, sense 1
 time disp velo accel
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.5000E-01 0.1942E-02 0.7768E-01 0.3107E+01
 0.1000E+00 0.9511E-02 0.2251E+00 0.2788E+01
 0.1500E+00 0.2531E-01 0.4069E+00 0.4485E+01
 0.2000E+00 0.5285E-01 0.6946E+00 0.7026E+01
 0.2500E+00 0.9488E-01 0.9866E+00 0.4652E+01
 0.3000E+00 0.1497E+00 0.1207E+01 0.4159E+01
 0.3500E+00 0.2153E+00 0.1415E+01 0.4184E+01
 0.4000E+00 0.2892E+00 0.1541E+01 0.8437E+00
 0.4500E+00 0.3650E+00 0.1493E+01 -0.2780E+01
 0.5000E+00 0.4362E+00 0.1352E+01 -0.2843E+01
 0.5500E+00 0.4976E+00 0.1104E+01 -0.7080E+01
 0.6000E+00 0.5421E+00 0.6758E+00 -0.1005E+02
 0.6500E+00 0.5633E+00 0.1746E+00 -0.9996E+01
 0.7000E+00 0.5589E+00 -0.3524E+00 -0.1108E+02
 0.7500E+00 0.5261E+00 -0.9574E+00 -0.1312E+02
 0.8000E+00 0.4638E+00 -0.1534E+01 -0.9945E+01
 0.8500E+00 0.3757E+00 -0.1993E+01 -0.8412E+01
 0.9000E+00 0.2659E+00 -0.2397E+01 -0.7734E+01
 0.9500E+00 0.1393E+00 -0.2670E+01 -0.3187E+01
 0.1000E+01 0.4299E-02 -0.2729E+01 0.8097E+00
 0.1050E+01 -0.1284E+00 -0.2581E+01 0.5126E+01
 0.1100E+01 -0.2487E+00 -0.2229E+01 0.8928E+01
 0.1150E+01 -0.3455E+00 -0.1642E+01 0.1458E+02
 0.1200E+01 -0.4081E+00 -0.8625E+00 0.1658E+02
 0.1250E+01 -0.4308E+00 -0.4551E-01 0.1610E+02
 0.1300E+01 -0.4123E+00 0.7824E+00 0.1701E+02
 0.1350E+01 -0.3534E+00 0.1575E+01 0.1468E+02
 0.1400E+01 -0.2597E+00 0.2174E+01 0.9284E+01
 0.1450E+01 -0.1415E+00 0.2554E+01 0.5935E+01
 0.1500E+01 -0.9326E-02 0.2733E+01 0.1196E+01
 0.1550E+01 0.1243E+00 0.2614E+01 -0.5935E+01
 0.1600E+01 0.2452E+00 0.2221E+01 -0.9787E+01
 0.1650E+01 0.3422E+00 0.1660E+01 -0.1265E+02
 0.1700E+01 0.4067E+00 0.9181E+00 -0.1702E+02
 0.1750E+01 0.4310E+00 0.5512E-01 -0.1750E+02
 0.1800E+01 0.4132E+00 -0.7674E+00 -0.1540E+02

Figure 11.2 Results from Program 11.1 example

472 FORCED VIBRATIONS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0
.6

−0
.4

−0
.2

0.
2

0.
4

0.
6

Program 11.1

0

Warburton(1964)

T
i
p

d
i
s
p
l
a
c
e
m
e
n
t

t

Figure 11.3 Computed tip displacement-time history from Program 11.1 example

the analytical solution (e.g. Warburton, 1964) for this problem during the loading phase
when 0 ≤ t ≤ T is given by:

v(t) = 0.441 sin
πt

T
− 0.216 sin

2πt

T
(11.2)

and for the free vibration phase when t > T by,

v(t) = −0.432 sin {6.284(t − T)} (11.3)

It is clear from Figure 11.3 that this analytical solution is virtually indistinguishable from
the computed result.

Program 11.2 Forced vibration analysis of an elastic solid in plane strain using 4- or
8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in x - or y-direction.
Modal superposition.

PROGRAM p112
!---
! Program 11.2 Forced vibration of an elastic solid in plane strain
! using 4- or 8-node rectangular quadrilaterals. Lumped mass.
! Mesh numbered in x- or y-direction. Modal superposition.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,idiag,iel,ifail,j,jj,k,nband,ndim=2,ndof,nels,neq,nmodes,nn, &
nod,nodof=2,npri,nprops=3,np_types,nr,nres,nstep,nxe,nye

FORCED VIBRATIONS 473

REAL(iwp)::aa,area,bb,dr,dtim,d4=4.0_iwp,etol=1.e-30_iwp,f,k1,k2,omega, &
one=1.0_iwp,penalty=1.0e20_iwp,time,two=2.0_iwp,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g (:,:),g_num(:,:),kdiag(:),nf(:,:),&
num(:)

REAL(iwp),ALLOCATABLE::bigk(:,:),coord(:,:),diag(:),g_coord(:,:),kh(:), &
km(:,:),ku(:,:),kv(:),mm(:,:),prop(:,:),rrmass(:),udiag(:),xmod(:), &
x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,nod,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ndof=nod*nodof
ALLOCATE(nf(nodof,nn),g_coord(ndim,nn),coord(nod,ndim),g_num(nod,nels), &
num(nod),km(ndof,ndof),g(ndof),g_g(ndof,nels),x_coords(nxe+1), &
y_coords(nye+1),prop(nprops,np_types),etype(nels),mm(ndof,ndof))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,npri,nres,dr
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
READ(10,*)nmodes,omega
ALLOCATE(diag(0:neq),udiag(0:neq),kdiag(neq),rrmass(0:neq),xmod(nmodes), &
bigk(neq,nmodes))

!-------loop the elements to find nband and set up global arrays----------
nband=0; kdiag=0
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)
IF(nband<bandwidth(g))nband=bandwidth(g)

END DO elements_1
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
WRITE(11,'(A,I5,A,/,A,I5,/,A,I5)')" There are",neq," equations", &
" The half-bandwidth (including diagonal) is",nband+1, &
" The skyline storage is",kdiag(neq)
diag=zero; ku=zero; bigk=zero

!-----------------------element stiffness and mass assembly---------------
ALLOCATE(ku(neq,nband+1),kv(kdiag(neq)),kh(kdiag(neq)))
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
CALL rect_km(km,coord,prop(1,etype(iel)),prop(2,etype(iel)))
CALL formku(ku,km,g)
area=(MAXVAL(coord(:,1))-MINVAL(coord(:,1)))* &

(MAXVAL(coord(:,2))-MINVAL(coord(:,2)))
CALL elmat(area,prop(3,etype(iel)),mm); CALL formlump(diag,mm,g)
END DO elements_2; rrmass(1:)=one/SQRT(diag(1:))

!-----------------------reduce to standard eigenvalue problem-------------
DO i=1,neq; IF(i<=neq-nband)THEN; k=nband+1; ELSE; k=neq-i+1; END IF
DO j=1,k; ku(i,j)=ku(i,j)*rrmass(i)*rrmass(i+j-1); END DO

END DO
!-----------------------convert to skyline form---------------------------
kh(1)=ku(1,1); k=1
DO i=2,neq; idiag=kdiag(i)-kdiag(i-1)
DO j=1,idiag; k=k+1; kh(k)=ku(i+j-idiag,1-j+idiag); END DO

END DO
!-----------------------extract the eigenvalues---------------------------

474 FORCED VIBRATIONS

CALL bandred(ku,diag,udiag); ifail=1; CALL bisect(diag,udiag,etol,ifail)
!-----------------------extract the "mass normalised" eigenvectors--------
DO i=1,nmodes
kv=kh; kv(kdiag)=kv(kdiag)-diag(i); kv(1)=kv(1)+penalty
udiag=zero; udiag(1)=kv(1)
CALL sparin_gauss(kv,kdiag); CALL spabac_gauss(kv,udiag,kdiag)
udiag=rrmass*udiag
udiag(1:)=udiag(1:)/SQRT(SUM(udiag(1:)**2/rrmass(1:)**2))
bigk(:,i)=udiag(1:)

END DO; udiag=zero; time=zero
WRITE(11,'(/A,I5)')" Result at node",nres
WRITE(11,'(A)')" time load x-disp y-disp"
WRITE(11,'(4E12.4)')time,COS(omega*time),udiag(nf(:,nres))

!------------------------time stepping loop-------------------------------
DO jj=1,nstep; time=time+dtim
DO i=1,nmodes; f=bigk(neq,i)

!-----------------------analytical solution for cosine loading------------
k1=diag(i)-omega**2; k2=k1*k1+d4*omega**2*dr**2*diag(i)
aa=f*k1/k2; bb=f*two*omega*dr*SQRT(diag(i))/k2
xmod(i)=aa*COS(omega*time)+bb*SIN(omega*time)

END DO
!-----------------------superpose the modes-------------------------------

udiag(1:)=MATMUL(bigk,xmod(1:))
IF(jj/npri*npri==jj)WRITE(11,'(4E12.4)')time,COS(omega*time), &

udiag(nf(:,nres))
END DO

STOP
END program p112

New scalar integers:
idiag skyline bandwidth
ifail warning flag from bisect subroutine
jj simple counter
nband bandwidth of upper triangle
ndim number of dimensions
nmodes number of eigenvectors included in superposition
npri output printed every npri time steps
nres node number at which time history is to be printed
nstep number of time steps required
nxe number of elements in x-direction
nye number of elements in y-direction

New scalar reals:
aa working variable
area element area
bb working variable
dr damping ratio
d4 set to 4.0
etol eigenvalue tolerance set to 1 × 10−30

f force vector
k1 working variable

FORCED VIBRATIONS 475

k2 working variable
omega frequency of forcing term
penalty set to 1 × 1020

time holds elapsed time t

two set to 2.0

Scalar character:
element element type

New Dynamic integer arrays:
g num global element node numbers matrix

New Dynamic real arrays:
bigk eigenvector matrix
coord element nodal coordinates
diag global lumped mass vector
g coord nodal coordinates for all elements
kh global stiffness vector
km element stiffness matrix
ku global stiffness matrix stored as upper triangle
rrmass vector holding reciprocal of square root of lumped mass
udiag transformed and untransformed eigenvectors
xmod solutions to modal SDOF equations
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

Since the basis of this method is the synthesis of the undamped natural modes of the
vibrating system, it follows very naturally from the programs of the previous chapter. Indeed
this program can be built up, with minor extensions, from Program 10.2. The method is
described in Section 3.13.1.

The illustrative problem chosen for this program and the two that follow is shown in
Figure 11.4 and is similar to the cantilever beam considered in Figure 10.6. The beam in

4.0

1.0

F = coswt

E = 1 kN/m2

n = 0.3
r = 1 t/m3

2

5

16

17

18

1

3

4

Figure 11.4 Mesh and data for Program 11.2 example (Continued on page 476)

476 FORCED VIBRATIONS

nxe nye nod
3 1 8

np_types
1

prop(e,v,rho)
1.0 0.3 1.0

etype (not needed)

x_coords, y_coords
0.0 1.33333 2.66667 4.0
0.0 -1.0

dtim nstep npri nres dr
1.0 20 1 18 0.05

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 2 0 0 3 0 0

nmodes omega
6 0.3

Figure 11.4 (Continued from page 475)

Read data
Allocate arrays.
Find problem size

Null global stiffness and mass matrices

For all elements

Find steering vector
Compute element stiffness matrix

Compute element (lumped) mass matrix
Assemble global stiffness

and mass matrices

Reduce to standard eigenvalue problem
Solve eigenvalue problem using
routines bandred and bisect

For nmodes eigenvectors

Retrieve eigenvector from
corresponding eigenvalue

Transform to correct vector space
 Store "mass normalised" eigenvectors

For all time steps

Update time

For nmodes eigenvectors do

Specify forcing terms
Solve SDOF equations

Add modal contributions together
Print result

Figure 11.5 Structure chart for Program 11.2

FORCED VIBRATIONS 477

Figure 11.4 is subjected to a harmonic vertical force of cos ωt at node 18. The damping
ratio ζ (see equation (3.120)), called dr in the program is 0.05 or 5% applied to all modes
of the system.

The forcing frequency ω (called omega in the program) is set at 0.3, which is deli-
berately chosen to be close to the second natural frequency of the undamped system
(Note: ω2 ≈ 0.3 from Figure 10.7), so at this frequency the influence of damping should
be significant.

The structure of the program is essentially the same as Program 10.2 up to the end
of the section headed “extract the mass normalised eigenvectors”, however the current
program uses a different eigenvector normalisation strategy that reduces the modal mass
matrix to a unit matrix. It should be remembered that the eigenvectors first computed as
udiag are those of the transformed problem and the true eigenvectors must be recovered
prior to normalisation and storage in the eigenvector matrix bigk.

When the time stepping loop is entered, the cosine loading of a single degree of freedom
system is introduced, and the modal contributions superposed at each degree of freedom.
A structure chart for the modal superposition algorithm is given in Figure 11.5.

The example uses the first six eigenmodes, read as nmodes=6 to synthesise the
time response. Users are invited to examine the sensitivity of the response to different
values of nmodes up to a maximum of 30 in this case. The output from the analy-
sis is shown in Figure 11.6 and the response in the y-direction at node 18 is plotted in
Figure 11.7.

 There are 30 equations and the half-bandwidth is 15

 Result at node 18
 time load x-disp y-disp
 0.0000E+00 0.1000E+01 0.0000E+00 0.0000E+00
 0.1000E+01 0.9553E+00 0.2188E+02 0.2612E+02
 0.2000E+01 0.8253E+00 0.2825E+02 0.3727E+02
 0.3000E+01 0.6216E+00 0.3210E+02 0.4508E+02
 0.4000E+01 0.3624E+00 0.3308E+02 0.4887E+02
 0.5000E+01 0.7074E-01 0.3110E+02 0.4829E+02
 0.6000E+01 -0.2272E+00 0.2635E+02 0.4340E+02
 0.7000E+01 -0.5048E+00 0.1924E+02 0.3463E+02
 0.8000E+01 -0.7374E+00 0.1042E+02 0.2277E+02
 0.9000E+01 -0.9041E+00 0.6594E+00 0.8875E+01
 0.1000E+02 -0.9900E+00 -0.9155E+01 -0.5813E+01
 0.1100E+02 -0.9875E+00 -0.1815E+02 -0.1998E+02
 0.1200E+02 -0.8968E+00 -0.2553E+02 -0.3237E+02
 0.1300E+02 -0.7259E+00 -0.3062E+02 -0.4186E+02
 0.1400E+02 -0.4903E+00 -0.3298E+02 -0.4761E+02
 0.1500E+02 -0.2108E+00 -0.3240E+02 -0.4911E+02
 0.1600E+02 0.8750E-01 -0.2892E+02 -0.4623E+02
 0.1700E+02 0.3780E+00 -0.2285E+02 -0.3921E+02
 0.1800E+02 0.6347E+00 -0.1475E+02 -0.2869E+02
 0.1900E+02 0.8347E+00 -0.5325E+01 -0.1561E+02
 0.2000E+02 0.9602E+00 0.4572E+01 -0.1135E+01

Figure 11.6 Results from Program 11.2 example

478 FORCED VIBRATIONS

0 10 20 30 40 50 60 70 80 90 100
t

−7
0

−5
0

−3
0

−1
0

10
30

50

d y
 (

no
de

 1
8)

Modal superposition (Program 11.2)
Theta (Program 11.3)
Wilson (Program 11.4)

Figure 11.7 Cantilever tip displacement computed by Programs 11.2, 11.3 and 11.4

Program 11.3 Forced vibration analysis of an elastic solid in plane strain using rect-
angular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x - or
y-direction. Implicit time integration using the “theta” method.

PROGRAM p113
!---
! Program 11.3 Forced vibration analysis of an elastic solid in plane
! strain using rectangular 8-node quadrilaterals. Lumped or
! consistent mass. Mesh numbered in x- or y-direction.
! Implicit time integration using the "theta" method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,j,iel,k,loaded_nodes,ndim=2,ndof=16,nels,neq,nip=9,nn,nod=8, &
nodof=2,npri,nprops=3,np_types,nr,nres,nst=3,nstep,nxe,nye

REAL(iwp)::area,c1,c2,c3,c4,det,dtim,fk,fm,one=1.0_iwp,theta,time, &
zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::consistent=.FALSE.
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
node(:),num(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),dee(:,:),der(:,:),deriv(:,:), &
d1x0(:),d1x1(:),d2x0(:),d2x1(:),ecm(:,:),fun(:),f1(:),g_coord(:,:), &
jac(:,:),km(:,:),kv(:),loads(:),mm(:,:),mv(:),points(:,:),prop(:,:), &
val(:,:),weights(:),x0(:),x1(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn), &
dee(nst,nst),coord(nod,ndim),jac(ndim,ndim),weights(nip),der(ndim,nod),&
deriv(ndim,nod),bee(nst,ndof),km(ndof,ndof),num(nod),g_num(nod,nels), &
g_g(ndof,nels),mm(ndof,ndof),ecm(ndof,ndof),fun(nod),etype(nels), &

FORCED VIBRATIONS 479

prop(nprops,np_types),x_coords(nxe+1),y_coords(nye+1))
READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,theta,npri,nres,fm,fk
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(x0(0:neq),d1x0(0:neq),x1(0:neq),d2x0(0:neq),loads(0:neq), &
d1x1(0:neq),d2x1(0:neq),kdiag(neq))

READ(10,*)loaded_nodes; ALLOCATE(node(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes)
CALL sample(element,points,weights); kdiag=0

!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),mv(kdiag(neq)),f1(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

kv=zero; mv=zero
!-----------------------global stiffness and mass matrix assembly---------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
g=g_g(:,iel); km=zero; mm=zero; area=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
area=area+det*weights(i)
IF(consistent)THEN; CALL ecmat(ecm,fun,ndof,nodof)
mm=mm+ecm*det*weights(i)*prop(3,etype(iel))

END IF
END DO gauss_pts_1
IF(.NOT.consistent)CALL elmat(area,prop(3,etype(iel)),mm)
CALL fsparv(kv,km,g,kdiag); CALL fsparv(mv,mm,g,kdiag)

END DO elements_2
!-----------------------initial conditions and factorise equations--------
x0=zero; d1x0=zero; d2x0=zero
c1=(one-theta)*dtim; c2=fk-c1; c3=fm+one/(theta*dtim); c4=fk+theta*dtim
f1=c3*mv+c4*kv; CALL sparin(f1,kdiag); time=zero

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5))')" Result at node",nres
WRITE(11,'(A)')" time load x-disp y-disp"
WRITE(11,'(4E12.4)')time,load(time),x0(nf(:,nres))
timesteps: DO j=1,nstep
time=time+dtim; loads=zero; x1=c3*x0+d1x0/theta
DO i=1,loaded_nodes

loads(nf(:,node(i)))= &
val(i,:)*(theta*dtim*load(time)+c1*load(time-dtim))

END DO; CALL linmul_sky(mv,x1,d1x1,kdiag); d1x1=loads+d1x1; loads=c2*x0
CALL linmul_sky(kv,loads,x1,kdiag); x1=x1+d1x1; CALL spabac(f1,x1,kdiag)
d1x1=(x1-x0)/(theta*dtim)-d1x0*(one-theta)/theta
d2x1=(d1x1-d1x0)/(theta*dtim)-d2x0*(one-theta)/theta
x0=x1; d1x0=d1x1; d2x0=d2x1
IF(j/npri*npri==j)WRITE(11,'(4E12.4)')time,load(time),x0(nf(:,nres))

END DO timesteps

480 FORCED VIBRATIONS

STOP
CONTAINS
FUNCTION load(t) RESULT(load_result)
!-----------------------Load-time function--------------------------------
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
REAL(iwp),INTENT(IN)::t
REAL(iwp)::load_result
load_result=COS(0.3_iwp*t)

RETURN
END FUNCTION load
END PROGRAM p113

New scalar integers:
loaded nodes number of loaded nodes
nip number of integrating points
nst number of stress terms

New scalar reals:
c1 working constant
c2 working constant
c3 working constant
c4 working constant
det determinant of Jacobian matrix
pt2 set to 0.2
pt25 set to 0.25
theta time integration weighting parameter

Scalar logical:
consistent set to .TRUE. if mass matrix is “consistent”

New Dynamic integer arrays:
node nodes to be loaded

New Dynamic real arrays:
bee strain-displacement matrix
dee stress–strain matrix
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
d1x0 “old” velocities
d1x1 “new” velocities
d2x0 “old” accelerations
d2x1 “new” accelerations
ecm element consistent mass matrix
fun shape functions
f1 left hand side matrix (stored as a skyline)
jac Jacobian matrix
loads nodal loads and displacements
points integrating point local coordinates

FORCED VIBRATIONS 481

val applied nodal load weightings
weights weighting coefficients
x0 “old” displacements
x1 “new” displacements

In this program whose structure chart is given as Figure 11.8, the same problem as
that previously analysed is solved again using a direct time-integration procedure. In this
example the tip loading takes the form of a continuous cosine function defined in a FUNC-
TION subprogram called load placed at the end of the main program. The specific method
is described in Section 3.13.2 where it was shown to be the same implicit technique as was
used for first order problems in Program 8.1, where it is often called the “Crank–Nicolson”
approach (θ = 0.5). In second-order problems, it is also known as the “Newmark β = 1/4”
method in which form it was used in Program 11.1.

To step from one time instant to the next, a set of simultaneous equations has to be
solved. Since the differential equations are often linearised, this is not as great a numerical
task as might be supposed because the equation coefficients are constant, and need be
factorised only once before the time-stepping procedure commences (see equation (3.139)).
Velocities and accelerations are computed by ancillary equations (3.140) and (3.141).

Read data
Allocate arrays

Find problem size
Null global stiffness and mass matrices

For all elements

Find element geometry
and steering vector

For all Gauss points

Compute element stiffness and
mass contributions

to km and mm

Assemble km into kv
Assemble mm into mv

 Set the initial conditions
Reduce left-hand side

For all the time steps

Update time
Set the forcing function

Assemble the new right-hand side
Complete the equation solution.

Compute new velocities and accelerations
Print results

Figure 11.8 Structure chart for implicit algorithms used in Programs 11.3 and 11.4

482 FORCED VIBRATIONS

The example presented here uses lumped mass (consistent = .FALSE.), but the
program can also handle consistent mass if required, in which case the element mass
matrix is formed by subroutine ecmat. It should be noted that “exact” integration is
needed to integrate the consistent mass matrix of a general 8-node quadrilateral element.
In this example therefore, 9 integrating points (nip=9) have been used for all the element
integrations. If, as is often the case, “reduced” (nip=4) integration is preferred in the
generation of the stiffness matrix, two separate integration loops would be required, one
for the (consistent) mass, and one for the stiffness.

Up to the section headed “global stiffness and mass matrix assembly” the program’s
task is the familiar one of generating the global stiffness and mass matrices, stored as usual
as skyline vectors kv and mv respectively. The matrix arising on the left-hand side of
(3.139) is then created, called (f1) and factorised using subroutine sparin.

In the time-stepping loop, the matrix-by-vector multiplications and vector additions
specified on the right-hand side of (3.139) are carried out and equation solution is completed

4.0

1.0

F = coswt

E = 1 kN/m2

n = 0.3

r = 1 t/m3

2

5

16

17

18

1

3

4

nxe nye
3 1

np_types
1

prop(e,v,rho)
1.0 0.3 1.0

etype (not needed)

x_coords, y_coords
0.0 1.33333 2.66667 4.0
0.0 -1.0

dtim nstep theta npri nres fm fk
1.0 20 0.5 1 18 0.005 0.272

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 2 0 0 3 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
1
18 0.0 1.0

Figure 11.9 Mesh and data for Program 11.3 example

FORCED VIBRATIONS 483

 There are 30 equations and the skyline storage is 285

 Result at node 18
 time load x-disp y-disp
 0.0000E+00 0.1000E+01 0.0000E+00 0.0000E+00
 0.1000E+01 0.9553E+00 0.7363E+00 0.2167E+01
 0.2000E+01 0.8253E+00 0.2231E+01 0.5226E+01
 0.3000E+01 0.6216E+00 0.3252E+01 0.7398E+01
 0.4000E+01 0.3624E+00 0.3987E+01 0.1046E+02
 0.5000E+01 0.7074E-01 0.4832E+01 0.1398E+02
 0.6000E+01 -0.2272E+00 0.5272E+01 0.1678E+02
 0.7000E+01 -0.5048E+00 0.5086E+01 0.1839E+02
 0.8000E+01 -0.7374E+00 0.4370E+01 0.1894E+02
 0.9000E+01 -0.9041E+00 0.3255E+01 0.1834E+02
 0.1000E+02 -0.9900E+00 0.1789E+01 0.1650E+02
 0.1100E+02 -0.9875E+00 0.8872E-01 0.1349E+02
 0.1200E+02 -0.8968E+00 -0.1674E+01 0.9574E+01
 0.1300E+02 -0.7259E+00 -0.3372E+01 0.5082E+01
 0.1400E+02 -0.4903E+00 -0.4915E+01 0.3726E+00
 0.1500E+02 -0.2108E+00 -0.6150E+01 -0.4128E+01
 0.1600E+02 0.8750E-01 -0.6858E+01 -0.7908E+01
 0.1700E+02 0.3780E+00 -0.6839E+01 -0.1050E+02
 0.1800E+02 0.6347E+00 -0.5986E+01 -0.1157E+02
 0.1900E+02 0.8347E+00 -0.4304E+01 -0.1096E+02
 0.2000E+02 0.9602E+00 -0.1902E+01 -0.8708E+01

Figure 11.10 Results from Program 11.3 example

by subroutine spabac. It then remains only to compute the new velocities and accelerations
using (3.140) and (3.141).

The problem layout and data are given in Figure 11.9. Following the usual data relating
to element numbers, properties and coordinates, the time stepping data calls for nstep=20
steps of time step dtim=1.0 with the output at node nres=18 printed every npri=1
time steps. The beam is damped using Rayleigh damping constants fm = 0.005 and fk =
0.272 (read as fm and fk respectively) giving a damping ratio ζ close to 0.05 (see
equation (3.120)) for the first three natural frequencies. The results are listed as Figure 11.10
and plotted in Figure 11.7. The displacements are seen to be considerably disturbed by the
initial condition “transients”, but once the response has settled down, the average amplitude
agrees closely with that obtained by Modal Superposition, with a phase shift of about 90◦
relative to the loading function.

Program 11.4 Forced vibration analysis of an elastic solid in plane strain using rect-
angular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x - or
y-direction. Implicit time integration using Wilson’s method.

PROGRAM p114
!---
! Program 11.4 Forced vibration analysis of an elastic solid in plane
! strain using rectangular 8-node quadrilaterals. Lumped or
! consistent mass. Mesh numbered in x- or y-direction.
! Implicit time integration using Wilson's method.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,j,iel,k,loaded_nodes,ndim=2,ndof=16,nels,neq,nip=9,nn,nod=8, &
nodof=2,npri,nprops=3,np_types,nr,nres,nst=3,nstep,nxe,nye

484 FORCED VIBRATIONS

REAL(iwp)::area,c1,c2,c3,c4,det,dtim,d6=6.0_iwp,fk,fm,one=1.0_iwp, &
pt5=0.5_iwp,theta,time,two=2.0_iwp,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'; LOGICAL::consistent=.FALSE.
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag(:),nf(:,:), &
node(:),num(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),dee(:,:),der(:,:),deriv(:,:), &
d1x0(:),d1x1(:),d2x0(:),d2x1(:),ecm(:,:),fun(:),f1(:),g_coord(:,:), &
jac(:,:),km(:,:),kv(:),loads(:),mm(:,:),mv(:),points(:,:),prop(:,:), &
val(:,:),weights(:),x0(:),x1(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn), &
dee(nst,nst),coord(nod,ndim),jac(ndim,ndim),weights(nip),der(ndim,nod),&
deriv(ndim,nod),bee(nst,ndof),km(ndof,ndof),num(nod),g_num(nod,nels), &
g_g(ndof,nels),mm(ndof,ndof),ecm(ndof,ndof),fun(nod),etype(nels), &
prop(nprops,np_types),x_coords(nxe+1),y_coords(nye+1))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,theta,npri,nres,fm,fk
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(x0(0:neq),d1x0(0:neq),x1(0:neq),d2x0(0:neq),loads(0:neq), &
d1x1(0:neq),d2x1(0:neq),kdiag(neq))

READ(10,*)loaded_nodes; ALLOCATE(node(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes)
CALL sample(element,points,weights); kdiag=0

!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g; CALL fkdiag(kdiag,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
DO i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(neq)),mv(kdiag(neq)),f1(kdiag(neq)))
WRITE(11,'(2(A,I5))') &
" There are",neq," equations and the skyline storage is",kdiag(neq)

kv=zero; mv=zero
!-----------------------global stiffness and mass matrix assembly---------
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
g=g_g(:,iel); km=zero; mm=zero; area=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
area=area+det*weights(i)
IF(consistent)THEN; CALL ecmat(ecm,fun,ndof,nodof)
mm=mm+ecm*det*weights(i)*prop(3,etype(iel))

END IF
END DO gauss_pts_1
IF(.NOT.consistent)CALL elmat(area,prop(3,etype(iel)),mm)
CALL fsparv(kv,km,g,kdiag); CALL fsparv(mv,mm,g,kdiag)

END DO elements_2
!-----------------------initial conditions and factorise equations--------
x0=zero; d1x0=zero; d2x0=zero
c1=d6/(theta*dtim)**2; c2=c1*theta*dtim; c3=dtim**2/d6; c4=pt5*theta*dtim

FORCED VIBRATIONS 485

f1=(c1+pt5*c2*fm)*mv+(one+pt5*c2*fk)*kv; CALL sparin(f1,kdiag); time=zero
!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5))')" Result at node",nres
WRITE(11,'(A)')" time load x-disp y-disp"
WRITE(11,'(4E12.4)')time,load(time),x0(nf(:,nres))
timesteps: DO j=1,nstep
time=time+dtim; loads=zero
x1=(c1+pt5*c2*fm)*x0+(c2+two*fm)*d1x0+(two+c4*fm)*d2x0
DO i=1,loaded_nodes

loads(nf(:,node(i)))= &
val(i,:)*(theta*load(time)+(one-theta)*load(time-dtim))

END DO; CALL linmul_sky(mv,x1,d1x1,kdiag); d1x1=loads+d1x1
loads=pt5*c2*fk*x0+two*fk*d1x0+c4*fk*d2x0
CALL linmul_sky(kv,loads,x1,kdiag); x1=x1+d1x1; CALL spabac(f1,x1,kdiag)
d2x1=d2x0+((x1-x0)*c1-d1x0*c2-d2x0*two-d2x0)/theta
d1x1=d1x0+pt5*dtim*(d2x1+d2x0); x0=x0+dtim*d1x0+two*c3*d2x0+d2x1*c3
d1x0=d1x1; d2x0=d2x1
IF(j/npri*npri==j)WRITE(11,'(4E12.4)')time,load(time),x0(nf(:,nres))

END DO timesteps
STOP
CONTAINS
FUNCTION load(t) RESULT(load_result)
!-----------------------Load-time function--------------------------------
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
REAL(iwp),INTENT(IN)::t
REAL(iwp)::load_result
load_result=COS(0.3_iwp*t)

RETURN
END FUNCTION load
END PROGRAM p114

New scalar reals:
d6 set to 6.0
two set to 2.0

This algorithm is described in Section 3.13.3. The essential step is that shown in (3.142),
which is of exactly the same form as (3.139) for the “theta” method, and so this program can
be expected to resemble the previous one very closely. The structure chart of Figure 11.8
is again appropriate and the problem layout and data given in Figure 11.11 are essentially
the same as in Figure 11.9. No new variables are involved, but the parameter θ is set to

4.0

1.0

F = coswt

E = 1 kN/m2

n = 0.3

r = 1 t/m3

2

5

16

17

18

1

3

4

Figure 11.11 Mesh and data for Program 11.4 example (Continued on page 486)

486 FORCED VIBRATIONS

nxe nye
3 1

np_types
1

prop(e,v,rho)
1.0 0.3 1.0

etype (not needed)

x_coords, y_coords
0.0 1.33333 2.66667 4.0
0.0 -1.0

dtim nstep theta npri nres fm fk
1.0 20 1.4 1 18 0.005 0.272

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 2 0 0 3 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
1
18 0.0 1.0

Figure 11.11 (Continued from page 485)

 There are 30 equations and the skyline storage is 285

 Result at node 18
 time load x-disp y-disp
 0.0000E+00 0.1000E+01 0.0000E+00 0.0000E+00
 0.1000E+01 0.9553E+00 0.1544E+00 0.4329E+00
 0.2000E+01 0.8253E+00 0.9763E+00 0.2575E+01
 0.3000E+01 0.6216E+00 0.2083E+01 0.4966E+01
 0.4000E+01 0.3624E+00 0.2908E+01 0.7004E+01
 0.5000E+01 0.7074E-01 0.3396E+01 0.9110E+01
 0.6000E+01 -0.2272E+00 0.3657E+01 0.1117E+02
 0.7000E+01 -0.5048E+00 0.3581E+01 0.1253E+02
 0.8000E+01 -0.7374E+00 0.3002E+01 0.1270E+02
 0.9000E+01 -0.9041E+00 0.1916E+01 0.1157E+02
 0.1000E+02 -0.9900E+00 0.4607E+00 0.9270E+01
 0.1100E+02 -0.9875E+00 -0.1204E+01 0.5928E+01
 0.1200E+02 -0.8968E+00 -0.2935E+01 0.1730E+01
 0.1300E+02 -0.7259E+00 -0.4592E+01 -0.3044E+01
 0.1400E+02 -0.4903E+00 -0.6033E+01 -0.8013E+01
 0.1500E+02 -0.2108E+00 -0.7122E+01 -0.1275E+02
 0.1600E+02 0.8750E-01 -0.7739E+01 -0.1682E+02
 0.1700E+02 0.3780E+00 -0.7769E+01 -0.1984E+02
 0.1800E+02 0.6347E+00 -0.7121E+01 -0.2149E+02
 0.1900E+02 0.8347E+00 -0.5759E+01 -0.2156E+02
 0.2000E+02 0.9602E+00 -0.3736E+01 -0.2002E+02

Figure 11.12 Results from Program 11.4 example

FORCED VIBRATIONS 487

its stability limit of about 1.4, compared with 0.5 in the previous algorithm. All that need
be said is that the f1 matrix is now constructed as demanded by (3.142). The remaining
steps of (3.144–3.147) are carried out within the section headed “time stepping loop”.

The results for one cycle are listed as Figure 11.12 and plotted in Figure 11.7. Again,
the early stages of the response reflect mainly the influence of the start-up conditions.
The response eventually settles down to be in good agreement with the previous solutions,
although with a slightly greater phase shift.

Program 11.5 Forced vibration analysis of an elastic solid in plane strain using rect-
angular uniform size 4-node quadrilaterals. Mesh numbered in the x - or y-direction.
Lumped or consistent mass. Mixed explicit/implicit time integration.

PROGRAM p115
!---
! Program 11.5 Forced vibration analysis of an elastic solid in plane
! strain using rectangular uniform size 4-node quadrilaterals.
! Mesh numbered in the x- or y-direction. Lumped and/or
! consistent mass. Mixed explicit/implicit time integration.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,j,iel,k,ndim=2,ndof=8,nels,neq,nip=4,nn,nod=4,nodof=2,npri, &
nprops=3,np_types,nr,nres,nstep,nxe,nye

REAL(iwp)::area,beta,c1,det,dtim,gamma,one=1.0_iwp,pt5=0.5_iwp,time, &
two=2.0_iwp,zero=0.0_iwp; CHARACTER(LEN=15)::element='quadrilateral'

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),kdiag_l(:), &
kdiag_r(:),nf(:,:),num(:)

REAL(iwp),ALLOCATABLE::coord(:,:),der(:,:),d1x0(:),d1x1(:),d2x0(:), &
d2x1(:),ecm(:,:),fun(:),g_coord(:,:),jac(:,:),km(:,:),kv(:),mm(:,:), &
mv(:),points(:,:),prop(:,:),weights(:),x0(:),x1(:),x_coords(:), &
y_coords(:); CHARACTER(LEN=1),ALLOCATABLE::mtype(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn), &
coord(nod,ndim),jac(ndim,ndim),weights(nip),der(ndim,nod), &
km(ndof,ndof),num(nod),g_num(nod,nels),g_g(ndof,nels),mtype(nels), &
mm(ndof,ndof),ecm(ndof,ndof),fun(nod),prop(nprops,np_types), &
x_coords(nxe+1),y_coords(nye+1),etype(nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,beta,gamma,npri,nres
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(kdiag_l(neq),kdiag_r(neq),x0(0:neq),d1x0(0:neq),x1(0:neq), &
d2x0(0:neq),d1x1(0:neq),d2x1(0:neq))

READ(10,*)mtype; CALL sample(element,points,weights); kdiag_l=0; kdiag_r=0
!-----------------------loop the elements to find global array sizes------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g
CALL fkdiag(kdiag_r,g); IF(mtype(iel)=='c')CALL fkdiag(kdiag_l,g)

END DO elements_1; CALL mesh(g_coord,g_num,12)
WHERE(kdiag_l==0); kdiag_l=1; END WHERE
DO i=2,neq; kdiag_l(i)=kdiag_l(i)+kdiag_l(i-1)
kdiag_r(i)=kdiag_r(i)+kdiag_r(i-1)

488 FORCED VIBRATIONS

END DO; ALLOCATE(kv(kdiag_l(neq)),mv(kdiag_r(neq)))
WRITE(11,'(A,I5,A,/,2(A,I5),A)') &
" There are",neq," equations."," Skyline storage is",kdiag_l(neq), &
" to the left, and",kdiag_r(neq)," to the right."

c1=one/dtim/dtim/beta; kv=zero; mv=zero
!-----------------------global stiffness and mass matrix assembly---------
elements_2: DO iel=1,nels
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num))
CALL stiff4(km,coord,prop(1,etype(iel)),prop(2,etype(iel)))
g=g_g(:,iel); area=zero; mm=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)
jac=MATMUL(der,coord); det=determinant(jac); area=area+det*weights(i)
CALL shape_fun(fun,points,i)
IF(mtype(iel)=='c')THEN; CALL ecmat(ecm,fun,ndof,nodof)
mm=mm+ecm*det*weights(i)*c1*prop(3,etype(iel))

END IF
END DO gauss_pts_1
IF(mtype(iel)=='l')THEN

CALL elmat(area,c1*prop(3,etype(iel)),mm)
CALL fsparv(kv,mm,g,kdiag_l); CALL fsparv(mv,mm-km,g,kdiag_r); ELSE
CALL fsparv(kv,km+mm,g,kdiag_l); CALL fsparv(mv,mm,g,kdiag_r)

END IF
END DO elements_2

!-----------------------initial conditions and factorise equations--------
x0=zero; d1x0=one; d2x0=zero; CALL sparin(kv,kdiag_l); time=zero

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5))')" Result at node",nres
WRITE(11,'(A)')" time x-disp y-disp"
WRITE(11,'(4E12.4)')time,x0(nf(:,nres))
timesteps: DO j=1,nstep
time=time+dtim; d1x1=x0+d1x0*dtim+d2x0*pt5*dtim*dtim*(one-two*beta)
CALL linmul_sky(mv,d1x1,x1,kdiag_r); CALL spabac(kv,x1,kdiag_l)
d2x1=(x1-d1x1)/dtim/dtim/beta
d1x1=d1x0+d2x0*dtim*(one-gamma)+d2x1*dtim*gamma
x0=x1; d1x0=d1x1; d2x0=d2x1
IF(j/npri*npri==j)WRITE(11,'(4E12.4)')time,x0(nf(:,nres))

END DO timesteps
STOP
END PROGRAM p115

New dynamic integer arrays:
kdiag l diagonal term locations on the left
kdiag r diagonal term locations on the right

New dynamic character array:
mtype set to ‘l‘ for lumped mass and ‘c‘ for consistent

Programs 11.3 and 11.4 used implicit time-marching algorithms, and Program 11.7
described later in this chapter uses an explicit approach. The program described now com-
bines the methods of implicit and explicit time integration in a single program. Although not
“mesh free” this procedure should allow economical bandwidths of the assembled matrices.
The idea is (e.g. Key, 1980) that a mesh may contain only a few elements which have a
very small explicit stability limit and are therefore best integrated implicitly. The remainder
of the mesh can be successfully integrated explicitly at reasonable time steps.

FORCED VIBRATIONS 489

The recurrence relations (3.139–3.141) are cast in the form:(
1

�t2β
[Mm] + [Km]

)
{U}1 = {F}1 + 1

�t2β
[Mm]

{
U

}
1 (11.4)

for implicit elements, and

1

�t2β
[Mm] {U}1 = {F}1 +

(
1

�t2β
[Mm] − [Km]

) {
U

}
1 (11.5)

for explicit elements, where

{
U

}
1 = {U}0 + �t ˙{U}0 + �t2(1 − 2β)

2
¨{U}0 (11.6)

Accelerations and velocities are obtained from:

¨{U}1 = 1

�t2β

({U}1 − {
U

}
1

)
(11.7)

and
˙{U}1 = ˙{U}0 + �t(1 − γ) ¨{U}0 + �tγ ¨{U}1 (11.8)

The time integration parameters are the “Newmark” ones introduced in Program 11.1 and
conventionally called β = 1/4 and γ = 1/2 corresponding to θ = 1/2 in Program 11.3.

When an explicit element is not coupled to an implicit one, the half-bandwidth (exclud-
ing the diagonal) of the assembled equation coefficient matrix will only be 1, whereas the
full half-bandwidth will apply for implicit elements. Full advantage can be taken of vari-
able bandwidth or “skyline” storage on both sides of the equation in this case (see Smith,
1984). The problem chosen is illustrated in Figure 11.13 and models the impact of an elas-
tic rod, initially travelling at a uniform unit velocity, with a rigid wall. The elastic rod is
constrained to vibrate in the axial direction only, and is fixed at the right-hand end. Initial
conditions of a uniform unit velocity are applied to all freedoms in the mesh at time t = 0.
The appropriate structure chart is Figure 11.8 for implicit integration.

No damping is considered in this case, and the data calls for nstep=400 calculation
steps at a time step of dtim=0.0025 to be performed. Output is requested every npri=1
time steps at node nres=42, which is close to the impacted end of the rod. The boundary
conditions place rollers on the top and bottom surfaces of the rod, although there would
be no tendency for “bulging” in this case since Poisson’s ratio is read as zero.

The only other new parameter is a dynamic character array mtype which is assigned
from data, and holds for each element, the character string ’c’ or ’l’, corresponding to
consistent or lumped mass respectively. In the present example, elements 1, 11, and 21
have consistent mass while the others are lumped. Also, the lumped elements are explicitly
integrated while the consistent ones are implicitly integrated.

The stiffness and mass are integrated as usual. When the element mass matrix is con-
sistent (mtype=’c’), (mm+km) is assembled into kv while the mm is assembled into mv
as shown in (11.4) for implicit elements. Conversely, when the element mass matrix is
lumped (mtype= ’l’), mm is assembled into kv while (mm-km) is assembled into mv as
shown in (11.5) for explicit elements. The integer vectors kdiag l and kdiag r locate
the diagonal terms of the left and right hand side matrices kv and mv respectively.

490 FORCED VIBRATIONS

0.5m

21 @ 0.5 = 10.5 m

5

6 40

39 41 43

44424

31

2

nxe nye np_types
21 1 1

prop(e,v,rho)
100.0 0.0 0.01

etype (not needed)

x_coords, y_coords
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
0.0 -0.5

dtim nstep beta gamma npri nres
0.0025 400 0.25 0.5 1 42

nr,(k,nf(:,k),i=1,nr)
44
 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0
 6 1 0 7 1 0 8 1 0 9 1 0 10 1 0
11 1 0 12 1 0 13 1 0 14 1 0 15 1 0
16 1 0 17 1 0 18 1 0 19 1 0 20 1 0
21 1 0 22 1 0 23 1 0 24 1 0 25 1 0
26 1 0 27 1 0 28 1 0 29 1 0 30 1 0
31 1 0 32 1 0 33 1 0 34 1 0 35 1 0
36 1 0 37 1 0 38 1 0 39 1 0 40 1 0
41 1 0 42 1 0 43 0 0 44 0 0

mtype
’c’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’
’c’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’l’ ’c’

E = 100 kN/m2

n = 0

r =0.01 t/m3

Figure 11.13 Mesh and data for Program 11.5 example

The initial conditions are then set, with the starting velocity in the x-direction at all
nodes set to unity (d1x0=1.0). The global matrix factorisation is done by sparin and
the time-stepping loop is entered. Equations (11.4) and (11.5) require the usual matrix-by-
vector multiplication on the right hand side by subroutine linmul sky. Equation solution
is completed by spabac and it remains only to update velocities and accelerations for the
next time step from (11.7–11.8).

The results are listed in Figure 11.14 and the displacements close to the support (free-
dom 42) are compared graphically with the exact solution in Figure 11.15. Despite some
spurious oscillations the response is reasonably modelled.

FORCED VIBRATIONS 491

 There are 42 equations.
 Skyline storage is 55 to the left, and 143 to the right.

 Result at node 42
 time x-disp y-disp
 0.0000E+00 0.0000E+00 0.0000E+00
 0.2500E-02 0.2326E-02 0.0000E+00
 0.5000E-02 0.4051E-02 0.0000E+00
 0.7500E-02 0.4898E-02 0.0000E+00
 0.1000E-01 0.5020E-02 0.0000E+00
 0.1250E-01 0.4834E-02 0.0000E+00
 0.1500E-01 0.4724E-02 0.0000E+00
 0.1750E-01 0.4825E-02 0.0000E+00
 0.2000E-01 0.5029E-02 0.0000E+00
 0.2250E-01 0.5150E-02 0.0000E+00
 0.2500E-01 0.5106E-02 0.0000E+00
.
.
.
 0.9775E+00 0.4544E-02 0.0000E+00
 0.9800E+00 0.4640E-02 0.0000E+00
 0.9825E+00 0.4821E-02 0.0000E+00
 0.9850E+00 0.5040E-02 0.0000E+00
 0.9875E+00 0.5250E-02 0.0000E+00
 0.9900E+00 0.5399E-02 0.0000E+00
 0.9925E+00 0.5420E-02 0.0000E+00
 0.9950E+00 0.5270E-02 0.0000E+00
 0.9975E+00 0.4973E-02 0.0000E+00
 0.1000E+01 0.4648E-02 0.0000E+00

Figure 11.14 Results from Program 11.5 example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

−8
−7

−6
−5

−4
−3

−2
−1

0
1

2
3

4
5

6
7

8

D
is

pl
ac

em
en

t (
no

de
 4

2)

×1
0−3

Program 11.5
Exact solution

Figure 11.15 Displacement near support versus time from Program 11.5 example

492 FORCED VIBRATIONS

Program 11.6 Forced vibration analysis of an elastic solid in plane strain using rect-
angular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x -
or y-direction. Implicit time integration using the “theta” method. No global matrix
assembly. Diagonally preconditioned conjugate gradient solver.

PROGRAM p116
!---
! Program 11.6 Forced vibration analysis of an elastic solid in plane
! strain using rectangular 8-node quadrilaterals. Lumped or
! consistent mass. Mesh numbered in x- or y-direction.
! Implicit time integration using the "theta" method.
! No global matrix assembly. Diagonally preconditioned
! conjugate gradient solver.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::cg_iters,cg_limit,i,j,iel,k,loaded_nodes,ndim=2,ndof=16,nels, &
neq,nip=9,nn,nod=8,nodof=2,npri,nprops=3,np_types,nr,nres,nst=3,nstep, &
nxe,nye

REAL(iwp)::alpha,area,beta,cg_tol,c1,c2,c3,c4,det,dtim,fk,fm,one=1.0_iwp,&
theta,time,up,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
LOGICAL::consistent=.FALSE.,cg_converged

!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),node(:), &
num(:)

REAL(iwp),ALLOCATABLE::bee(:,:),coord(:,:),d(:),dee(:,:),der(:,:), &
deriv(:,:),diag_precon(:),d1x0(:),d1x1(:),d2x0(:),d2x1(:),ecm(:,:), &
fun(:),g_coord(:,:),jac(:,:),km(:,:),loads(:),mm(:,:),p(:),points(:,:),&
prop(:,:),storkm(:,:,:),stormm(:,:,:),u(:),val(:,:),weights(:),x(:), &
xnew(:),x0(:),x1(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,cg_tol,cg_limit,np_types
CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn), &
dee(nst,nst),coord(nod,ndim),jac(ndim,ndim),weights(nip),der(ndim,nod),&
deriv(ndim,nod),bee(nst,ndof),km(ndof,ndof),num(nod),g_num(nod,nels), &
g_g(ndof,nels),mm(ndof,ndof),ecm(ndof,ndof),fun(nod),etype(nels), &
prop(nprops,np_types),x_coords(nxe+1),y_coords(nye+1), &
storkm(ndof,ndof,nels),stormm(ndof,ndof,nels))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,theta,npri,nres,fm,fk
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(x0(0:neq),d1x0(0:neq),x1(0:neq),d2x0(0:neq),loads(0:neq), &
d1x1(0:neq),d2x1(0:neq),d(0:neq),p(0:neq),x(0:neq),xnew(0:neq), &
diag_precon(0:neq),u(0:neq))

READ(10,*)loaded_nodes; ALLOCATE(node(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes)

!---------------loop the elements to set up element data------------------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1
CALL sample(element,points,weights); diag_precon=zero

FORCED VIBRATIONS 493

WRITE(11,'(A,I5,A)')" There are",neq," equations"
c1=(one-theta)*dtim; c2=fk-c1; c3=fm+one/(theta*dtim); c4=fk+theta*dtim
CALL sample(element,points,weights); diag_precon=zero

!----element stiffness and mass integration, storage and preconditioner---
elements_2: DO iel=1,nels
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
km=zero; mm=zero; area=zero
gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i); CALL shape_fun(fun,points,i)
jac=MATMUL(der,coord); det=determinant(jac); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
area=area+det*weights(i)
IF(consistent)THEN; CALL ecmat(ecm,fun,ndof,nodof)
ecm=ecm*det*weights(i); mm=mm+ecm

END IF
END DO gauss_pts_1
IF(.NOT.consistent)CALL elmat(area,prop(3,etype(iel)),mm)
storkm(:,:,iel)=km; stormm(:,:,iel)=mm
DO k=1,ndof; diag_precon(g(k))=diag_precon(g(k))+mm(k,k)*c3+km(k,k)*c4
END DO

END DO elements_2
diag_precon(1:)=one/diag_precon(1:); diag_precon(0)=zero

!-----------------------time stepping loop--------------------------------
x0=zero; d1x0=zero; d2x0=zero; time=zero
WRITE(11,'(/A,I5))')" Result at node",nres
WRITE(11,'(A)') &

" time load x-disp y-disp cg iters"
WRITE(11,'(4E12.4)')time,load(time),x0(nf(:,nres))
timesteps: DO j=1,nstep
time=time+dtim; loads=zero; u=zero
elements_3: DO iel=1,nels

g=g_g(:,iel); km=storkm(:,:,iel); mm=stormm(:,:,iel)
u(g)=u(g)+MATMUL(km*c2+mm*c3,x0(g))+MATMUL(mm/theta,d1x0(g))

END DO elements_3; u(0)=zero
DO i=1,loaded_nodes

loads(nf(:,node(i)))= &
val(i,:)*(theta*dtim*load(time)+c1*load(time-dtim))

END DO
loads=u+loads; d=diag_precon*loads; p=d; x=zero; cg_iters=0

!-----------------------pcg equation solution-----------------------------
pcg: DO

cg_iters=cg_iters+1; u=zero
elements_4: DO iel=1,nels
g=g_g(:,iel); km=storkm(:,:,iel); mm=stormm(:,:,iel)
u(g)=u(g)+MATMUL(mm*c3+km*c4,p(g))

END DO elements_4; u(0)=zero
up=DOT_PRODUCT(loads,d); alpha=up/DOT_PRODUCT(p,u); xnew=x+p*alpha
loads=loads-u*alpha; d=diag_precon*loads; beta=DOT_PRODUCT(loads,d)/up
p=d+p*beta; call checon(xnew,x,cg_tol,cg_converged)
IF(cg_converged.OR.cg_iters==cg_limit)EXIT

END DO pcg
x1=xnew; d1x1=(x1-x0)/(theta*dtim)-d1x0*(one-theta)/theta
d2x1=(d1x1-d1x0)/(theta*dtim)-d2x0*(one-theta)/theta
IF(j/npri*npri==j) &

WRITE(11,'(4E12.4,I8)')time,load(time),x1(nf(:,nres)),cg_iters

494 FORCED VIBRATIONS

x0=x1; d1x0=d1x1; d2x0=d2x1
END DO timesteps

STOP
CONTAINS
FUNCTION load(t) RESULT(load_result)
!-----------------------Load-time function--------------------------------
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
REAL(iwp),INTENT(IN)::t
REAL(iwp)::load_result
load_result=COS(0.3_iwp*t)

RETURN
END FUNCTION load
END PROGRAM p116

New scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling

New scalar reals:
alpha α from equations (3.22)
beta β from equations (3.22)
cg tol pcg convergence tolerance
up holds dot product {R}T

k {R}k

New scalar logical:
cg converged set to .TRUE. if pcg process has converged

New dynamic real arrays:
d vector used in equation (3.22)
diag precon diagonal preconditioner vector
p “descent” vector used in equations (3.22)
storkm holds element stiffness matrices
stormm holds element mass matrices
u vector used in equation (3.22)
x “old” solution vector
xnew “new” solution vector

Typical mesh free strategies can preserve the unconditional stability of the “implicit”
procedures such as in Program 11.3 by replacing the direct equation solution by an iterative
approach such as pcg. Alternatively, as was done in Chapter 8 (Program 8.4), a purely
explicit time-integration procedure for dynamic analysis can be adopted with its inherent
stability limitations, as will be explained in the final Program 11.7. Product EBE techniques
are also available (Wong et al., 1989) but are not dealt with in this book.

Program 11.6 is adapted from Program 11.3 (implicit integration by the “theta” method)
in the same way as Program 8.3 was adapted from Program 8.2. Equation solution is
accomplished on every timestep by preconditioned conjugate gradients using diagonal pre-
conditioning of the left hand side matrix in equation (3.139).

FORCED VIBRATIONS 495

4.0

1.0

F = coswt

E = 1 kN/m2

n = 0.3

r = 1 t/m3

2

5

16

17

18

1

3

4

nxe nye cg_tol cg_limit
3 1 1.0e-5 50

np_types
1

prop(e,v,rho)
1.0 0.3 1.0

etype (not needed)

x_coords, y_coords
0.0 1.33333 2.66667 4.0
0.0 -1.0

dtim nstep theta npri nres fm fk
1.0 20 0.5 1 18 0.005 0.272

nr,(k,nf(:,k),i=1,nr)
3
1 0 0 2 0 0 3 0 0

loaded_nodes,(node(i),val(i,:),i=1,loaded_nodes)
1
18 0.0 1.0

Figure 11.16 Mesh and data for Program 11.6 example

The element stiffness matrices km are stored as storkm with the mass matrices mm as
stormm. The same example analysed by Programs 11.2, 11.3, and 11.4 is repeated, with
the data given in Figure 11.16. The results shown in Figure 11.17 are essentially the same
as those obtained using a direct solver shown in Figure 11.10. It may also be noted from
these results that this version of pcg solution is taking approximately neq/2 iterations to
converge (where neq is the number of equations), a similar convergence rate as was usual
in Chapters 5 and 6. In Chapter 8, the convergence rate was much quicker at approximately
neq/10. Fortunately, as problem sizes increase the iteration count, as a proportion of neq,
drops very rapidly.

496 FORCED VIBRATIONS

 There are 30 equations

 Result at node 18
 time load x-disp y-disp cg iters
 0.0000E+00 0.1000E+01 0.0000E+00 0.0000E+00
 0.1000E+01 0.9553E+00 0.7363E+00 0.2167E+01 17
 0.2000E+01 0.8253E+00 0.2231E+01 0.5226E+01 17
 0.3000E+01 0.6216E+00 0.3252E+01 0.7398E+01 17
 0.4000E+01 0.3624E+00 0.3987E+01 0.1046E+02 17
 0.5000E+01 0.7074E-01 0.4832E+01 0.1398E+02 16
 0.6000E+01 -0.2272E+00 0.5272E+01 0.1678E+02 16
 0.7000E+01 -0.5048E+00 0.5086E+01 0.1839E+02 16
 0.8000E+01 -0.7374E+00 0.4370E+01 0.1894E+02 17
 0.9000E+01 -0.9041E+00 0.3255E+01 0.1834E+02 17
 0.1000E+02 -0.9900E+00 0.1789E+01 0.1650E+02 17
 0.1100E+02 -0.9875E+00 0.8842E-01 0.1349E+02 18
 0.1200E+02 -0.8968E+00 -0.1674E+01 0.9574E+01 18
 0.1300E+02 -0.7259E+00 -0.3373E+01 0.5082E+01 18
 0.1400E+02 -0.4903E+00 -0.4916E+01 0.3731E+00 17
 0.1500E+02 -0.2108E+00 -0.6151E+01 -0.4127E+01 17
 0.1600E+02 0.8750E-01 -0.6859E+01 -0.7907E+01 17
 0.1700E+02 0.3780E+00 -0.6839E+01 -0.1050E+02 17
 0.1800E+02 0.6347E+00 -0.5986E+01 -0.1157E+02 18
 0.1900E+02 0.8347E+00 -0.4304E+01 -0.1096E+02 18
 0.2000E+02 0.9602E+00 -0.1902E+01 -0.8706E+01 18

Figure 11.17 Results from Program 11.6 example

Program 11.7 Forced vibration analysis of an elastic–plastic (von Mises) solid in
plane strain using rectangular 8-node quadrilateral elements. Lumped mass. Mesh
numbered in x - or y-direction. Explicit time integration.

PROGRAM p117
!---
! Program 11.7 Forced vibration analysis of an elastic-plastic (Von Mises)
! solid in plane strain using rectangular 8-node quadrilateral
! elements. Lumped mass. Mesh numbered in x- or y-direction.
! Explicit time integration.
!---
USE main; USE geom; IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
INTEGER::i,j,iel,k,loaded_nodes,ndim=2,ndof=16,nels,neq,nip=4,nn,nod=8, &
nodof=2,npri,nprops=4,np_types,nr,nres,nst=4,nstep,nxe,nye

REAL(iwp)::area,det,dsbar,dtim,f,fac,fmax,fnew,lode_theta,one=1.0_iwp, &
pt5=0.5_iwp,sigm,time,zero=0.0_iwp

CHARACTER(LEN=15)::element='quadrilateral'
!-----------------------dynamic arrays------------------------------------
INTEGER,ALLOCATABLE::etype(:),g(:),g_g(:,:),g_num(:,:),nf(:,:),node(:), &
num(:)

REAL(iwp),ALLOCATABLE::bdylds(:),bee(:,:),bload(:),coord(:,:),dee(:,:), &
der(:,:),deriv(:,:),d1x1(:),d2x1(:),eld(:),eload(:),eps(:), &
etensor(:,:,:),diag(:),g_coord(:,:),jac(:,:),mm(:,:),pl(:,:), &
points(:,:),prop(:,:),sigma(:),stress(:),tensor(:,:,:),val(:,:), &
weights(:),x1(:),x_coords(:),y_coords(:)

!-----------------------input and initialisation--------------------------
OPEN(10,FILE='fe95.dat'); OPEN(11,FILE='fe95.res')
READ(10,*)nxe,nye,np_types; CALL mesh_size(element,nod,nels,nn,nxe,nye)
ALLOCATE(nf(nodof,nn),points(nip,ndim),weights(nip),g_coord(ndim,nn), &

FORCED VIBRATIONS 497

num(nod),dee(nst,nst),tensor(nst,nip,nels),coord(nod,ndim),pl(nst,nst),&
etensor(nst,nip,nels),jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
g_num(nod,nels),bee(nst,ndof),eld(ndof),eps(nst),sigma(nst), &
mm(ndof,ndof),bload(ndof),eload(ndof),g(ndof),stress(nst),etype(nels), &
g_g(ndof,nels),x_coords(nxe+1),y_coords(nye+1),prop(nprops,np_types))

READ(10,*)prop; etype=1; IF(np_types>1)READ(10,*)etype
READ(10,*)x_coords,y_coords; READ(10,*)dtim,nstep,npri,nres
nf=1; READ(10,*)nr,(k,nf(:,k),i=1,nr); CALL formnf(nf); neq=MAXVAL(nf)
ALLOCATE(bdylds(0:neq),x1(0:neq),d1x1(0:neq),d2x1(0:neq),diag(0:neq))
READ(10,*)loaded_nodes; ALLOCATE(node(loaded_nodes),val(loaded_nodes,ndim))
READ(10,*)(node(i),val(i,:),i=1,loaded_nodes)

!-----------------------loop the elements to set up global geometry ------
elements_1: DO iel=1,nels
CALL geom_rect(element,iel,x_coords,y_coords,coord,num,'y')
CALL num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=TRANSPOSE(coord); g_g(:,iel)=g

END DO elements_1; CALL mesh(g_coord,g_num,12)
WRITE(11,'(A,I5,A)')"There are",neq," equations"

!-----------------------initial conditions--------------------------------
tensor=zero; etensor=zero; x1=zero; d1x1=zero; d2x1=zero; diag=zero
CALL sample(element,points,weights); time=zero

!-----------------------time stepping loop--------------------------------
WRITE(11,'(/A,I5))')" Result at node",nres
WRITE(11,'(A)')" time load x-disp y-disp"
WRITE(11,'(4E12.4)')time,load(time),x1(nf(:,nres))
time_steps: DO j=1,nstep
fmax=zero; time=time+dtim; x1=x1+dtim*d1x1+pt5*dtim**2*d2x1; bdylds=zero

!-----------------------go round the Gauss Points ------------------------
elements_2: DO iel=1,nels

num=g_num(:,iel); coord=TRANSPOSE(g_coord(:,num)); g=g_g(:,iel)
area=zero; bload=zero; eld=x1(g)
gauss_pts_1: DO i=1,nip
CALL deemat(dee,prop(1,etype(iel)),prop(2,etype(iel)))
CALL shape_der(der,points,i); jac=MATMUL(der,coord)
det=determinant(jac); area=area+det*weights(i); CALL invert(jac)
deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
eps=MATMUL(bee,eld); eps=eps-etensor(:,i,iel); sigma=MATMUL(dee,eps)
stress=sigma+tensor(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta)
fnew=dsbar-prop(4,etype(iel))

!-----------------------check whether yield is violated-------------------
IF(fnew>=zero)THEN

stress=tensor(:,i,iel); CALL invar(stress,sigm,dsbar,lode_theta)
f=dsbar-prop(4,etype(iel)); fac=fnew/(fnew-f)
stress=tensor(:,i,iel)+(one-fac)*sigma; CALL vmdpl(dee,stress,pl)
dee=dee-fac*pl

END IF
sigma=MATMUL(dee,eps); sigma=sigma+tensor(:,i,iel)
CALL invar(sigma,sigm,dsbar,lode_theta); f=dsbar-prop(4,etype(iel))
IF(f>fmax)fmax=f; eload=MATMUL(sigma,bee)
bload=bload+eload*det*weights(i)

!-----------------------update the Gauss Point stresses and strains-------
tensor(:,i,iel)=sigma; etensor(:,i,iel)=etensor(:,i,iel)+eps

END DO gauss_pts_1
bdylds(g)=bdylds(g)-bload
IF(j==1)THEN
CALL elmat(area,prop(3,etype(iel)),mm); CALL formlump(diag,mm,g)

END IF

498 FORCED VIBRATIONS

END DO elements_2; bdylds(0)=zero
DO i=1,loaded_nodes

bdylds(nf(:,node(i)))=bdylds(nf(:,node(i)))+val(i,:)*load(time)
END DO
bdylds(1:)=bdylds(1:)/diag(1:); d1x1=d1x1+(d2x1+bdylds)*pt5*dtim
d2x1=bdylds; WRITE(*,'(A,I6,A,F8.4)')" time step",j," F_max",fmax
IF(j/npri*npri==j)WRITE(11,'(4E12.4)')time,load(time),x1(nf(:,nres))

END DO time_steps
STOP
CONTAINS
FUNCTION load(t) RESULT(load_result)
!-----------------------Load-time function--------------------------------
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
REAL(iwp),INTENT(IN)::t
REAL(iwp)::load_result
load_result=-180.0_iwp

RETURN
END FUNCTION load
END PROGRAM p117

New scalar reals:
dsbar invariant, σ

f value of yield function
fac measure of yield surface overshoot (f from equation (6.35))
fmax maximum value of yield function f at each time step
fnew value of yield function after stress increment
lode theta Lode angle, θ

sigm mean stress, σm

New dynamic real arrays:
bdylds self-equilibrating global body forces
bload self-equilibrating element body forces
eld element nodal displacements
eload integrating point contribution to bload
eps strain terms
etensor holds running total of all integrating point strain terms
diag global lumped mass vector
pl plastic [Dp] matrix (6.29)
sigma stress terms
stress stress term increments
tensor holds running total of all integrating point stress terms

In the same way as was done for first order problems in Program 8.4, θ can be set to zero
in second order recurrence formulae such as (3.139). After rearrangement, the only matrix
remaining on the left hand side of the equation is [Mm]. If this is lumped (diagonalised),
the new solution {U}1 can be computed without solving simultaneous equations at all.
Further, the right hand side products can again be completed using element-by-element
summation and so no global matrices are involved. This procedure is particularly attractive
in non-linear problems where the element stiffness [km] is a function of, for example, strain.
In the present program, non-linearity is introduced in the form of elasto-plasticity, which

FORCED VIBRATIONS 499

Initialisation, e.g.

For all time steps

Replace {U1} by {U0} + ∆t{U0} + 0.5 ∆t {U0}

For all elements

Retrieve element geometry.
Find nodal displacments {u}.

For all Gauss points

Find the [B] and [D] matrices.
Find the element strains {e} = [B]{u}
Find the element stresses {s} = [D]{e}

Find the element internal forces

{bload} = ∫ [B]T{s}dV

Assemble global internal forces
{bdylds}

Add external loads to internal loads

Compute {U1} = [M]
−1*{bdylds}

Replace {U1} by {U0} + 0.5 ∆t({U0} + {U1}).

Replace {U1} by {U0}

{U0} = {U0} = {U0} = {0}

..

.

.. ..

. ..

. ..

Figure 11.18 Structure chart for Program 11.7

was described in Chapter 6. The nomenclature used is therefore drawn from the earlier
programs in this chapter and from those in Chapter 6, particularly Program 6.1 which dealt
with von Mises solids. The structure chart for the program is shown in Figure 11.18 and
the problem layout and data in Figure 11.19.

Turning to the program code, after input and initialisation, the von Mises plastic stress–
strain matrix [Dp] (called pl in the program, see Appendix C) is formed by subroutine
vmdpl. The remainder of the program is a large explicit integration time-stepping loop. The
displacements (called x1) are updated and then, scanning all elements and Gauss points,
new strains can be computed. The constitutive relation then determines the appropriate level
of stress and hence whether the yield stress has been violated or not. If the yield stress has
not been violated, the material remains elastic, otherwise the constitutive matrix is updated
by subtracting a proportion of the plastic matrix pl from the elastic matrix dee (see Figure
6.7). The corrected stresses are then redistributed as “body loads” bdylds, whence the
new accelerations (d2x1) can be found and integrated to find the new velocities (d1x1).
The next cycle of displacements can then be updated. The load weightings are read as data,
and the loading function is held in function subprogram called load.

The example problem shown in Figure 11.19, is of a simply supported plane strain
slab subjected to a sudden application of a uniformly distributed load of 180 kN/m2 which

500 FORCED VIBRATIONS

1

2

3

4

5

6

7

9 29 31

32

180 kN/m2

1 m

E = 3 × 107kN/m2 u = 0.3
r = 7.33 × 10−4 t/m3 sy= 5 × 104kN/m2

15 m

nxe nye
6 1

np_types
1

prop(e,v,rho,sigmay)
3.0e7 0.3 7.33e-4 5.0e4

etype (not needed)

x_coords, y_coords
 0.0 2.5 5.0 7.5 10.0 12.5 15.0
 0.0 -1.0

dtim nstep npri nres
1.0e-6 10000 50 31

nr,(k,nf(:,k),i=1,nr)
15
 3 0 0 5 0 1 8 0 1 10 0 1 13 0 1 15 0 1 18 0 1 20 0 1
23 0 1 25 0 1 28 0 1 30 0 1 31 0 1 32 0 1 33 0 1

loaded_nodes(node(i),val(i,:),i=1,loaded_nodes)
13
 1 0.0 0.4167 4 0.0 1.6667 6 0.0 0.8333
 9 0.0 1.6667 11 0.0 0.8333 14 0.0 1.6667
16 0.0 0.8333 19 0.0 1.6667 21 0.0 0.8333
24 0.0 1.6667 26 0.0 0.8333 29 0.0 1.6667
31 0.0 0.4167

(not to scale)

Figure 11.19 Mesh and data for Program 11.7 example

remains constant with time. Symmetry has been assumed at the centre of the beam, and
along the neutral axis, where only vertical movement is permitted. There are four properties
required (nprops=4) in this non-linear analysis, namely Young’s modulus E, Poisson’s
ratio ν, the mass density ρ and the (von Mises) yield strength of the material σy . The data
calls for nstep=10000 calculation time steps of length dtim=1.0e-6. Results are to be
printed every npri=50 steps at node nres=31 which lies on the centreline of the beam.

A truncated set of results from the program is printed in Figure 11.20 in the form of
elapsed time, load and the x- and y-displacements at node 31. Figure 11.21 gives a plot of

FORCED VIBRATIONS 501

There are 50 equations

 Result at node 31
 time load x-disp y-disp
 0.0000E+00 -0.1800E+03 0.0000E+00 0.0000E+00
 0.5000E-04 -0.1800E+03 0.0000E+00 -0.2995E-03
 0.1000E-03 -0.1800E+03 0.0000E+00 -0.1214E-02
 0.1500E-03 -0.1800E+03 0.0000E+00 -0.2684E-02
 0.2000E-03 -0.1800E+03 0.0000E+00 -0.4867E-02
 0.2500E-03 -0.1800E+03 0.0000E+00 -0.8084E-02
 0.3000E-03 -0.1800E+03 0.0000E+00 -0.1231E-01
 0.3500E-03 -0.1800E+03 0.0000E+00 -0.1742E-01
 0.4000E-03 -0.1800E+03 0.0000E+00 -0.2331E-01
 0.4500E-03 -0.1800E+03 0.0000E+00 -0.2991E-01
 0.5000E-03 -0.1800E+03 0.0000E+00 -0.3724E-01
 0.5500E-03 -0.1800E+03 0.0000E+00 -0.4494E-01
 0.6000E-03 -0.1800E+03 0.0000E+00 -0.5287E-01
.
.
.
 0.9550E-02 -0.1800E+03 0.0000E+00 -0.4173E+00
 0.9600E-02 -0.1800E+03 0.0000E+00 -0.4127E+00
 0.9650E-02 -0.1800E+03 0.0000E+00 -0.4082E+00
 0.9700E-02 -0.1800E+03 0.0000E+00 -0.4038E+00
 0.9750E-02 -0.1800E+03 0.0000E+00 -0.3997E+00
 0.9800E-02 -0.1800E+03 0.0000E+00 -0.3957E+00
 0.9850E-02 -0.1800E+03 0.0000E+00 -0.3921E+00
 0.9900E-02 -0.1800E+03 0.0000E+00 -0.3887E+00
 0.9950E-02 -0.1800E+03 0.0000E+00 -0.3853E+00
 0.1000E-01 -0.1800E+03 0.0000E+00 -0.3821E+00

Figure 11.20 Results from Program 11.7 example

0 1 2 3 4 5 6 7 8 9 10
t ×10−3

0
0.

1
0.

2
0.

3
0.

4
0.

5

D
is

pl
ac

em
en

t (
no

de
 3

1)

Figure 11.21 Displacement at node 31 versus time from Program 11.7 example

502 FORCED VIBRATIONS

the centreline displacement of the beam as a function of time computed over the first 10,000
time steps. The development of permanent, plastic deformation is clearly demonstrated.

Glossary of variable names used in Chapter 11

Scalar integers:
cg iters pcg iteration counter
cg limit pcg iteration ceiling
i simple counter
iel simple counter
idiag skyline bandwidth
ifail warning flag from bisect subroutine
iwp SELECTED REAL KIND(15)
j simple counter
jj simple counter
k simple counter
lnode loaded node number
loaded nodes number of loaded nodes
lsense sense of freedom to be loaded at node lnode
nband bandwidth of upper triangle
ndof number of degrees of freedom per element
ndim number of dimensions
nels number of elements
neq number of degrees of freedom in the mesh
nip number of integrating points
nlfp number of load function points
nln number of loaded freedoms
nmodes number of eigenvectors included in superposition
nn number of nodes in the mesh
nod number of nodes per elements
nodof number of degrees of freedom per node
nof number of output freedoms
nprops number of material properties
npri output printed every npri time steps
np types number of different property types
nr number of restrained nodes
nres node number at which time history is to be printed
nst number of stress terms
nstep number of calculation time steps
nxe number of elements in x-direction
nye number of elements in y-direction

Scalar reals:
aa working variable
alpha α from equations (3.22)
area element area

FORCED VIBRATIONS 503

bb working variable
beta Newmark time stepping parameter or β from equations (3.22)
cg tol pcg convergence tolerance
c1 working constant
c2 working constant
c3 working constant
c4 working constant
det determinant of Jacobian matrix
dr damping ratio
dsbar invariant, σ

dtim calculation time step
d4 set to 4.0
d6 set to 6.0
etol eigenvalue tolerance set to 1 × 10−30

f value of yield function or force vector
fac measure of yield surface overshoot (f from equation (6.35))
fk Rayleigh damping parameter on stiffness
fm Rayleigh damping parameter on mass
fmax maximum value of yield function f at each time step
fnew value of yield function after stress increment
f1 temporary working variable
f2 temporary working variable
gamma Newmark time stepping parameter
k1 working variable
k2 working variable
lode theta Lode angle, θ

omega frequency of forcing term
one set to 1.0
penalty set to 1 × 1020

pt2 set to 0.2
pt25 set to 0.25
pt5 set to 0.5
sigm mean stress, σm

theta time integration weighting parameter
time holds elapsed time t

two set to 2.0
up holds dot product {R}T

k {R}k from equations (3.22)
zero set to 0.0

Scalar character:
element element type

Scalar logicals:
consistent set to .TRUE. if mass matrix is “consistent”
cg converged set to .TRUE. if pcg process has converged

504 FORCED VIBRATIONS

Dynamic integer arrays:
etype element property type vector
g element steering vector
g g global element steering matrix
g num global element node numbers matrix
kdiag diagonal term locations
kdiag l diagonal term locations on the left
kdiag r diagonal term locations on the right
lf vector holding loaded freedoms
lp vector holding output freedoms
nf nodal freedom matrix
node output/input nodes vector
num element node number vector
sense sense of output nodes

Dynamic real arrays:
a accelerations
acc accelerations at output freedoms
al array holding all loading values at each calculation step
a1 temporary working vector
bdylds self-equilibrating global body forces
bee strain-displacement matrix
bigk eigenvector matrix
bload self-equilibrating element body forces
b1 temporary working vector
coord element nodal coordinates
cv damping matrix
d displacements or vector used in equations (3.22)
dee stress–strain matrix
der shape function derivatives with respect to local coordinates
deriv shape function derivatives with respect to global coordinates
diag global lumped mass vector
diag precon diagonal preconditioner vector
dis displacements at output freedoms
d1x0 “old” velocities
d1x1 “new” velocities
d2x0 “old” accelerations
d2x1 “new” accelerations
ecm element consistent mass matrix
eld element nodal displacements
ell element lengths vector
eload integrating point contribution to bload
eps strain terms

FORCED VIBRATIONS 505

etensor holds running total of all integrating point strain terms
fun shape functions
f1 left hand side matrix (stored as a skyline)
g coord nodal coordinates for all elements
jac Jacobian matrix
kd vector used to set up initial accelerations
kh global stiffness vector
km element stiffness matrix
kp modified global “stiffness” matrix
ku global stiffness matrix stored as upper triangle
kv global stiffness matrix
loads nodal loads and displacements
mc global mass matrix used to set up initial accelerations
mm element consistent mass matrix
mv global consistent mass matrix
p “descent” vector used in equations (3.22)
pl plastic [Dp] matrix (6.29)
points integrating point local coordinates
prop element properties matrix
rl input load function load values
rrmass vector holding reciprocal of square root of lumped mass
rt input load function time values
sigma stress terms
storkm holds element stiffness matrices
stormm holds element mass matrices
stress stress term increments
tensor holds running total of all integrating point stress terms
u vector used in equations (3.22)
udiag transformed and untransformed eigenvectors
v velocities
val applied nodal load weightings
vc vector used to set up initial accelerations
vel velocities at output freedoms
weights weighting coefficients
x “old” solution vector
xmod solutions to modal SDOF equations
xnew “new” solution vector
x0 “old” displacements
x1 “new” displacements
x coords x-coordinates of mesh layout
y coords y-coordinates of mesh layout

Dynamic character array:
mtype set to ‘l‘ for lumped mass and ‘c‘ for consistent

506 FORCED VIBRATIONS

11.2 Exercises

1. The undamped beam shown in Figure 11.22 is initially at rest and subjected to a
suddenly applied moment of one unit at its left support. Using a single finite element,
a time step of 1 s and the Constant Acceleration Method (β = 1/4, γ = 1/2), estimate
the rotation at both ends of the beam after 2 s.
(Ans: θ1 = 0.284, θ2 = 0.0.036)

1.0

1.0
EI = 1.0
rA = 420.0

Figure 11.22

2. Repeat the previous question assuming 5% damping. Use Rayleigh damping by
assuming the mass matrix damping parameter (fm) equals zero. The fundamental
natural frequency of the beam is ω1 = 0.48.
(Ans: If fm = 0, then ζ1 = ω1fk/2, hence with ζ1 = 0.05 and ω1 = 0.48, fk = 0.208.
θ1 = 0.254, θ2 = 0.0.015)

3. The undamped propped cantilever shown in Figure 11.23 is initially at rest and
subjected to a suddenly applied load at its mid-span. Using two finite elements, a
time step of 1 s and the Linear Acceleration Method (β = 1/6, γ = 1/2), estimate
the deflection under the load after 2 s.
(Ans: u = 0.077)

2.0

1.0

1.0

EI = 10.0
rA = 210.0

Figure 11.23

4. The undamped cantilever shown in Figure 11.24 is initially at rest and subjected
to a suddenly applied load and moment at its tip. Using one finite element, a time
step of 1 s and the Constant Acceleration Method (β = 1/4, γ = 1/2), estimate the
deflection and rotation at the tip after 2 s.
(Ans: u = 0.092, θ = 0.653)

FORCED VIBRATIONS 507

1.0

1.0

1.0

EI = 1.0
rA = 420.0

Figure 11.24

5. A simply supported beam of length, L = 1 and properties EI = 1.0, ρA = 3.7572 is
subjected to a constant transverse force, P = 48, which moves across the beam from
the left to right support with a constant velocity, U = 1. By discretising the beam
into 4 elements, compute the time dependent response of the centreline of the beam.
Show that the centreline deflection reaches a maximum value that is approximately
1.743 times the deflection that would have been obtained if the load had been placed
statically at the centre of the beam. Use equivalent fixed end moments and reactions
to model the effect of the moving load at four locations within each element.

Compare your result with the analytical solution at the centreline given by:

v = 2PL3

π4EI

[
sin cω1t − c sin ω1t

1 − c2

]

where

ω1 = π2

L2

√
EI

ρA
and c = πU

ω1L

References

Bathe KJ 1996 Numerical Methods in Finite Element Analysis, 3rd edn. Prentice Hall, Englewood
Cliffs, N.J.

Key SW 1980 Transient response by time integration: A review of implicit and explicit operators. In
Advances in Structural Dynamics (ed. Donea J). Applied Science, London, pp. 71–95.

Smith IM 1984 Adaptability of truly modular software. Eng Comput 1(1), 25–35.
Warburton GB 1964 The Dynamical Behaviour of Structures. Pergamon Press, Oxford.
Wong SW, Smith IM and Gladwell I 1989 PCG methods in transient FE analysis Part II: Second

order problems. Int J Numer Methods Eng 28(7), 1567–1576.

12

Parallel Processing of Finite
Element Analyses

12.1 Introduction

In the previous Chapters, serial finite element programs were listed for the solution of
a wide variety of problems in engineering and science. As was mentioned in Chapter 1,
analyses can be speeded up by vector processing as illustrated in Chapter 5, Program 5.6,
but so far vector machines have not been widespread.

The more common approach, used in the majority of supercomputers at the moment, is
parallel processing in which many standard (and therefore low cost) processors are linked
together by fast communication networks. About 1,000 processors are typical at the time
of writing.

However, supercomputers are still expensive, and an alternative at very low cost is to
link together “clusters” of PCs by an Ethernet or similar low-cost communications network.

In this chapter, programs are listed which run in parallel on any system capable of
supporting MPI (the “message passing interface” standard described in Chapter 1). This
covers all current supercomputers (vector-parallel, shared memory, distributed memory) and
PC clusters. Performance statistics are given for several such systems. OpenMP versions
have also been successfully tested but are less portable.

The approach adopted is to take at least one program from each of the preceding
Chapters 5 to 11 and parallelise it. The full range of algorithm types—linear static equi-
librium, non-linear static equilibrium, eigenvalue and implicit and explicit transient, are
covered making 10 programs in all.

The methodology assumes the same program running on every processor of a multi-
processor system, each processor usually operating on different data. From time to time a
processor needs information that does not reside on that particular processor and has to be
communicated to it via MPI (Pettipher and Smith, 1997).

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

510 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

Table 12.1 Effect of mesh subdivision in
three dimensions

Mesh subdivision Number of equations

10 × 10 × 10 12,580
20 × 20 × 20 98,360
40 × 40 × 40 777,520
50 × 50 × 50 1,514,900
80 × 80 × 80 6,182,240

100 × 100 × 100 12,059,800
160 × 160 × 160 49,305,280

The benefits sought are both in faster execution times (under perfect conditions n

processors operating in parallel would decrease analysis time by a factor of n) and in ability
to process larger problems, because the data can be distributed over the n processors. It
is expected that most parallel processing by finite elements will involve problems that are
spatially three-dimensional. Data demands for such analyses increase rather dramatically
with problem size as shown in Table 12.1 which refers to an elastic cube meshed by 20-
node elements (see Program 5.5). The cube has all four sides on rollers, a fixed base, and
a free surface.

Thus, although a mesh of 160 × 160 elements in two dimensions might be considered
modest, 160 × 160 × 160 elements in three dimensions would need 400 Mb just to store a
single vector of equations if the data were not distributed.

Using the program described first in this Chapter, a 160 × 160 × 160 element elastic
cube problem was solved in 90 min on a 64-processor system and in 10 min on a 512
processor system.

The serial programs closest to their parallel derivatives are given in Table 12.2 below:

Table 12.2 Serial and parallel program equivalence

Serial version Parallel version Remarks

Program 5.5 Program 12.1 20-node brick option, loaded freedoms only
Program 6.11 Program 12.2 loaded freedoms only
Program 7.5 Program 12.3 3D option
Program 8.3 Program 12.4 3D version
Program 8.4 Program 12.5 3D version
Program 9.2 Program 12.6 3D version
Program 9.5 Program 12.7 3D version
Program 10.4 Program 12.8 3D version
Program 11.5 Program 12.9 3D version
Program 11.6 Program 12.10 3D version

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 511

12.2 Differences between parallel and serial programs

As far as possible, the parallel programs copy their serial counterparts. For example com-
parison of Program 5.5 (serial) and Program 12.1 (parallel) will show that the element
integration loop, beginning with label gauss_pts_1 is exactly the same in both versions.
Such a consistency indicates “local” or “embarrassingly parallelisable” sections of code.

When distributed arrays are involved, for example in the section following “pcg equation
solution” the coding is identical with the exception of _P in the DOT_PRODUCT calls,
the _pp appendage to array names (r becomes r_pp and so on) and the distributed
convergence check checon_par.

In what follows, the differences between parallel and serial programs are described.
These differences are common to all the parallelised programs.

12.2.1 Parallel libraries

Serial libraries new_library and geometry_lib perform the same tasks as main and
geom in the earlier Chapters but are augmented by six others, as shown in Table 12.3.

Table 12.3 Parallel libraries

Library name Usage

precision Sets precision for REAL variables
utility Sets various MPI routines for broadcasting, distributed

DOT PRODUCT etc
mp module Various MPI routines
timing Routines to assist with performance evaluation
global variables1 Designation of some widely used variables as “global”, not

declared elsewhere
gather scatter6 MPI routines for collecting data from, or distributing it to, par-

allel processors

12.2.2 Global variables

In the serial programs, all variables were declared in all programs. In the parallel versions,
some widely used variables are declared as “global.” These are, with their meanings:

ndof Number of degrees of freedom per element or sub-element
nels Number of elements
nels pp Number of elements per processor (variable)
neq Number of equations
neq pp Number of equations per processor (variable)
ntot Total number of degrees of freedom per element
ielpe Counter for element per processor

512 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

iel start Starting element number per processor
ieq start Starting equation number per processor
numpe Local processor number or rank
npes Number of “processing elements”
ier MPI parameter for error checking

These variables must not be additionally declared.

12.2.3 MPI library routines

The same MPI routines are used in all programs. There are only a dozen or so that are
listed below with their purposes (see Appendix F for further details of subroutines used in
this Chapter and their arguments):

MPI INITIALIZE Initialise MPI (hidden)
shutdown Close MPI: must appear
DOT PRODUCT P Distributed version of dot product
SUM P Distributed version of array SUM

N.B. We take the liberty of using capitals as if these were
part of Fortran.

norm p Finds the l2 norm of a distributed vector
find pe procs Finds how many processors are being used
calc nels pp Finds number of elements per processor (variable)
calc neq pp Finds number of equations per processor (variable)
reduce Finds maximum of a distributed integer variable
make ggl Builds distributed g vectors (see Section 3.7.10 for

description of g)
gather See Section 12.2.8
scatter See Section 12.2.8
checon par Convergence check for distributed vectors
reindex fixed nodes See Section 12.2.9
bcast inputdata pxxx See Section 12.2.5.

12.2.4 The pp appendage

Distributed arrays and their upper bounds carry the appendage _pp. A difference from the
serial programs is that it is more convenient to begin array addresses at 1 rather than 0. So
the serial p(0:neq) becomes p_pp(neq_pp) in parallel.

12.2.5 Reading and writing

The simple approach adopted here is that data are read, and results written, on a single
(not necessarily the same) processor. Data, having been read on one processor, are then
broadcast to all other processors by MPI routines such as bcast_inputdata_p121 that

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 513

are unique to each parallel program as the _p121 appendage implies. For results to be
written easily, it is necessary to find which processor contains the desired quantities. In the
programs in this Chapter a single output processor is identified and used.

12.2.6 Problem-specific boundary condition routines

In order to assess the benefits of parallelism it is necessary to be able to refine meshes
readily for the same basic analysis. For this reason simple cuboidal geometries are used
exclusively in this Chapter, and for these it is possible to introduce boundary conditions
via problem-specific routines.

For example Programs 12.1 and 12.2 respectively analyse a cuboid of elastic or elasto-
plastic material made up from 20-node bricks as shown in Figure 12.1.

Note that the z axis is the vertical rather than the y axis as in Program 5.5. All four
vertical faces are on rollers; the front and left are planes of symmetry and the back and
right are external boundaries. The base is completely fixed and the top completely free
(except at the roller edges).

To simplify the loading, it is assumed to occupy a square patch extending to one-fifth
of the cube surface in the x- and y-directions. It is therefore assumed that numbers of
elements in the x- and y-directions are multiples of 5. Subroutine cube_bc20 applies the
appropriate boundary conditions and subroutine loading the appropriate loading.

Vertical rollers
on all 4 side faces

Base fully fixed

cL

x

y

z
Uniformly loaded pa
along 1/5 of cube side

tch

Figure 12.1 Mesh for Programs 12.1 and 12.2

514 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

cL

z

x

y

Rear face
zero boundary
conditions

Top face
zero boundary
conditions

cL

Right face
zero boundary
conditions

Plane of symmetryPlanes of symmetry

C

Figure 12.2 Mesh for Programs 12.3, 12.4, 12.5

Programs 12.3, 12.4, and 12.5 analyse a cuboidal box of 8-node elements as shown in
Figure 12.2.

The boundary conditions assumed are that the top, back and right hand faces of the box
have dependent variable of zero while the left, front, and base are planes of symmetry. In
Program 12.3 potential or flux (see Program 7.4) can be specified at C, the centre of the
box, and the results are printed for the centre and a few nodes to the right. In Programs 12.4
and 12.5, which involve transient analyses, the variation of dependent variable with time is
printed at C only, for a given (uniform) initial distribution. Subroutine box_bc8 applies
the appropriate boundary conditions.

Program 12.6 conducts a Navier–Stokes analysis for the classic lid-driven cavity which
is assumed to be cuboidal (no symmetry in this case). Thus the velocities on all faces
are fixed in x, y and z, except for the top face that is driven with constant velocity in
the x-direction but otherwise fixed. To avoid a singularity in the pressure field, pressure is
assumed to be zero along the left hand edge of the top of the box (analogous to Programs 9.1
and 9.2 where the top left hand corner had zero pressure). Subroutine ns_cube_bc20
applies the appropriate boundary conditions. A typical mesh is shown in Figure 12.3.

Program 12.7 analyses coupled consolidation of a cuboid of porous elastic material.
The boundary conditions on the solid part are the same as those in Figure 12.1 while
the fluid pressure is zero on the top surface only. Subroutine biot_loading again
assumes a square patch extending to one-fifth of the surface edge length. Subroutine
biot_cube_bc20 supplies the appropriate boundary conditions. A typical mesh is shown
in Figure 12.4.

The remaining programs in the Chapter, Programs 12.8, 12.9, 12.10 all analyse cuboidal
cantilevers of elastic or elasto-plastic material as shown in Figures 12.5 and 12.6.

The elements can be 8-node (Program 12.8) or 20-node (Programs 12.9, 12.10) bricks
and the front x-z face is completely fixed in x, y, and z. In this simple case the number of
restrained nodes, nr, is easily calculated and the appropriate boundary condition applied.

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 515

x

y

z

u,v,w velocities on all sides
and base fixed to zero

Velocities on top f
u = 1.0, v = w = 0

ixed toPressure on this line
fixed to zero

Figure 12.3 Mesh for Program 12.6

Vertical rollers
on all 4 side faces

Base fully fixed

x

y

z Top face excess pre
fixed to zero

ssure
Uniformly loaded patch
along 1/5 of cube side

cL

Figure 12.4 Mesh for Program 12.7

516 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

y

z

x

Front x −z face is
fully fixed

Figure 12.5 Mesh for Program 12.8

y

z

x

Front x −z face is
fully fixed

Forcing function P(t)

Figure 12.6 Mesh for Programs 12.9 and 12.10

For Programs 12.9 and 12.10, in which a load is applied, an even number of elements in
the x-direction is assumed, so that the load can be applied at the mid-point of the top of
the free-end face as shown in Figure 12.6.

12.2.7 rest instead of nf

In the serial programs a “node freedom array,” nf (see Section 3.7.10) was employed.
This array contained information about every node in the mesh, whether restrained or not.
In very large problems this is wasteful because the restrained (usually boundary) nodes
become a smaller and smaller proportion of the total. For this reason the parallel programs
use an array rest instead of nf. Exactly the same restraint information is created as would
be the case for nf but instead of being read in, it is created by the boundary condition

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 517

routines described in the previous section. Thus routines like cube_bc20 return rest
from a knowledge of the number of elements in each direction and the problem-specific
boundary conditions. Following its creation, rest is often rearranged using subroutines
rearrange or rearrange_2 before being used in routines to calculate the steering
vector g from the restraint data. Because there is now no nf, replacements for subroutine
num_to_g which was used in all serial programs are necessary. The replacement routine
is find_g3 in Programs 12.1, 12.2, 12.6, 12.7, find_g4 in Programs 12.3, 12.4, 12.5,
and find_g in Programs 12.8, 12.9, 12.10. The different versions are necessary because
rather large volumes of data are being searched.

It should be re-emphasised that the number of restrained nodes, nr, is now explicitly
calculated in each parallel program and does not have to be input.

12.2.8 Gathering and scattering

This is done very neatly in the serial programs using the power of Fortran 95 as described
in Section 1.9.4. Thus a typical gather-matrix multiply-scatter loop around the elements,
the core of EBE iteration methods, might read:

elements_2: DO iel=1,nels
g=g_g(:,iel)
pmul=p(g)
utemp=MATMUL(km,pmul)
u(g)=u(g)+utemp

END DO elements_2

In parallel, u and p are distributed as u_pp and p_pp while utemp and pmul are dis-
tributed as two-dimensional arrays utemp_pp and pmul_pp that hold all the components
of utemp and pmul for that processor.

Thus the parallel loop becomes:

CALL gather(p_pp,pmul_pp)
elements_2: DO iel=1,nels_pp
utemp_pp(:,iel)=MATMUL(km,pmul_pp(:,iel))

END DO elements_2
CALL scatter(u_pp,utemp_pp)

12.2.9 Reindexing

When loads are read in or displacements fixed, their global freedom numbers are specified.
In parallel, the appropriate equations are distributed across the processors in some way and
so the appropriate indexing must be found using reindex_fixed_nodes.

12.2.10 Domain composition

For parallel FE processing, pieces of a large mesh have to be allocated to the processors.
These pieces are traditionally called subdomains. It is also traditional to speak of the
whole mesh or “domain” being “decomposed” into its constituent subdomains. This use of

518 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

words implies that a large mesh (domain) is assembled, in principle by the global assembly
techniques described in the previous Chapters, and that the resulting global equations are
“decomposed” or torn apart into smaller pieces. Indeed some early implementations of
this process were called diakoptics, implying a cutting up procedure. “Substructuring,” and
“block” and “frontal” methods are similar variants, the main application being the solution,
by elimination techniques, of the very large sets of linear algebraic equations which govern
the static equilibrium of linear and non-linear FE systems.

All of this suggests the parallelisation of the “global” strategy used in earlier Chapters of
this book. When Gaussian elimination methods are used, elimination can proceed indepen-
dently on equations relating to a particular subdomain, stored on a particular processor, until
the boundaries of the subdomain are reached. Then communication is necessary between
processors. This can be a rather complicated procedure, and a large literature has devel-
oped around the theme of optimising subdomain distributions. Often equations are solved
directly within subdomains but iteratively at the boundaries.

In contrast, in this book a simple approach is used, based on the element-by-element
methods used in previous Chapters. In these, no global equation system matrices are ever
constructed and therefore it is more meaningful to speak of “domain composition” rather
than “decomposition.” But of course subdomains have to be identified.

In the element-by-element technique, see Section 3.5, the essential operations that
involve inter-processor communication are the “gather, matrix multiply, scatter” procedure
typified by equations (3.23) and the dot products typified by equations (3.22), (3.28) and
(3.29). Clearly different subdomain distributions will affect the amount of communcation

Element 1

Element 1

Element 1

Element 1

Figure 12.7 Alternative domain compositions

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 519

involved. Margetts (2002) (see also Smith and Margetts, 2003) has shown that there is cer-
tainly no simple solution to this problem for complicated domains. Four different domain
compositions, shown in Figure 12.7 for the case of a buttress dam, led to broadly similar
analysis times on a supercomputer. Some compositions lead to fewer large messages being
exchanged between processors and others to more short messages.

For the cuboidal meshes used in this Chapter a “naive” composition by slices on x-z
planes is used.

12.2.11 Load balancing

In our “naive” domain compositions the “load” on processors (the amount of computation
they do) is almost perfectly distributed or “balanced” by assigning almost equal numbers
of elements, nels_pp and equations, neq_pp to each processor. Note that if the mesh is
too small for the number of processors requested, the analysis will not continue.

We are now in a position to describe the parallel programs in detail.

Program 12.1 Three dimensional analysis of an elastic solid. Compare Program 5.5.

PROGRAM p121
!---
! Program 5.5 three dimensional analysis of an elastic solid
! using 20-node brick elements, preconditioned conjugate gradient
! solver; only integrate one element, diagonal preconditioner
! diag_precon; parallel version ; loaded freedoms only ; cube_bc
!---

USE new_library; USE geometry_lib; USE precision; USE utility
USE mp_module ; USE timing ; USE global_variables1
USE gather_scatter6; IMPLICIT NONE

! ndof, nels, neq , ntot are now global variables - not declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=3,nod=20,nst=6,loaded_freedoms, &
i,j,k,ndim=3,iters,limit,iel,num_no,no_index_start,neq_temp,nn_temp,nle

REAL(iwp)::aa,bb,cc,e,v,det,tol,up,alpha,beta,q
CHARACTER(LEN=15)::element= 'hexahedron'; LOGICAL :: converged

!-------------------------- dynamic arrays--------------------------------
REAL(iwp),ALLOCATABLE :: points(:,:),dee(:,:),coord(:,:), weights(:), &

val(:),p_g_co_pp(:,:,:), jac(:,:), der(:,:), deriv(:,:),bee(:,:), &
km(:,:),eld(:),eps(:),sigma(:),eld_pp(:,:),diag_precon_pp(:),p_pp(:),&
r_pp(:),x_pp(:), xnew_pp(:),u_pp(:),pmul_pp(:,:),utemp_pp(:,:), &
d_pp(:),diag_precon_tmp(:,:)

INTEGER, ALLOCATABLE :: rest(:,:), g(:), num(:), g_num_pp(:,:) , &
g_g_pp(:,:),no(:),no_local_temp(:),no_local(:)

!-------------------------input and initialisation------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF (numpe==npes) THEN
OPEN (10,FILE='p121.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc,e,v, tol,limit

END IF

520 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

CALL bcast_inputdata_p121(numpe,npes,nels,nxe,nze,nip,aa,bb,cc, &
e,v,tol,limit)

CALL calc_nels_pp ; ndof=nod*nodof ; ntot=ndof
nn_temp = 0; neq_temp = 0 ; nye = nels/nxe/nze ; nle = nxe/5
nr = ((2*nxe+1)*(nze+1)+(nxe+1)*nze)*2+((2*nye-1)*nze+(nye-1)*nze)*2 &

+ (2*nye-1)*(nxe+1) + (nye-1)*nxe
loaded_freedoms = 3*nle*nle + 4*nle + 1
ALLOCATE (points(nip,ndim),dee(nst,nst),coord(nod,ndim),jac(ndim,ndim), &

der(ndim,nod),deriv(ndim,nod),eld_pp(ntot,nels_pp), &
bee(nst,ntot),km(ntot,ntot),eld(ntot),eps(nst),sigma(nst), &
g(ntot),pmul_pp(ntot,nels_pp),utemp_pp(ntot,nels_pp),num(nod), &
p_g_co_pp(nod,ndim,nels_pp),g_num_pp(nod,nels_pp),weights(nip),&
g_g_pp(ntot,nels_pp),no(loaded_freedoms),rest(nr,nodof+1), &
val(loaded_freedoms),no_local_temp(loaded_freedoms), &
diag_precon_tmp(ntot,nels_pp))

CALL cube_bc20(nxe,nye,nze,rest) ; CALL rearrange(rest)
CALL loading(nxe,nze,nle,no,val); val = - val * aa * bb / 12._iwp
CALL deemat(dee,e,v);CALL sample(element,points,weights); ielpe=iel_start

!---------- loop the elements for global cordinates etc ------------------
elements_0: DO iel = 1 , nels_pp

CALL geometry_20bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g3(num,g,rest) ; g_num_pp(:,iel) = num
p_g_co_pp(:,:,iel) = coord; g_g_pp(:,iel) = g ; ielpe=ielpe+1
i = MAXVAL(g); j = MAXVAL(num)
IF(i>neq_temp)neq_temp = i ; IF(j>nn_temp)nn_temp = j

END DO elements_0
neq = reduce(neq_temp); nn = reduce(nn_temp)
CALL calc_neq_pp ; CALL make_ggl(g_g_pp)
ALLOCATE(p_pp(neq_pp),r_pp(neq_pp),x_pp(neq_pp),xnew_pp(neq_pp), &

u_pp(neq_pp),diag_precon_pp(neq_pp),d_pp(neq_pp))
r_pp = .0_iwp; p_pp = .0_iwp; x_pp = .0_iwp; xnew_pp = .0_iwp
diag_precon_pp=.0_iwp; diag_precon_tmp=.0_iwp

!------ element stiffness integration and build the preconditioner-------
iel=1;CALL geometry_20bxz(iel,nxe,nze,aa,bb,cc,coord,num);km=0.0_iwp
gauss_pts_1: DO i=1,nip

CALL shape_der (der,points,i) ; jac = MATMUL(der,coord)
det = determinant(jac); CALL invert(jac)
deriv = MATMUL(jac,der) ; CALL beemat (bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)

END DO gauss_pts_1
elements_1: DO iel = 1,nels_pp

DO k=1,ndof;diag_precon_tmp(k,iel)=diag_precon_tmp(k,iel) &
+km(k,k); END DO

END DO elements_1
CALL scatter(diag_precon_pp,diag_precon_tmp);DEALLOCATE(diag_precon_tmp)

IF(numpe==1)THEN
OPEN (11,FILE='p121.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ", npes ," processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i = 1 , nels_pp,nels_pp-1

WRITE(11,'(A,I8)')"Element ",i ; num = g_num_pp(:,i)
DO k = 1,nod;WRITE(11,'(A,I7,3E12.4)') &

" Node ",num(k),p_g_co_pp(k,:,i); END DO
END DO
WRITE(11,'(A,3(I8,A))')"There are ",nn," nodes",nr, &

" restrained and ", neq," equations"
WRITE(11,*) "Time after setup is :", elap_time() - timest(1)

END IF

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 521

!-------------------- get starting r--------------------------------------
IF(loaded_freedoms>0) THEN
CALL reindex_fixed_nodes &

(ieq_start,no,no_local_temp,num_no,no_index_start)
ALLOCATE(no_local(1:num_no)) ; no_local = no_local_temp(1:num_no)
DEALLOCATE(no_local_temp)

DO i = 1 , num_no
r_pp(no_local(i)-ieq_start+1) = val(no_index_start + i - 1)

END DO
END IF ; q = SUM_P(r_pp)
IF(numpe==1) WRITE(11,'(A,E12.4)') "The total load is ", q
diag_precon_pp=1._iwp/diag_precon_pp;d_pp=diag_precon_pp*r_pp;p_pp=d_pp

!--------------------preconditioned c. g. iterations----------------------
iters = 0

iterations : DO
iters=iters+1; u_pp=0._iwp;pmul_pp=.0_iwp;CALL gather(p_pp,pmul_pp)
elements_2 : DO iel = 1, nels_pp

utemp_pp(:,iel) = MATMUL(km,pmul_pp(:,iel))
! CALL dgemv('n',ntot,ntot,1.0,km,ntot, &
! pmul_pp(:,iel),1,0.0,utemp_pp(:,iel),1)

END DO elements_2 ; CALL scatter(u_pp,utemp_pp)
!--------------------------pcg equation solution--------------------------

up=DOT_PRODUCT_P(r_pp,d_pp);alpha= up/ DOT_PRODUCT_P(p_pp,u_pp)
xnew_pp = x_pp + p_pp* alpha ; r_pp=r_pp - u_pp*alpha
d_pp = diag_precon_pp*r_pp; beta=DOT_PRODUCT_P(r_pp,d_pp)/up
p_pp=d_pp+p_pp*beta
CALL checon_par(xnew_pp,x_pp,tol,converged,neq_pp)
IF(converged .OR. iters==limit) EXIT

END DO iterations
IF(numpe==1)THEN
WRITE(11,'(A,I5)')"The number of iterations to convergence was ",iters
WRITE(11,'(A,E12.4)')"The central nodal displacement is :",xnew_pp(1)

END IF
!-------------------recover stresses at centroidal gauss-point------------

nip=1; points = .0_iwp ; eld_pp = .0_iwp; CALL gather(xnew_pp,eld_pp)
iel = 1; coord= p_g_co_pp(:,:,iel); eld=eld_pp(:,iel)

IF(numpe==1)WRITE(11,'(A)')"The Centroid point stresses for element 1 are"
gauss_pts_2: DO i= 1 , nip
CALL shape_der(der,points,i); jac= MATMUL(der,coord)
CALL invert (jac); deriv= MATMUL(jac,der) ; CALL beemat(bee,deriv)
eps = MATMUL (bee,eld) ; sigma = MATMUL (dee,eps)
IF(numpe==1.AND.i==1)THEN
WRITE(11,'(A,I5)') "Point ",i ; WRITE(11,'(6E12.4)') sigma

END IF
END DO gauss_pts_2

IF (numpe==1) WRITE(11,*)"This analysis took :", elap_time()-timest(1)
CALL shutdown()

END PROGRAM p121

Scalar integers:
i simple counter
iel element counter
iters iteration counter
j simple counter
k simple counter
limit iteration ceiling

522 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

loaded freedoms number of loaded freedoms
ndim number of dimensions
neq temp temporary equation sum
nip number of integrating points
nle number of loaded elements (side of square)
nn number of nodes in the mesh
nn temp temporary node sum
nod number of nodes per element
nodof number of degrees of freedom per node
no index start start address of loaded/fixed freedoms
nr number of restrained nodes
nst number of stress/strain terms
num no number of processors holding load/displacement data
nxe number of elements in x direction
nye number of elements in y direction
nze number of elements in z direction

Scalar reals:
aa x dimension of elements
alpha pcg parameter
beta pcg parameter
bb y dimension of elements
cc z dimension of elements
det determinant of Jacobian matrix
e Young’s Modulus
q total load
tol convergence tolerance
up pcg parameter
v Poisson’s Ratio

Scalar characters:
element element type

Scalar logicals:
converged set to .TRUE. if solution converged

Dynamic integer arrays:
g element steering vector
g g pp distributed global steering matrix
g num pp distributed global element node numbers matrix
no freedoms to be loaded/fixed
no local local (processor) freedoms
no local temp temporary store
num element node numbers
rest node freedom restraints

Dynamic real arrays:
bee strain-displacement matrix

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 523

coord element nodal coordinates
dee stress–strain matrix
der derivatives wrt local coordinates
deriv derivatives wrt global coordinates
diag precon pp distributed diagonal preconditioning matrix
diag precon tmp temporary store
d pp distributed pcg vector
eld element nodal displacements
eld pp distributed nodal displacements
eps element strains
jac Jacobian matrix
km element stiffness matrix
points integrating point local coordinates
p g co pp distributed nodal coordinates
p mul pp gather-scatter matrix
p pp distributed pcg vector
r pp distributed pcg vector
sigma element stresses
store pp temporary storage
utemp pp gather-scatter matrix
u pp distributed pcg vector
val prescribed load/displacement values
weights weighting coefficients
xnew pp distributed pcg vector
x pp distributed pcg vector

After declarations, timing is started and the identification number of each pro-
cessor, numpe, and the total number of processors used, npes is calculated using
find_pe_procs. Data are read on the last processor only (note that compared with
the serial version the input does not need restraint and loading information). These data
have then to be broadcast to all other processors using bcast_inputdata_p121.

Then the number of elements per processor can be calculated by calc_nels_pp. The
number of elements in the y-direction for simple cuboids, nye, is calculated, followed
by the number of loaded elements, nle, assumed to be nxe/5 in this case. The total
number of restrained nodes, nr, can be calculated and the number of loaded freedoms,
loaded_freedoms.

After array allocation, the restraint array rest can be calculated using cube_bc20
and rearranged. Subroutine loading returns the numbers of the loaded freedoms, no, and
their weighted values, val. These are then adjusted for element size (aa, bb).

Loop elements_0 is the parallel equivalent of serial loop elements_1, iel_start
being the number of the first element stored on each processor. Integers neq_temp and
nn_temp calculate the largest equation and node number respectively found on each pro-
cessor. After the loop, which stores node numbers, nodal coordinates and freedom numbers
for every element, reduce produces the global numbers of equations neq and nodes nn.
There are about three quarters of a million equations in this analysis.

524 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

The numbers of equations to be distributed to each processor can then be calculated
using calc_neq_pp and the freedom information using make_ggl. Distributed equation
arrays can then be allocated.

The section commented “element stiffness integration etc” down to END DO gauss_
pts_1 is identical in parallel and serial versions, but building the diagonal preconditioner
in parallel involves a scatter operation.

Information about the analysis is written on processor 1. The next section of cod-
ing has to relocate the global loading val entries to the appropriate processors, using
reindex_fixed_nodes, print out the total load and invert the preconditioner.

The section commented “preconditioned cg iterations” is the parallel equivalent of the
similarly annotated section in Program 5.5, involving gather and scatter as described in
Section 12.2.8. In a similar way the section commented “pcg equation solution” mirrors
the serial version in an obvious way. Only the centreline vertical displacement of the elastic
cuboid is printed.

Finally the stress recovery section, involving loop labelled gauss_pts_2, uses exactly
the same coding as the serial version but the stresses are only printed for the central surface
element at the first Gauss point.

The example analysed is an elastic cube with a uniform pressure of unity on a square
patch at the centre of the cube. Data are listed as Figure 12.8 and results as Figure 12.9.
The vertical deflection is seen to be −0.03428 units and the vertical stress under the load
−0.999 (compared to −1.000 applied).

In all, the parallel program is about 50% longer than its serial counterpart. Two
salient aspects of performance are shown in Figures 12.10 and 12.12. The success of
iterative methods clearly depends on the number of iterations for convergence as a pro-
portion of problem size (Smith and Wang, 1998). Figure 12.10 shows that the iteration

nels nxe nze nip
64000 40 40 8

aa bb cc e v
0.25 0.25 0.25 100.0 0.3

tol limit
1.0e-5 2000

Figure 12.8 Data for Program 12.1 example

This job ran on 32 processors

There are 270641 nodes 24161 restrained and 777520 equations
 Time after setup is : 0.600000000000363798
The total load is -0.4000E+01
The number of iterations to convergence was 568
The central nodal displacement is : -0.3428E-01
The Centroid point stresses for element 1 are
Point 1
 -0.7032E+00 -0.7032E+00 -0.9994E+00 0.3700E-03 0.3846E-03 0.3846E-03
 This analysis took : 83.4400000000005093

Figure 12.9 Results from Program 12.1 example

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 525

Problem Size Iterations
to convergence

Iters/Size

12,000 1.30e-2
98,000 3.03e-3
777,000 7.31e-4

1,514,000 4.65e-4
2,613,000 3.21e-4
6,812,000 1.54e-4
12,059,000

156
297
568
704
838
1049
1297 1.07e-4

Figure 12.10 Iterations to convergence against problem size: Program 12.1

10−4
2 3 4 5 6 7 89

10−3
2 3 4 5 6 7 89

10−2
2 3 4 5 6 7 89

10−1

10
4

2
4

6
810

5

2
4

6
810

6

2
4

6
810

7

2
4

6
810

8

Iterations/Size

Size

Figure 12.11 Iterations/size versus Problem size: Program 12.1

count tends to decrease sharply with problem size, and this is illustrated graphically in
Figure 12.11.

Figure 12.12 shows, for a given problem size, the analysis time on a “supercomputer”
decreasing but levelling off when a sufficient number of processors has been reached. Thus
for any given problem size there comes a point where adding extra processors brings no
benefit. This limiting number of processors increases with problem size. Conversely, a
problem can be so small that parallelisation does not bring any benefit at all in terms of
analysis time. However, in some cases, distribution of data may allow parallel processing
of a job that could not be run at all serially due to memory limitations. Figure 12.13 shows
speed-up vs. number of processors for larger data sets (SGI Origin 3000 computer involving
up to 12 million equations).

526 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

Mesh No of Processors Analysis Time(secs)[Using BLAS]

20x20x20 1 148
 4 38.7
 8 20.0
 16 11.1
 32 6.9

40x40x40 16 163
 32 84

50x50x50 32 208[70]
 64 121

60x60x60 32 439

80x80x80 32 1408
 64 703[289]

100x100x100 64 [787]

Figure 12.12 Performance statistics: Program 12.1 (IBM SP2)

0
0

50

100

150

200

250

300

50 100 150

Number of Processors

IDEAL 1 MILLION EQUATIONS 12 MILLION EQUATIONS

Sp
ee

d
up

200 250 300

Figure 12.13 Speedup versus Number of processors: Program 12.1 (SGI Origin 3000)

Program 12.2 Three dimensional analysis of an elasto-plastic (Mohr–Coulomb) solid.
Compare Program 6.11.

PROGRAM p122
!---
! Program 6.11 three-d strain of an elastic-plastic(Mohr-Coulomb) solid
! using 20-node brick elements; viscoplastic strain method,pcg parallel
! cube_bc ; pick up current x not x = .0 ; load control
!--
USE new_library; USE geometry_lib; USE precision; USE utility
USE mp_module; USE timing; USE global_variables1
USE gather_scatter6; IMPLICIT NONE

! ndof,nels,neq,ntot are global - must not be declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=3,nod=20,nst=6,i,j,k,iel,plasiters,&

plasits, cjiters,cjits,cjtot, incs,iy,ndim=3,loaded_freedoms, &

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 527

num_no,no_index_start,neq_temp,nn_temp , nle
LOGICAL :: plastic_converged,cj_converged
CHARACTER (LEN=15) :: element='hexahedron'
REAL(iwp)::e,v,det,phi,c,psi,dt,f,dsbar,dq1,dq2,dq3,lode_theta,presc, &

sigm,pi,snph,cons,aa,bb,cc,plastol,cjtol,up,alpha,beta,big
!---------------------------- dynamic arrays-----------------------------
REAL(iwp),ALLOCATABLE ::loads_pp(:),points(:,:),bdylds_pp(:), &

evpt_pp(:,:,:),pmul_pp(:,:),dee(:,:),coord(:,:),jac(:,:),weights(:),&
oldis_pp(:),der(:,:),deriv(:,:),bee(:,:),km(:,:),eld(:),eps(:), &
sigma(:),bload(:),eload(:),erate(:),p_g_co_pp(:,:,:),evp(:),devp(:),&
m1(:,:),m2(:,:),m3(:,:),flow(:,:),storkm_pp(:,:,:),r_pp(:),val(:), &
tensor_pp(:,:,:),stress(:),totd_pp(:),qinc(:),p_pp(:),x_pp(:), &
xnew_pp(:),u_pp(:),utemp_pp(:,:),diag_precon_pp(:),d_pp(:), &
diag_precon_tmp(:,:)

INTEGER, ALLOCATABLE :: rest(:,:) , g(:), no(:) ,num(:),g_num_pp(:,:), &
g_g_pp(:,:),no_local(:),no_local_temp(:)

!--------------------------input and initialisation----------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF(numpe==npes) THEN
OPEN (10,FILE='p122.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) phi,c,psi,e,v,cons, nels,nxe,nze,nip,aa,bb,cc, &

incs, plasits,cjits,plastol,cjtol
END IF
CALL bcast_inputdata_p122(numpe,npes,phi,c,psi,e,v,cons,nels,nxe,nze, &

nip,aa,bb,cc,incs,plasits,cjits,plastol,cjtol)
CALL calc_nels_pp ; ndof=nod*nodof; nn_temp = 0; neq_temp = 0; ntot=ndof
nye = nels/nxe/nze; nr = 3*nxe*nye+6*nye*nze+6*nze*nxe+2*nxe+2*nye+1
nle = nxe/5; loaded_freedoms = 3*nle*nle + 4*nle + 1
ALLOCATE (rest(nr,nodof+1), points(nip,ndim),weights(nip), m1(nst,nst),&

num(nod),dee(nst,nst),evpt_pp(nst,nip,nels_pp), m2(nst,nst), &
tensor_pp(nst,nip,nels_pp),coord(nod,ndim),g_g_pp(ntot,nels_pp),&
stress(nst),storkm_pp(ntot,ntot,nels_pp),jac(ndim,ndim), &
der(ndim,nod),deriv(ndim,nod),g_num_pp(nod,nels_pp), &
bee(nst,ntot),km(ntot,ntot),eld(ntot),eps(nst),sigma(nst), &
bload(ntot),eload(ntot),erate(nst),evp(nst),devp(nst),g(ntot), &
m3(nst,nst),flow(nst,nst),pmul_pp(ntot,nels_pp), &
utemp_pp(ntot,nels_pp),p_g_co_pp(nod,ndim,nels_pp), &
diag_precon_tmp(ntot,nels_pp),no(loaded_freedoms), &
no_local_temp(loaded_freedoms),val(loaded_freedoms),qinc(incs))

CALL loading(nxe,nze,nle,no,val);val=-val*aa*bb/12._iwp;ielpe=iel_start
IF(numpe==npes) READ(10,*) qinc; diag_precon_tmp = .0_iwp
CALL MPI_BCAST(qinc,incs,MPI_REAL8,npes-1,MPI_COMM_WORLD,ier)
CALL cube_bc20(nxe,nye,nze,rest); CALL rearrange(rest)

!--------------- loop the elements to set up global arrays --------------
elements_1: DO iel = 1 , nels_pp

CALL geometry_20bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g3(num,g,rest) ; g_num_pp(:,iel) = num
p_g_co_pp(:,:,iel) = coord; g_g_pp(:,iel)=g; ielpe=ielpe+1
i = MAXVAL(g); j = MAXVAL(num)
IF(i>neq_temp)neq_temp = i; IF(j>nn_temp)nn_temp = j

END DO elements_1
neq = reduce(neq_temp); nn = reduce(nn_temp)
IF(numpe==1) THEN
OPEN (11,FILE='p122.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ", npes, " processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i= 1, nels_pp, nels_pp - 1

WRITE(11,'(A,I5)')"Element ",i ; num = g_num_pp(:,i)

528 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

DO k = 1,nod;WRITE(11,'(A,I5,3E12.4)') &
" Node",num(k),p_g_co_pp(k,:,i); END DO

END DO
WRITE(11,'(A,3(I5,A))') "There are ",nn," nodes",nr, &
" restrained and ", neq," equations"
WRITE(11,*) "Time after setup is : ", elap_time() - timest(1)

END IF
CALL calc_neq_pp ; CALL make_ggl(g_g_pp)

ALLOCATE(loads_pp(neq_pp),bdylds_pp(neq_pp),oldis_pp(neq_pp), &
r_pp(neq_pp),totd_pp(neq_pp),p_pp(neq_pp),x_pp(neq_pp),xnew_pp(neq_pp),&
u_pp(neq_pp),diag_precon_pp(neq_pp),d_pp(neq_pp))
oldis_pp = .0_iwp; totd_pp=0.0_iwp ; tensor_pp = .0_iwp
p_pp=.0_iwp; xnew_pp =.0_iwp; diag_precon_pp = .0_iwp
CALL deemat(dee,e,v); CALL sample(element,points,weights)
pi = ACOS(-1._iwp); snph = SIN(phi*pi/180._iwp)
dt=4._iwp*(1._iwp+v)*(1._iwp-2._iwp*v)/(e*(1._iwp-2._iwp*v+snph*snph))
IF(numpe==1) WRITE(11,'(A,E12.4)') "The critical timestep is ",dt

!---- element stiffness integration, preconditioner & set initial stress--
elements_2: DO iel = 1 , nels_pp

coord = p_g_co_pp(:,:,iel);g=g_g_pp(: , iel);km=0.0_iwp
gauss_pts_1: DO i =1 , nip
tensor_pp(1:3,i,iel)=cons; CALL shape_der (der,points,i)
jac=MATMUL(der,coord);det=determinant(jac);CALL invert(jac)
deriv = MATMUL(jac,der) ; CALL beemat (bee,deriv)
km = km + MATMUL(MATMUL(TRANSPOSE(bee),dee),bee) &

*det*weights(i)
END DO gauss_pts_1 ; storkm_pp(:, :, iel) = km
DO k=1,ntot
diag_precon_tmp(k,iel)=diag_precon_tmp(k,iel)+km(k,k)

END DO
END DO elements_2
CALL scatter(diag_precon_pp,diag_precon_tmp); DEALLOCATE(diag_precon_tmp)

!-------------------- invert preconditioner -----------------------------
CALL reindex_fixed_nodes &

(ieq_start,no,no_local_temp,num_no,no_index_start)
ALLOCATE(no_local(1:num_no)); no_local = no_local_temp(1:num_no)
DEALLOCATE(no_local_temp)
diag_precon_pp = 1._iwp / diag_precon_pp

!------------------------ load increment loop --------------------------
load_increments : do iy = 1 , incs
plasiters=0; bdylds_pp=.0_iwp; evpt_pp=.0_iwp ; cjtot = 0
IF(numpe==npes) WRITE(11,'(/,A,I5)') "Load Increment ",iy

!-------------------------- plastic iteration loop -------------------
plastic_iterations: DO
plasiters=plasiters+1; loads_pp=.0_iwp
DO i=1,num_no

j = no_local(i)-ieq_start+1
loads_pp(j) = val(no_index_start+i-1)*qinc(iy)

END DO
loads_pp=loads_pp+bdylds_pp

!------ if x=.0 p and r are just loads but in general p=r=loads-A*x -----
!-----------------------so form r = A * x -------------------------------

r_pp = .0_iwp ; CALL gather(x_pp,pmul_pp)
elements_2a : DO iel = 1 , nels_pp

utemp_pp(:,iel)=MATMUL(storkm_pp(:,:,iel),pmul_pp(:,iel))
END DO elements_2a ; CALL scatter(r_pp,utemp_pp)

!------------------------now precondition r and p ------------------------
r_pp = loads_pp - r_pp; d_pp = diag_precon_pp*r_pp; p_pp = d_pp

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 529

!------------------- solve the simultaneous equations by pcg -----------
cjiters = 0
conjugate_gradients: DO
cjiters = cjiters + 1 ; u_pp = .0_iwp ; pmul_pp = .0_iwp
CALL gather(p_pp,pmul_pp)
elements_3 : DO iel = 1 , nels_pp

utemp_pp(:,iel)=MATMUL(storkm_pp(:,:,iel),pmul_pp(:,iel))
END DO elements_3 ; CALL scatter(u_pp,utemp_pp)

!-------------------------------pcg process ------------------------------
up =DOT_PRODUCT_P(r_pp,d_pp); alpha=up/DOT_PRODUCT_P(p_pp,u_pp)
xnew_pp = x_pp + p_pp* alpha; r_pp = r_pp - u_pp*alpha
d_pp = diag_precon_pp*r_pp ;beta = DOT_PRODUCT_P(r_pp,d_pp)/up
p_pp = d_pp + p_pp * beta ; cj_converged = .TRUE.
CALL checon_par(xnew_pp,x_pp,cjtol,cj_converged,neq_pp)
IF(cj_converged.or.cjiters==cjits) EXIT

END DO conjugate_gradients
cjtot = cjtot + cjiters

!---------------------------- end of pcg process ------------------------
loads_pp = xnew_pp ; pmul_pp = .0_iwp

!----------------------- check plastic convergence -------------------
CALL checon_par(loads_pp,oldis_pp,plastol,plastic_converged,neq_pp)
IF(plasiters==1)plastic_converged=.FALSE.
IF(plastic_converged.OR.plasiters==plasits)bdylds_pp=.0_iwp
CALL gather(loads_pp,pmul_pp) ; utemp_pp = .0_iwp

!------------------------ go round the Gauss Points ---------------------
elements_4: DO iel = 1 , nels_pp
bload=.0_iwp; coord =p_g_co_pp(: , :, iel) ; eld = pmul_pp(:,iel)
gauss_points_2 : DO i = 1 , nip

CALL shape_der (der,points,i); jac=MATMUL(der,coord)
det = determinant(jac);CALL invert(jac); deriv= MATMUL(jac,der)
CALL beemat (bee,deriv); eps=MATMUL(bee,eld)
eps = eps - evpt_pp(: ,i ,iel) ; sigma = MATMUL(dee,eps)
stress = sigma+tensor_pp(: , i, iel)
CALL invar(stress,sigm,dsbar,lode_theta)

!---------------------- check whether yield is violated ----------------
CALL mocouf(phi,c,sigm,dsbar,lode_theta,f)
IF(plastic_converged.OR.plasiters==plasits) THEN
devp=stress
ELSE
IF(f>=.0) THEN ; CALL mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
CALL formm(stress,m1,m2,m3) ; flow=f*(m1*dq1+m2*dq2+m3*dq3)
erate=MATMUL(flow,stress) ; evp=erate*dt
evpt_pp(:,i,iel)=evpt_pp(:,i,iel)+evp ; devp=MATMUL(dee,evp)

END IF; END IF
IF(f>=.0) THEN
eload=MATMUL(TRANSPOSE(bee),devp);bload=bload+eload*det*weights(i)

END IF
IF(plastic_converged.OR.plasiters==plasits)THEN

!---------------------- update the Gauss Point stresses -----------------
tensor_pp(: , i , iel) = stress

END IF
END DO gauss_points_2

!-------------compute the total bodyloads vector -------------------------
utemp_pp(:,iel) = utemp_pp(:,iel) + bload

END DO elements_4 ; CALL scatter(bdylds_pp,utemp_pp)
IF(plastic_converged.OR.plasiters==plasits)EXIT

END DO plastic_iterations
totd_pp=totd_pp+loads_pp

530 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

IF(numpe==1)THEN
write(11,'(A,E12.4)')"The displacement is ",totd_pp(1)
write(11,'(A)') " sigma z sigma x sigma y "
write(11,'(3E12.4)')tensor_pp(3,1,1),tensor_pp(1,1,1),tensor_pp(2,1,1)
write(11,'(A,I12)')"The total number of cj iterations was ",cjtot
write(11,'(A,I12)')"The number of plastic iterations was ",plasiters
write(11,'(A,F11.2)')"cj iterations per plastic iteration were ", &
& REAL(cjtot)/REAL(plasiters)

END IF
IF (plasiters==plasits) EXIT

END DO load_increments
IF(numpe==1) WRITE(11,*) "This analysis took : ", elap_time() - timest(1)
CALL shutdown()
END PROGRAM p122

New scalar integers:
cjiters conjugate gradient iteration counter
cjits conjugate gradient iteration ceiling
cjtot total number of conjugate gradient iterations
incs number of load increments
iy simple counter
plasiters plastic iteration counter
plasits plastic iteration ceiling

New scalar reals:
big largest component of a vector
c cohesion
cjtol conjugate gradient iteration tolerance
cons consolidation pressure
dq1 Mohr–Coulomb plastic potential derivative
dq2 Mohr–Coulomb plastic potential derivative
dq3 Mohr–Coulomb plastic potential derivative
dsbar shear stress invariant
dt viscoplastic “time” step
f current stress state
lode theta Lode angle
phi angle of internal friction
plastol plastic iteration tolerance
presc prescribed value of load/displacement
psi angle of dilation
sigm mean stress invariant
sinph sine of angle of internal friction

New scalar logicals:
cj converged set to .TRUE. if conjugate gradient iterations converged
plastic converged set to .TRUE. if plastic iterations converged

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 531

New dynamic real arrays:
bdylds pp distributed body loads vector
bload element body loads
devp increment of viscoplastic strain
eload accumulating element body loads
erate viscoplastic strain rate
evp viscoplastic strains
evpt pp distributed total viscoplastic strains
flow viscoplastic flow
loads pp distributed loads vector
m1 plastic potential derivatives matrix
m2 plastic potential derivatives matrix
m3 plastic potential derivatives matrix
oldis pp previous distributed displacements
qinc vector of load increment terms
storkm pp distributed stored element stiffness matrices
stress stress vector
tensor pp distributed stresses
totd pp distributed total displacements
xnew pp updated distributed pcg vector

This program follows naturally from the previous one by extending the material
behaviour beyond the elastic range. The post elastic region is perfectly plastic governed by
the Mohr–Coulomb yield criterion that was first introduced in Program 6.3 and applied in
three-dimensional analyses in Program 6.11. The same geometric restrictions apply as in the
previous program-only cuboidal meshes are allowed with the central loaded patch a vertical
uniformly distributed load extending to one-fifth of the surface in the x and y directions
(z is vertical). Thus only multiples of 5 should be used for nxe in this simple case.

After INTEGER and REAL data have been read and broadcast, load increment array
qinc (See Programs 6.1 and 6.2) is read and needs to be broadcast to all other pro-
cessors using MPI_BCAST. The loop labelled elements_1 can be compared with the
same loop in Program 6.11. In parallel, geometry_20bxz is used in place of the serial
geom_rect but the basic process of finding coord, num and g for each element is clearly
equivalent.

Similarly loop labelled elements_2 with its embedded integration loop gauss_pts_
1 carries over essentially unaltered from serial to parallel versions.

In Program 6.11 each set of conjugate gradient iterations begins with a starting x value
of zero. In large non-linear problems it is beneficial to use the value of x computed in
the previous step as the starting x for a new step. Typically this halves the number of
pcg iterations in subsequent steps, and this procedure is used in this program (see loop
elements_2a).

Loops labelled conjugate_gradients, elements_3, and elements_4 with its
embedded gauss_points_2 are equivalent in serial and parallelised versions.

The problem analysed as shown in Figure 12.1 with data in Figure 12.14, deals with
the bearing capacity of a square uniformly loaded punch at the surface of an elasto-plastic

532 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

block. Since φ (phi) is set to zero, the Mohr–Coulomb criterion reduces to the Tresca,
and starting stresses can be set to zero. There is no analytical solution to this problem, but
approximate solutions indicate an increase in 3D above the (2 + π)cu recorded in plane
strain.

In our case the 3D ultimate load is computed to be about 5.4cu, as shown in the results
listed in Figure 12.15 Performance data are shown in Figure 12.16

phi c psi e v cons
0.0 100.0 0.0 100.0 0.3 0.0

nels nxe nze nip
1000 10 10 8

aa bb cc incs
1.0 1.0 1.0 12

plasits cjits plastol cjtol
250 1000 1.0e-4 1.0e-5

incs,(qinc(i),i=1,incs)
200.0 100.0 50.0 50.0 50.0 30.0
 20.0 10.0 10.0 5.0 5.0 5.0

Figure 12.14 Data for Program 12.2 example

This job ran on 8 processors

There are 4961 nodes 1541 restrained and 12580 equations
 Time after setup is : 0.169999999998253770
The critical timestep is 0.5200E-01
The displacement is -0.6831E+01
 sigma z sigma x sigma y
 -0.1966E+03 -0.1236E+03 -0.1236E+03
The total number of cj iterations was 157
The number of plastic iterations was 2
cj iterations per plastic iteration were 78.50
The displacement is -0.1033E+02
 sigma z sigma x sigma y
 -0.2853E+03 -0.1808E+03 -0.1808E+03
The total number of cj iterations was 388
The number of plastic iterations was 7
cj iterations per plastic iteration were 55.43
.
.
.
The displacement is -0.4098E+02
 sigma z sigma x sigma y
 -0.5375E+03 -0.3586E+03 -0.3586E+03
The total number of cj iterations was 6040
The number of plastic iterations was 138
cj iterations per plastic iteration were 43.77
 This analysis took : 593.080000000001746

Figure 12.15 Results from Program 12.2 example

Mesh No of Processors Analysis Time(secs)

10x10x10 8 593
 16 375

Figure 12.16 Performance statistics: Program 12.2 (IBM SP2)

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 533

Program 12.3 Three dimensional Laplacian flow. Compare Program 7.5.

PROGRAM p123
!--
! Program 7.5 three dimensional analysis of Laplace's equation
! using 8-node brick elements, preconditioned conjugate gradient solver
! only integrate one element , diagonal preconditioner diag_precon
! parallel version ; central loaded or fixed freedom ; box_bc
!--

USE new_library; USE geometry_lib; USE precision; USE utility
USE mp_module ; USE timing ; USE global_variables1
USE gather_scatter6; IMPLICIT NONE

! ndof, nels, neq , ntot are now global variables - not declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=1,nod=8, nres, is , it , &

i,j,k,ndim=3,iters,limit,iel,num_no,no_index_start, &
neq_temp,nn_temp , loaded_freedoms, fixed_freedoms

REAL(iwp)::aa,bb,cc,kx,ky,kz,det,tol,up,alpha,beta,q,penalty=1.e20_iwp
CHARACTER(LEN=15)::element= 'hexahedron'; LOGICAL :: converged

!-------------------------- dynamic arrays---------------------------------
REAL(iwp),ALLOCATABLE :: points(:,:),kc(:,:),coord(:,:), weights(:), &

p_g_co_pp(:,:,:), jac(:,:), der(:,:), deriv(:,:),&
col(:,:),row(:,:),kcx(:,:),kcy(:,:),kcz(:,:), &
diag_precon_pp(:),p_pp(:),r_pp(:),x_pp(:), &
xnew_pp(:),u_pp(:),pmul_pp(:,:),utemp_pp(:,:), &
d_pp(:),diag_precon_tmp(:,:),val(:),val_f(:), &
store_pp(:),eld(:)

INTEGER, ALLOCATABLE :: rest(:,:),g(:),num(:),g_num_pp(:,:),g_g_pp(:,:), &
no(:),no_f(:),no_local_temp(:),no_local_temp_f(:),no_local(:)

!-------------------------input and initialisation-------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF (numpe==npes) THEN
OPEN (10,FILE='p123.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc,kx,ky,kz, tol,limit , &

loaded_freedoms,fixed_freedoms
END IF
CALL bcast_inputdata_p123(numpe,npes,nels,nxe,nze,nip,aa,bb,cc,kx,ky,kz, &

tol,limit,loaded_freedoms,fixed_freedoms)
CALL calc_nels_pp ; ndof=nod*nodof ; ntot=ndof ; nye = nels/nxe/nze

neq_temp = 0; nn_temp = 0 ; nr=(nxe+1)*(nye+1)+(nxe+1)*nze+nye*nze
ALLOCATE (points(nip,ndim),coord(nod,ndim),jac(ndim,ndim),kc(ntot,ntot), &

der(ndim,nod),deriv(ndim,nod),rest(nr,nodof+1),kcx(ntot,ntot), &
g(ntot),pmul_pp(ntot,nels_pp),utemp_pp(ntot,nels_pp),col(ntot,1), &
p_g_co_pp(nod,ndim,nels_pp),g_num_pp(nod,nels_pp),weights(nip), &
num(nod),g_g_pp(ntot,nels_pp),no(1),kcy(ntot,ntot),val(1), &
no_local_temp(1),row(1,ntot),diag_precon_tmp(ntot,nels_pp), &
val_f(1),eld(ntot),no_f(1),no_local_temp_f(1),kcz(ntot,ntot))

CALL box_bc8(nxe,nye,nze,rest); ielpe=iel_start; nres=nxe*(nze-1)+1
IF(loaded_freedoms>0) THEN; no = nres; val = 10._iwp; END IF
IF(fixed_freedoms>0)THEN; no_f=nres; val_f = 100._iwp ; END IF
CALL sample(element,points,weights); CALL rearrange_2(rest)

!---------- loop the elements for global cordinates etc -------------------
elements_0: DO iel = 1 , nels_pp

CALL geometry_8bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g4(num,g,rest) ; g_num_pp(:,iel) = num
p_g_co_pp(:,:,iel) = coord; g_g_pp(:,iel)=g; ielpe = ielpe+1
i = MAXVAL(g); j = MAXVAL(num)
IF(i>neq_temp)neq_temp = i; IF(j>nn_temp)nn_temp = j

END DO elements_0

534 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

neq = reduce(neq_temp) ; nn = reduce(nn_temp)
CALL calc_neq_pp ; CALL make_ggl(g_g_pp); diag_precon_tmp = .0_iwp
DO i=1,neq_pp; IF(nres==ieq_start+i-1) THEN; it = numpe;is = i; END IF
END DO
ALLOCATE(p_pp(neq_pp),r_pp(neq_pp),x_pp(neq_pp),xnew_pp(neq_pp), &

u_pp(neq_pp),diag_precon_pp(neq_pp),d_pp(neq_pp),store_pp(neq_pp))
r_pp = .0_iwp; p_pp = .0_iwp; x_pp = .0_iwp; xnew_pp = .0_iwp
diag_precon_pp = .0_iwp ; store_pp = .0_iwp

!------- element stiffness integration and build the preconditioner-------
iel=1;CALL geometry_8bxz(iel,nxe,nze,aa,bb,cc,coord,num)
kcx = .0_iwp; kcy = .0_iwp; kcz = .0_iwp
gauss_pts_1: DO i=1,nip

CALL shape_der (der,points,i) ; jac = MATMUL(der,coord)
det=determinant(jac);CALL invert(jac);deriv = MATMUL(jac,der)
row(1,:) = deriv(1,:); eld=deriv(1,:); col(:,1) = eld
kcx = kcx + MATMUL(col,row)*det*weights(i)
row(1,:) = deriv(2,:); eld=deriv(2,:); col(:,1) = eld
kcy = kcy + MATMUL(col,row)*det*weights(i)
row(1,:) = deriv(3,:); eld=deriv(3,:); col(:,1) = eld
kcz = kcz + MATMUL(col,row)*det*weights(i)

END DO gauss_pts_1 ; kc = kcx*kx + kcy*ky + kcz*kz
elements_1: DO iel = 1,nels_pp
DO k=1,ntot

diag_precon_tmp(k,iel)=diag_precon_tmp(k,iel)+kc(k,k);END DO
END DO elements_1

CALL scatter(diag_precon_pp,diag_precon_tmp);DEALLOCATE(diag_precon_tmp)
IF(numpe==it)THEN
OPEN (11,FILE='p123.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ", npes , " processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i = 1 , nels_pp,nels_pp-1

WRITE(11,'(A,I8)')"Element ",i ; num = g_num_pp(:,i)
DO k = 1,nod;WRITE(11,'(A,I8,3E12.4)') &

" Node",num(k),p_g_co_pp(k,:,i); END DO
END DO
WRITE(11,'(A,3(I8,A))') "There are ",nn," nodes",nr, &

" restrained and", neq," equations"
WRITE(11,*) "Time after setup is :", elap_time() - timest(1)

END IF
!-------------------- get starting r--------------------------------------

IF(loaded_freedoms>0) THEN
CALL reindex_fixed_nodes &

(ieq_start,no,no_local_temp,num_no,no_index_start)
ALLOCATE(no_local(1:num_no)) ; no_local = no_local_temp(1:num_no)
DEALLOCATE(no_local_temp)

DO i = 1 , num_no
r_pp(no_local(i)-ieq_start+1) = val(no_index_start + i - 1)

END DO
END IF ; q = SUM_P(r_pp)
IF(numpe==it)THEN ; WRITE(11,'(A,E12.4)') "The total load is ", q
END IF
IF(fixed_freedoms>0) THEN
CALL reindex_fixed_nodes(ieq_start,no_f,no_local_temp_f, &

num_no,no_index_start)
ALLOCATE(no_local(1:num_no)) ; no_local = no_local_temp_f(1:num_no)
DEALLOCATE(no_local_temp_f)

DO i = 1 , num_no ; j=no_local(i) - ieq_start + 1
diag_precon_pp(j)=diag_precon_pp(j) + penalty

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 535

r_pp(j) = diag_precon_pp(j) * val_f(no_index_start + i - 1)
store_pp(j) = diag_precon_pp(j)

END DO
END IF
diag_precon_pp=1._iwp/diag_precon_pp;d_pp=diag_precon_pp*r_pp;p_pp=d_pp

!--------------------preconditioned c. g. iterations-----------------------
iters = 0

iterations : DO
iters = iters + 1 ; u_pp = 0._iwp ; pmul_pp = .0_iwp

CALL gather(p_pp,pmul_pp)
elements_2 : DO iel = 1, nels_pp

utemp_pp(:,iel) = MATMUL(kc,pmul_pp(:,iel))
END DO elements_2 ; CALL scatter(u_pp,utemp_pp)

IF(fixed_freedoms>0) THEN
DO i = 1 , num_no; j = no_local(i)-ieq_start+1
u_pp(j)=p_pp(j) * store_pp(j)

END DO
END IF

!--------------------------pcg equation solution---------------------------
up=DOT_PRODUCT_P(r_pp,d_pp); alpha= up/ DOT_PRODUCT_P(p_pp,u_pp)
xnew_pp = x_pp + p_pp* alpha ; r_pp=r_pp - u_pp*alpha
d_pp = diag_precon_pp*r_pp ; beta=DOT_PRODUCT_P(r_pp,d_pp)/up
p_pp=d_pp+p_pp*beta
CALL checon_par(xnew_pp,x_pp,tol,converged,neq_pp)
IF(converged .OR. iters==limit) EXIT

END DO iterations
IF(numpe==it)THEN
WRITE(11,'(A,I5)')"The number of iterations to convergence was ", &

iters
WRITE(11,'(A)') "The potentials are :"
WRITE(11,'(A)') " Freedom Potential"
DO i = 1 , 4
WRITE(11,'(I5,A,E12.4)') nres+i-1, " ", xnew_pp(is+i-1)

END DO
END IF

IF(numpe==it) WRITE(11,*)"This analysis took ", elap_time()-timest(1)
CALL shutdown()

END PROGRAM p123

New scalar integers:
fixed freedoms number of fixed freedoms
is location of desired output freedom
it processor on which desired output resides
nres number of output freedom

New scalar reals:
kx conductivity in x-direction
ky conductivity in y-direction
kz conductivity in z-direction
penalty value of penalty restraint

New dynamic integer arrays:
no f vector of fixed freedom numbers
no local temp f temporary vector

536 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

New dynamic real arrays:
col column array
kc conductivity matrix
kcx x contribution to conductivity matrix
kcy y contribution to conductivity matrix
kcz z contribution to conductivity matrix
row row array
store pp distributed penalty storage
val f values of fixed freedoms

The closest serial equivalent to this program is Program 7.5. Geometrical restrictions
are to a quarter of a cuboidal box with zero potential on all its outer faces. A potential of
100.0 units can be fixed at the centre of the box or a flux of 10.0 units applied there, so
either loaded_freedoms or fixed_freedoms must be set to 1 and the other to 0.

Comparison of Programs 7.5 and 12.1 will show the familiar patterns of analysis type
and parallelisation process respectively. In the serial programs, loop elements_1 con-
tains integration loop gauss_pts_1 embedded within it whereas in the parallel version
these are separate as elements_0 and gauss_pts_1. An extra loop elements_1 is
necessary for formation of the preconditioner. For simplicity, in parallel a single kc matrix
is used. Loop elements_2 is equivalent in both versions but in parallel, flow rates are

nels nxe nze nip
1000000 100 100 8

aa bb cc
0.01 0.01 0.01

kx ky kz
2.0 2.0 2.0

tol limit
1.0e-5 500

loaded_freedoms fixed_freedoms
1 0

Figure 12.17 Data for Program 12.3 example

This job ran on 8 processors

There are 1030301 nodes 30301 restrained and 1000000 equations
 Time after setup is : 2.37000000000261934
The total load is 0.1000E+02
The number of iterations to convergence was 121
The potentials are :
 Freedom Potential
 9901 0.1748E+04
 9902 0.1713E+03
 9903 0.1586E+03
 9904 0.9910E+02
 This analysis took 382.870000000002619

Figure 12.18 Results from Program 12.3 example

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 537

Mesh No of Processors Analysis Time(secs)

100x100x100 8 383
 16 190

Number of equations Iterations to convergence

125,000 72
 1,000,000 121
 8,000,000 180

Figure 12.19 Performance statistics: Program 12.3 (IBM SP2)

not retrieved at the end of the analysis. The appropriate freedom for output is identified as
is and the processor on which it resides as it.

The problem analysed with the data shown in Figure 12.17 is of a quarter cube of unit
size with a flux of 10.0 units applied at the centre. One million equations are involved in
this analysis. Results are listed as Figure 12.18 and illustrations of increasing pcg iteration
counts with problem size, together with speedup are shown in Figure 12.19.

Program 12.4 Three dimensional transient flow- implicit analysis in time. Compare
Program 8.3.

PROGRAM p124
!--
! Program 8.3 conduction equation on 3-d box shaped
! volume using 8-node hexahedral elements : pcg version implicit
! integration in time using 'theta' method : parallel version : box_bc
!--
USE new_library; USE geometry_lib; USE precision; USE utility
USE mp_module ; USE timing ; USE global_variables1
USE gather_scatter6; IMPLICIT NONE

! ndof,nels,neq,ntot are now global variables - not declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=1,nod=8,ndim=3,neq_temp,nn_temp, &

i,j,k,iel,nstep,npri,nres,iters,limit, it,is
REAL(iwp)::aa,bb,cc,kx,ky,kz,det,theta,dtim,val0,real_time, &

tol,alpha,beta,up,big
LOGICAL::converged ; CHARACTER(LEN=15) :: element='hexahedron'

!------------------------- dynamic arrays----------------------------------
REAL(iwp),ALLOCATABLE ::loads_pp(:),u_pp(:),p_pp(:),points(:,:),kay(:,:),&

coord(:,:),fun(:),jac(:,:),der(:,:),deriv(:,:), &
weights(:),d_pp(:),kc(:,:), pm(:,:), funny(:,:), &
p_g_co_pp(:,:,:),storka_pp(:,:,:),storkb_pp(:,:,:), &
x_pp(:),xnew_pp(:),pmul_pp(:,:),utemp_pp(:,:), &
diag_precon_pp(:),diag_precon_tmp(:,:)

INTEGER, ALLOCATABLE :: rest(:,:), g(:), num(:),g_num_pp(:,:),g_g_pp(:,:)
!----------------------input and initialisation---------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF(numpe==npes) THEN
OPEN (10,FILE='p124.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc,kx,ky,kz, &

dtim,nstep,theta,npri,tol,limit, val0
END IF
CALL bcast_inputdata_p124(numpe,npes,nels,nxe,nze,nip,aa,bb,cc,kx, &

ky,kz,dtim,nstep,theta,npri,tol,limit,val0)
CALL calc_nels_pp; ndof=nod*nodof; ntot = ndof; nn_temp = 0; neq_temp = 0

538 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

nye=nels/nxe/nze; nr=(nxe+1)*(nye+1)+(nxe+1)*nze+nye*nze; ielpe=iel_start
ALLOCATE (rest(nr,nodof+1),points(nip,ndim),weights(nip),kay(ndim,ndim),&

coord(nod,ndim),fun(nod),jac(ndim,ndim),der(ndim,nod),g(ntot),&
p_g_co_pp(nod,ndim,nels_pp),deriv(ndim,nod), pm(ntot,ntot), &
g_num_pp(nod,nels_pp),kc(ntot,ntot),funny(1,nod),num(nod), &
g_g_pp(ntot,nels_pp),storka_pp(ntot,ntot,nels_pp), &
utemp_pp(ntot,nels_pp),storkb_pp(ntot,ntot,nels_pp), &
pmul_pp(ntot,nels_pp),diag_precon_tmp(ntot,nels_pp))

kay=0.0_iwp ; kay(1,1) = kx; kay(2,2) = ky ; kay(3,3) = kz
CALL sample (element,points,weights) ; CALL box_bc8(nxe,nye,nze,rest)
CALL rearrange_2(rest)

!-------------loop the elements to set up global arrays -----------------
elements_1: DO iel = 1 , nels_pp

CALL geometry_8bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g4(num,g,rest) ; g_num_pp(:,iel) = num
p_g_co_pp(:,:,iel) = coord; g_g_pp(:,iel)=g; ielpe=ielpe+1
i = MAXVAL(g); j = MAXVAL(num)
IF(i>neq_temp)neq_temp = i; IF(j>nn_temp)nn_temp = j

END DO elements_1
neq = reduce(neq_temp) ; nn = reduce(nn_temp) ; nres = nxe*(nze-1) + 1
CALL calc_neq_pp ; CALL make_ggl(g_g_pp)
DO i = 1, neq_pp; IF(nres==ieq_start+i-1) THEN;it=numpe;is = i; END IF
END DO
IF(numpe==it) THEN
OPEN (11,FILE='p124.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ", npes, " processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i= 1, nels_pp , nels_pp - 1

WRITE(11,'(A,I8)')"Element ",i ; num = g_num_pp(:,i)
DO k = 1,nod;WRITE(11,'(A,I8,3E12.4)') &
" Node",num(k),p_g_co_pp(k,:,i); END DO

END DO
WRITE(11,'(A,3(I8,A))')"There are ",nn," nodes",nr," restrained and",&

neq," equations"
WRITE(11,*) "Time after setup is :", elap_time() - timest(1)

END IF
ALLOCATE(loads_pp(neq_pp),diag_precon_pp(neq_pp),u_pp(neq_pp), &

d_pp(neq_pp),p_pp(neq_pp),x_pp(neq_pp),xnew_pp(neq_pp))
storka_pp = .0_iwp; storkb_pp = .0_iwp;diag_precon_tmp = .0_iwp
p_pp = .0_iwp; diag_precon_pp = .0_iwp; xnew_pp = .0_iwp

!----------- element integration ,storage and build preconditioner --------
elements_2: DO iel = 1 , nels_pp

num = g_num_pp(: , iel); g = g_g_pp(:, iel)
coord = p_g_co_pp(: , : , iel) ; kc=0.0_iwp ; pm=0.0_iwp

gauss_pts: DO i =1 , nip
CALL shape_der (der,points,i); CALL shape_fun(fun,points,i)
funny(1,:)=fun(:) ; jac = MATMUL(der,coord)
det=determinant(jac);CALL invert(jac);deriv=MATMUL(jac,der)
kc = kc + MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv) &

*det*weights(i)
pm = pm + MATMUL(TRANSPOSE(funny),funny)*det*weights(i)

END DO gauss_pts
storka_pp(:,:,iel)=pm+kc*theta*dtim
storkb_pp(:,:,iel)=pm-kc*(1._iwp-theta)*dtim
DO k=1,ntot
diag_precon_tmp(k,iel)=diag_precon_tmp(k,iel)+ storka_pp(k,k,iel)

END DO
END DO elements_2

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 539

CALL scatter(diag_precon_pp,diag_precon_tmp);DEALLOCATE(diag_precon_tmp)
diag_precon_pp = 1._iwp/diag_precon_pp

!---------------------------initial conditions ----------------------------
loads_pp=val0 ; pmul_pp = .0_iwp

!----------------------time stepping recursion ----------------------------
IF(numpe==it) THEN
WRITE(11,'(A)') " Time Pressure Iterations"

END IF
timesteps: DO j=1,nstep

real_time=j*dtim ; u_pp = .0_iwp
CALL gather(loads_pp,pmul_pp)
elements_3 : DO iel = 1 , nels_pp

utemp_pp(:,iel) = MATMUL(storkb_pp(:,:,iel),pmul_pp(:,iel))
END DO elements_3 ; CALL scatter(u_pp,utemp_pp) ; loads_pp = u_pp

!------------------- solve simultaneous equations by pcg ------------------
d_pp = diag_precon_pp*loads_pp; p_pp = d_pp; x_pp = .0_iwp
iters = 0

iterations : DO
iters = iters + 1 ; u_pp = 0._iwp ; pmul_pp = .0_iwp

CALL gather(p_pp,pmul_pp)
elements_4 : DO iel = 1, nels_pp

utemp_pp(:,iel) = MATMUL(storka_pp(:,:,iel),pmul_pp(:,iel))
END DO elements_4; CALL scatter(u_pp,utemp_pp)

!--------------------------pcg equation solution---------------------------
up=DOT_PRODUCT_P(loads_pp,d_pp);alpha= up/DOT_PRODUCT_P(p_pp,u_pp)
xnew_pp = x_pp + p_pp* alpha ; loads_pp=loads_pp - u_pp*alpha
d_pp=diag_precon_pp*loads_pp;beta=DOT_PRODUCT_P(loads_pp,d_pp)/up
p_pp=d_pp+p_pp*beta ; u_pp = xnew_pp
CALL checon_par(xnew_pp,x_pp,tol,converged,neq_pp)
IF(converged .OR. iters==limit) EXIT

END DO iterations
loads_pp=xnew_pp
IF(j/npri*npri==j .AND. numpe == it) WRITE(11,'(2E12.4,I5)') &

real_time,loads_pp(is),iters
END DO timesteps

IF(numpe==it) WRITE(11,*) "This analysis took :" ,elap_time()-timest(1)
CALL shutdown()

END PROGRAM p124

New scalar integers:
npri print interval
nstep number of timesteps in analysis

New scalar reals:
dtim timestep
real_time accumulated time
theta parameter in “theta” integrator
val0 initial value

New dynamic real arrays:
fun element shape functions
funny intermediate array
kay conductivity matrix
pm element mass matrix

540 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

storka_pp distributed storage of pm and km
storkb_pp distributed storage of pm and km

The closest serial equivalent is Program 8.3. As in the previous program, geometry
restrictions are to a symmetrical quarter cuboidal box mesh which has zero potential on
all external faces. An initial condition of uniform potential val0 is specified everywhere
else, and the decay of potential at the centre of the box with time is monitored.

Loops elements_1 and element_2 with its embedded gauss_pts can be traced
clearly between the serial and parallelised versions, as can loops elements_3 and
elements_4.

The problem analysed as shown in Figure 12.2 is for a quarter cube of unit size with an
initial potential of 100.0 units everywhere except at the external boundaries. Data are listed
as Figure 12.20 with results as Figure 12.21 and performance statistics as Figure 12.22

nels nxe nze nip
125000 50 50 8

aa bb cc kx ky kz
0.02 0.02 0.02 1.0 1.0 1.0

dtim nsteps theta
0.01 150 0.5

npri tol limit val0
10 0.0001 100 100.0

Figure 12.20 Data for Program 12.4 example

This job ran on 16 processors

There are 132651 nodes 7651 restrained and 125000 equations
 Time after setup is : 0.510000000002037268
 Time Pressure Iterations
 0.1000E+00 0.8564E+02 21
 0.2000E+00 0.4605E+02 19
 0.3000E+00 0.2229E+02 14
 0.4000E+00 0.1066E+02 13
 0.5000E+00 0.5085E+01 12
.
.
.
 0.1300E+01 0.1360E-01 10
 0.1400E+01 0.6484E-02 10
 0.1500E+01 0.3087E-02 10
 This analysis took : 421.750000000000000

Figure 12.21 Results from Program 12.3 example

Mesh No of Processors Analysis Time(secs)

50x50x50 8 840
 16 422

Figure 12.22 Performance statistics: Program 12.4 (IBM SP2)

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 541

Program 12.5 Three dimensional transient flow-explicit analysis in time. Compare
Program 8.4.

PROGRAM p125
!--
! Program 8.4 conduction equation on a 3-d box volume using 8-node
! hexahedral elements and a simple explicit algorithm : parallel version
! box_bc ; write on processor it at freedom nres
!--
USE new_library; USE geometry_lib; USE precision; USE utility
USE mp_module ; USE timing ; USE global_variables1
USE gather_scatter6; IMPLICIT NONE

! ndof, nels, neq , ntot are now global variables - not declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=1,nod=8,ndim=3,i,j,k,iel, &

neq_temp,nn_temp,nstep,npri,nres , it,is
REAL(iwp)::aa,bb,cc,kx,ky,kz,det,dtim,val0,real_time
CHARACTER (LEN=15) :: element = 'hexahedron'

!------------------------- dynamic arrays----------------------------------
REAL(iwp),ALLOCATABLE ::loads_pp(:),points(:,:),kay(:,:),coord(:,:), &

jac(:,:),der(:,:),deriv(:,:),weights(:),kc(:,:), &
pm(:,:), funny(:,:),p_g_co_pp(:,:,:),globma_pp(:), &
fun(:),store_pm_pp(:,:,:), newlo_pp(:),mass(:), &
globma_tmp(:,:),pmul_pp(:,:),utemp_pp(:,:)

INTEGER, ALLOCATABLE :: rest(:,:), g(:),num(:), g_num_pp(:,:),g_g_pp(:,:)
!-----------------------input and initialisation---------------------------

timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF(numpe==npes) THEN
OPEN (10,FILE='p125.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc,kx,ky,kz,dtim,nstep,npri,val0
END IF
CALL bcast_inputdata_p125(numpe,npes,nels,nxe,nze,nip,aa,bb,cc, &

kx,ky,kz,dtim,nstep,npri,val0)
CALL calc_nels_pp; ndof=nod*nodof; nn_temp=0; neq_temp = 0; ntot = ndof
nye = nels/nxe/nze; nr = (nxe+1)*(nye+1) + (nxe+1)*nze + nye*nze
ALLOCATE (rest(nr,nodof+1),points(nip,ndim),weights(nip),kay(ndim,ndim),&

coord(nod,ndim),jac(ndim,ndim),p_g_co_pp(nod,ndim,nels_pp), &
der(ndim,nod),deriv(ndim,nod),g_num_pp(nod,nels_pp), &
kc(ntot,ntot),g(ntot),funny(1,nod),num(nod),g_g_pp(ntot,nels_pp),&
store_pm_pp(ntot,ntot,nels_pp),mass(ntot),fun(nod),pm(ntot,ntot),&
globma_tmp(ntot,nels_pp),pmul_pp(ntot,nels_pp), &
utemp_pp(ntot,nels_pp))

kay=0.0_iwp; kay(1,1) = kx ; kay(2,2) = ky; kay(3,3) = kz
ielpe=iel_start ; CALL box_bc8(nxe,nye,nze,rest); CALL rearrange_2(rest)

!---------------loop the elements to set up global arrays ----------------
elements_0: DO iel = 1 , nels_pp

CALL geometry_8bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g4(num,g,rest) ; g_num_pp(:,iel) = num
p_g_co_pp(:,:,iel) = coord; g_g_pp(:,iel)=g; ielpe=ielpe+1
i = MAXVAL(g); j = MAXVAL(num)
IF(i>neq_temp)neq_temp = i ; IF(j>nn_temp)nn_temp = j

END DO elements_0
neq=reduce(neq_temp) ; nn = reduce(nn_temp); nres = nxe*(nze-1) + 1
CALL calc_neq_pp ; CALL make_ggl(g_g_pp)
DO i=1,neq_pp; IF(nres==ieq_start+i-1) THEN;it=numpe;is=i;END IF;END DO
IF(numpe==it) THEN
OPEN (11,FILE='p125.res',STATUS= 'REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on " , npes , " processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i= 1, nels_pp,nels_pp-1 ; WRITE(11,'(A,I8)')"Element ",i

542 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

num = g_num_pp(:,i)
DO k = 1,nod;WRITE(11,'(A,I8,3E12.4)') &
" Node",num(k),p_g_co_pp(k,:,i); END DO

END DO
WRITE(11,'(A,3(I8,A))') "There are ",nn," nodes",nr," restrained and",&

neq," equations"
WRITE(11,*) "Time after setup is :" , elap_time() - timest(1)

END IF
CALL sample(element,points,weights) ; globma_tmp = .0_iwp
ALLOCATE(loads_pp(neq_pp),newlo_pp(neq_pp),globma_pp(neq_pp))
loads_pp=.0_iwp; newlo_pp=.0_iwp; globma_pp=.0_iwp

!------------ loop the elements for integration and invert mass -----------
elements_1: DO iel = 1 , nels_pp

coord = p_g_co_pp(:,:,iel); kc=0.0_iwp ; pm=0.0_iwp
gauss_pts: DO i =1 , nip

CALL shape_der (der,points,i); CALL shape_fun(fun,points,i)
funny(1,:)=fun(:) ; jac = MATMUL(der,coord)
det=determinant(jac); CALL invert(jac); deriv = MATMUL(jac,der)
kc=kc+MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv)*det*weights(i)
pm = pm + MATMUL(TRANSPOSE(funny),funny)*det*weights(i)

END DO gauss_pts
DO i=1,ntot; mass(i) = sum(pm(i,:)); END DO
pm = .0_iwp ; DO i = 1 , ntot; pm(i,i) = mass(i); END DO
store_pm_pp(:,:,iel) = pm - kc*dtim
DO i=1,ntot; globma_tmp(i,iel)=globma_tmp(i,iel)+mass(i); END DO

END DO elements_1
IF(numpe==it) &
WRITE(11,*) "Time after element integration is :",elap_time()-timest(1)

CALL scatter(globma_pp,globma_tmp)
globma_pp = 1._iwp/globma_pp ; loads_pp = val0 ; DEALLOCATE(globma_tmp)

!-------------------time stepping recursion--------------------------------
IF(numpe==it) THEN
WRITE(11,'(A)') " Time Pressure"
END IF
timesteps: DO j=1,nstep

real_time=j*dtim
!--------------- go round the elements ----------------------------------

pmul_pp = .0_iwp ; CALL gather(loads_pp,pmul_pp) ; utemp_pp = .0_iwp
elements_2 : DO iel = 1 , nels_pp

pm = store_pm_pp(: , : , iel)
utemp_pp(:,iel)=utemp_pp(:,iel)+MATMUL(pm,pmul_pp(:,iel))

END DO elements_2
CALL scatter(newlo_pp,utemp_pp) ; loads_pp = newlo_pp * globma_pp
newlo_pp = .0_iwp
IF(j/npri*npri==j .AND. numpe==it) &

WRITE(11,'(2E12.4)')real_time,loads_pp(is)
END DO timesteps

IF(numpe==it) WRITE(11,*)"This analysis took :", elap_time()-timest(1)
CALL shutdown()

END PROGRAM p125

New dynamic real arrays:
globma_pp distributed global mass matrix
globma_tmp temporary storage mass vector
mass element lumped mass
newlo_pp distributed new loads
store_pm_pp distributed pm matrices

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 543

nels nxe nze nip
125000 50 50 8

aa bb cc kx ky kz
0.02 0.02 0.02 1.0 1.0 1.0

dtim nsteps
0.0002 5000

npri val0
500 100.0

Figure 12.23 Data for Program 12.5 example

This job ran on 16 processors

There are 132651 nodes 7651 restrained and 125000 equations
 Time after setup is : 0.209999999999126885
 Time after element integration is : 8.25999999999476131
 Time Pressure
 0.1000E+00 0.8551E+02
 0.2000E+00 0.4599E+02
 0.3000E+00 0.2228E+02
.
.
.
 0.9000E+00 0.2595E+00
 0.1000E+01 0.1231E+00
 This analysis took : 1006.36000000000058

Figure 12.24 Results from Program 12.5 example

Mesh No of Processors Analysis Time(secs)

50x50x50 16 1006
32 516

Figure 12.25 Performance statistics: Program 12.5 (IBM SP2)

As is often the case in the parallel programs, an extra loop elements_0 is used
to organise geometry and distribution of the freedoms via steering vector g. Thereafter
loop elements_1 with its embedded gauss_pts carries over from serial to parallel
versions, as does loop elements_2. In parallel, results at the appropriate freedom, is,
are printed from processor it. Data are listed as Figure 12.23 with results as Figure 12.24
and performance statistics as Figure 12.25.

Program 12.6 Three dimensional steady state Navier–Stokes analysis. Compare
Program 9.2.

PROGRAM p126
!---
! Program 9.2 steady state 3-d Navier-Stokes equation
! using 20-node velocity hexahedral elements ; ns_cube
! coupled to 8-node pressure hexahedral elements ; u-p-v-w order
! element by element solution using BiCGSTAB(L) ; parallel version
!---
USE new_library; USE geometry_lib; USE precision; USE utility
USE mp_module ; USE timing; USE global_variables1
USE gather_scatter6; IMPLICIT NONE

! ndof,nels,neq,ntot are now global variables - not declared

544 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

INTEGER::nxe,nye,nze,nn,nip,nodof=4,nod=20,nodf=8,ndim=3, cj_tot, &
i,j,k,l,iel,ell,limit ,fixed_nodes,iters, cjiters , cjits, &
nr,n_t,num_no,no_index_start, nn_temp,neq_temp, nres , is,it

REAL(iwp)::visc, rho, rho1,det,ubar, vbar, wbar,tol ,cjtol, alpha,beta, &
aa,bb,cc,penalty , x0 , pp , kappa,gama,omega,norm_r,r0_norm,error

LOGICAL :: converged,cj_converged
CHARACTER(LEN=15) :: element = 'hexahedron'

!----------------------------- dynamic arrays-----------------------------
REAL(iwp),ALLOCATABLE ::points(:,:), coord(:,:),derivf(:,:),fun(:), &

jac(:,:),kay(:,:),der(:,:),deriv(:,:),weights(:), &
derf(:,:),funf(:),coordf(:,:),p_g_co_pp(:,:,:), &
c11(:,:),c21(:,:),c12(:,:),val(:),wvel(:),ke(:,:), &
c23(:,:),c32(:,:),x_pp(:),b_pp(:),r_pp(:,:), &
funny(:,:),row1(:,:),row2(:,:),uvel(:),vvel(:), &
funnyf(:,:),rowf(:,:),storke_pp(:,:,:),diag_pp(:), &
utemp_pp(:,:),xold_pp(:),c24(:,:),c42(:,:),row3(:,:),&
u_pp(:,:),rt_pp(:),y_pp(:),y1_pp(:),s(:),Gamma(:), &
GG(:,:), diag_tmp(:,:),store_pp(:),pmul_pp(:,:)

INTEGER, ALLOCATABLE :: rest(:,:),g(:),num(:),g_num_pp(:,:),g_g_pp(:,:) ,&
no(:),g_t(:),no_local(:), no_local_temp(:)

!----------------------------input and initialisation---------------------
timest(1) = elap_time() ; cj_tot = 0
CALL find_pe_procs(numpe,npes)
IF(numpe==npes) THEN
OPEN (10,FILE='p126.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc, &

visc,rho,tol,limit , cjtol,cjits , penalty , x0, ell, kappa
END IF
CALL bcast_inputdata_p126(numpe,npes,nels,nxe,nze,nip,aa,bb,cc, &

visc,rho,tol,limit,cjtol,cjits,penalty,x0,ell,kappa)
CALL calc_nels_pp; ntot=nod+nodf+nod+nod ; n_t=nod*nodof; neq_temp = 0
nn_temp = 0 ; nye=nels/nxe/nze; fixed_nodes=3*nxe*nye+2*nxe+2*nye+1
nr=3*nxe*nye*nze + 4*(nxe*nye+nye*nze+nze*nxe) + nxe+nye+nze + 2
ALLOCATE (points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf),fun(nod), &

jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
derf(ndim,nodf),funf(nodf),coordf(nodf,ndim),funny(nod,1), &
g_g_pp(ntot,nels_pp),c11(nod,nod),c12(nod,nodf),c21(nodf,nod),&
ke(ntot,ntot),rest(nr,nodof+1),c24(nodf,nod),c42(nod,nodf), &
p_g_co_pp(nod,ndim,nels_pp),g_num_pp(nod,nels_pp),num(nod), &
c32(nod,nodf),c23(nodf,nod),uvel(nod),vvel(nod),row1(1,nod), &
funnyf(nodf,1),rowf(1,nodf),no_local_temp(fixed_nodes), &
storke_pp(ntot,ntot,nels_pp),wvel(nod), row3(1,nod),g_t(n_t), &
s(ell+1),GG(ell+1,ell+1),g(ntot), Gamma(ell+1),weights(nip), &
no(fixed_nodes),val(fixed_nodes),diag_tmp(ntot,nels_pp), &
utemp_pp(ntot,nels_pp),pmul_pp(ntot,nels_pp),row2(1,nod))

uvel =.0_iwp; vvel =.0_iwp ; wvel = .0_iwp ; ielpe = iel_start
kay=0.0_iwp; kay(1,1)=visc/rho; kay(2,2)=visc/rho; kay(3,3)=visc/rho
CALL ns_cube_bc20(nxe,nye,nze,rest); CALL ns_loading(nxe,nye,nze,no)
CALL sample(element,points,weights) ; CALL rearrange(rest)

!----------------- loop the elements to set up global arrays--------------
elements_1: DO iel = 1 , nels_pp

CALL geometry_20bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g3(num,g_t,rest) ; CALL g_t_g_ns(nod,g_t,g)
p_g_co_pp(:,:,iel)=coord;g_g_pp(:,iel)=g; ielpe=ielpe+1
i = MAXVAL(g); j = MAXVAL(num) ; g_num_pp(:,iel)=num
IF(i>neq_temp) neq_temp = i; IF(j>nn_temp) nn_temp = j

END DO elements_1
neq = reduce(neq_temp); nn = reduce(nn_temp)

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 545

CALL calc_neq_pp ; CALL make_ggl(g_g_pp) ; nres = nze*(nxe+1)+3*nxe+1
DO i=1,neq_pp; IF(nres==ieq_start+i-1)THEN; it=numpe;is=i; END IF;END DO
IF(numpe==it) THEN

OPEN (11,FILE='p126.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ",npes," processors"
WRITE(11,'(A)') "Global coordinates and node numbers"
DO i=1,nels_pp,nels_pp-1

WRITE(11,'(A,I8)') "Element ",i; num = g_num_pp(:,i)
DO k=1, nod; WRITE(11,'(A,I8,3E12.4)') &

"Node",num(k),p_g_co_pp(k,:,i); END DO
END DO

WRITE(11,'(A,3(I8,A))')"There are ",nn," nodes ",nr, &
" restrained and ", neq, " equations"

WRITE(11,*) "Time after setup is :" , elap_time() - timest(1)
END IF

!----------------------- organise fixed nodes ----------------------------
CALL reindex_fixed_nodes &

(ieq_start,no,no_local_temp,num_no,no_index_start)
ALLOCATE(no_local(1:num_no)); no_local = no_local_temp(1:num_no)
DEALLOCATE(no_local_temp)
ALLOCATE(x_pp(neq_pp),rt_pp(neq_pp),r_pp(neq_pp,ell+1), &

u_pp(neq_pp,ell+1),b_pp(neq_pp),diag_pp(neq_pp), &
xold_pp(neq_pp),y_pp(neq_pp),y1_pp(neq_pp),store_pp(neq_pp))

iters = 0 ; x_pp=.0_iwp; xold_pp = .0_iwp ; val = 1.0_iwp
!-------------------------main iteration loop ---------------------------

iterations: DO ; iters = iters + 1
ke=.0_iwp ; diag_pp=.0_iwp; b_pp=.0_iwp; utemp_pp=.0_iwp; pmul_pp=.0_iwp
CALL gather(x_pp,utemp_pp); CALL gather(xold_pp,pmul_pp)

!------------ element stiffness integration and storage ------------------
elements_2: DO iel = 1 , nels_pp

coord=p_g_co_pp(:,:,iel)
coordf(1:4,:)=coord(1:7:2,:);coordf(5:8,:)=coord(13:19:2,:)
uvel = (utemp_pp(1:nod,iel)+pmul_pp(1:nod,iel))*.5_iwp
DO i = nod + nodf + 1 , nod + nodf + nod

vvel(i-nod-nodf)=(utemp_pp(i,iel)+pmul_pp(i,iel))*.5_iwp
END DO
DO i = nod + nodf + nod + 1 , ntot
wvel(i-nod-nodf-nod)=(utemp_pp(i,iel)+pmul_pp(i,iel))*.5_iwp
END DO
c11= .0_iwp; c12= .0_iwp; c21= .0_iwp; c23 = .0_iwp
c32 = .0_iwp; c24=.0_iwp ; c42= .0_iwp

gauss_points_1: DO i = 1 , nip
!--------------------- velocity contribution -----------------------------

CALL shape_fun(fun,points,i) ;funny(:,1) = fun
ubar = DOT_PRODUCT(fun,uvel);vbar = DOT_PRODUCT(fun,vvel)
wbar = DOT_PRODUCT(fun,wvel)
IF(iters==1)THEN;ubar=1._iwp;vbar=0._iwp;wbar=.0_iwp; END IF
CALL shape_der(der,points,i); jac = MATMUL(der,coord)
det = determinant(jac) ; CALL invert(jac)
deriv = MATMUL(jac,der) ; row1(1,:) = deriv(1,:)
row2(1,:)=deriv(2,:) ; row3(1,:) = deriv(3,:)
c11 = c11 + MATMUL(MATMUL(TRANSPOSE(deriv),kay),deriv) &

det weights(i) + &
MATMUL(funny,row1)*det*weights(i)*ubar + &
MATMUL(funny,row2)*det*weights(i)*vbar + &
MATMUL(funny,row3)*det*weights(i)*wbar

!----------------------now the pressure contribution----------------------
CALL shape_fun(funf,points,i); funnyf(:,1)=funf

546 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

CALL shape_der(derf,points,i) ;jac=MATMUL(derf,coordf)
det=determinant(jac) ; CALL invert(jac)
derivf=MATMUL(jac,derf) ; rowf(1,:) = derivf(1,:)
c12 = c12 + MATMUL(funny,rowf)*det*weights(i)/rho
rowf(1,:) = derivf(2,:)
c32 = c32 + MATMUL(funny,rowf)*det*weights(i)/rho
rowf(1,:) = derivf(3,:)
c42 = c42 + MATMUL(funny,rowf)*det*weights(i)/rho
c21 = c21 + MATMUL(funnyf,row1)*det*weights(i)
c23 = c23 + MATMUL(funnyf,row2)*det*weights(i)
c24 = c24 + MATMUL(funnyf,row3)*det*weights(i)

END DO gauss_points_1
CALL formupvw(ke,c11,c12,c21,c23,c32,c24,c42); storke_pp(:,:,iel)=ke
END DO elements_2 ; diag_tmp = .0_iwp
elements_2a: DO iel = 1 , nels_pp

DO k=1,ntot; diag_tmp(k,iel) = diag_tmp(k,iel) + ke(k,k) ; END DO
END DO elements_2a ; CALL scatter(diag_pp,diag_tmp)

!----------- prescribed values of velocity and pressure ------------------
DO i=1,num_no ; k = no_local(i) - ieq_start +1
diag_pp(k)=diag_pp(k)+penalty
b_pp(k)=diag_pp(k)*val(no_index_start+i-1);store_pp(k)= diag_pp(k)

END DO
!--- solve the simultaneous equations element by element using BiCGSTAB---
!------------------- initialisation phase -------------------------

IF(iters==1) x_pp = x0 ; pmul_pp = .0_iwp
y_pp = x_pp ; y1_pp = .0_iwp ; CALL gather(y_pp,pmul_pp)
elements_3 : DO iel = 1 , nels_pp

ke = storke_pp(: , : , iel)
utemp_pp(:,iel)= MATMUL(ke,pmul_pp(:,iel))

END DO elements_3 ; CALL scatter(y1_pp,utemp_pp)
DO i=1,num_no ; k=no_local(i)-ieq_start+1

y1_pp(k) = y_pp(k) * store_pp(k)
END DO
y_pp=y1_pp; rt_pp = b_pp - y_pp
r_pp=.0_iwp;r_pp(:,1)=rt_pp ;u_pp=.0_iwp; gama=1.0_iwp; omega=1.0_iwp
k = 0;norm_r=norm_p(rt_pp);r0_norm=norm_r; error=1.0_iwp;cjiters = 0

!------------------- bicgstab(ell) iterations ------------------------
bicg_iterations : DO

cjiters = cjiters + 1 ; cj_converged = error < cjtol
IF(cjiters==cjits.OR. cj_converged) EXIT
gama = - omega*gama ; y_pp = r_pp(:,1)
DO j = 1 , ell

rho1 = DOT_PRODUCT_P(rt_pp,y_pp) ; beta = rho1/gama
u_pp(:,1:j)=r_pp(:,1:j)-beta * u_pp(:,1:j); pmul_pp=.0_iwp
y_pp = u_pp(:,j); y1_pp = .0_iwp; CALL gather(y_pp,pmul_pp)
elements_4 : DO iel = 1 , nels_pp

ke = storke_pp(: , : , iel)
utemp_pp(:,iel)=MATMUL(ke,pmul_pp(:,iel))

END DO elements_4 ; CALL scatter(y1_pp,utemp_pp)
DO i=1,num_no ; l=no_local(i) -ieq_start +1

y1_pp(l) = y_pp(l) * store_pp(l)
END DO
y_pp=y1_pp; u_pp(:,j+1) = y_pp
gama = DOT_PRODUCT_P(rt_pp,y_pp) ; alpha = rho1/gama
x_pp=x_pp+ alpha * u_pp(:,1)
r_pp(:,1:j)= r_pp(:,1:j)-alpha*u_pp(:,2:j+1);pmul_pp=.0_iwp
y_pp = r_pp(:,j); y1_pp = .0_iwp; CALL gather(y_pp,pmul_pp)
elements_5 : DO iel = 1 , nels_pp

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 547

ke=storke_pp(:,:, iel)
utemp_pp(:,iel) = MATMUL(ke,pmul_pp(:,iel))

END DO elements_5 ; CALL scatter(y1_pp,utemp_pp)
DO i=1,num_no ; l = no_local(i) - ieq_start + 1

y1_pp(l) = y_pp(l) * store_pp(l)
END DO
y_pp=y1_pp ; r_pp(:,j+1) = y_pp

END DO
DO i=1,ell+1 ; DO j=1,ell+1

GG(i,j) = DOT_PRODUCT_P(r_pp(:,i),r_pp(:,j))
END DO ; END DO
CALL form_s(GG,ell,kappa,omega,Gamma,s)
x_pp = x_pp - MATMUL(r_pp,s);r_pp(:,1)=MATMUL(r_pp,Gamma)
u_pp(:,1)=MATMUL(u_pp,Gamma)
norm_r = norm_p(r_pp(:,1)); error = norm_r/r0_norm ;k= k + 1

END DO bicg_iterations
!----------------------- end of BiCGSTAB(L) process-----------------------

b_pp = x_pp - xold_pp ; pp = norm_p(b_pp) ; cj_tot = cj_tot +cjiters
IF(numpe==it) THEN
WRITE(11,'(A,E12.4)') "Norm of the error is :", pp
WRITE(11,'(A,I5,A)')"It took BiCGSTAB(L) ", &

cjiters," iterations to converge"
END IF
CALL checon_par(x_pp,xold_pp,tol,converged,neq_pp)
IF(converged.OR.iters==limit) EXIT
END DO iterations

IF(numpe==it) THEN
WRITE(11,'(A)') " The pressure at the corner of the box is :"
WRITE(11,'(A)')" Freedom Pressure "

WRITE(11,'(I8,E12.4)') nres, x_pp(is)
WRITE(11,'(A,I5)') "The total number of BiCGStab iterations was :",cj_tot
WRITE(11,'(A,I5,A)')"The solution took",iters," iterations to converge"
END IF
IF(numpe==it) WRITE(11,*) "This analysis took :" ,elap_time()-timest(1)
CALL shutdown()

end program p126

New scalar integers:
cj_tot total number of BiCGStab iterations
ell l in the BiCGStab(l) process
fixed_nodes number of fixed nodes
l simple counter
nodf number of pressure degrees of freedom per element
n_t total number of degrees of freedom per element

New scalar reals:
error residual error
gama intermediate value
kappa kappa in BiCGStab process
norm_r norm of residual
omega intermediate value
pp intermediate value
rho density
rho1 intermediate value
r0_norm starting residual norm

548 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

ubar average x velocity
vbar average y velocity
visc viscosity
wbar average z velocity
x0 start value

New dynamic integer arrays:
g_t total element g vector

New dynamic real arrays:
b_pp distributed right-hand side vector
coordf nodal coordinates of pressure nodes
c11
c12
c21
c23 c arrays—see equation (2.115)
c32
c24
c42
derf local derivatives of pressure shape functions
derivf global derivatives of pressure shape functions
diag_pp distributed diagonal vector
funf intermediate array
funnyf intermediate array
gamma intermediate array
gg intermediate array
ke element “stiffness” matrix
rowf row of fluid derivative matrix
row1
row2 intermediate arrays
row3
rt_pp distributed vector
s intermediate array
storke_pp distributed ke matrices
uvel x-velocity
vvel y-velocity
wvel z-velocity
xold_pp distributed previous x vector
y_pp distributed y vector
y1_pp distributed y1 vector

In parallel, boundary restraint data are created by ns_cube_bc20 and loading by
ns_loading for the special case of the cuboidal lid-driven cavity problem. Loops
elements_1 and elements_2, with embedded gauss_pts_1 carry over from serial
to parallel, the differences being due to the extension from 2D (serial) to 3D (parallel). For
example formupv (serial) becomes formupvw (parallel). After initialisation involving
loop elements_3, the BiCGStab iterations with loops elements_4 and elements_5

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 549

nels nxe nze nip
8000 20 20 8

aa bb cc
0.5 0.5 0.5

visc rho tol limit
0.01 1.0 0.001 30

cjtol cjits penalty
1.0e-5 500 1.0e5

x0 ell kappa
1.0 4 0.0

Figure 12.26 Data for Program 12.6 example

This job ran on 16 processors

There are 35721 nodes 28862 restrained and 96078 equations
 Time after setup is : 0.900000000037834980E-01
Norm of the error is : 0.1533E+03
It took BiCGSTAB(L) 165 iterations to converge
Norm of the error is : 0.3581E+02
It took BiCGSTAB(L) 151 iterations to converge
Norm of the error is : 0.8611E+01
It took BiCGSTAB(L) 146 iterations to converge
.
.
.
Norm of the error is : 0.1296E+00
It took BiCGSTAB(L) 155 iterations to converge
Norm of the error is : 0.7125E-01
It took BiCGSTAB(L) 149 iterations to converge
 The pressure at the corner of the box is :
 Freedom Pressure
 481 0.1110E+01
The total number of BiCGStab iterations was : 1384
The solution took 9 iterations to converge
 This analysis took : 1153.42000000000553

Figure 12.27 Results from Program 12.6 example

Elements Iterations to
convergence

 512 672
 1,000 713
 1,728 900
 8,000 1,385
 64,000 2,508
125,000 3,313

Figure 12.28 Problem size vs. Number of iterations: Program 12.6 (SGI Origin 3000)

can be traced clearly between the two versions. In parallel, only the pressure at the corner
of the box is printed. Data are listed as Figure 12.26 with results as Figure 12.27. The
effect of problem size on the number of iterations to convergence is shown in Figure 12.28
and some performance statistics are listed in Figure 12.29. Speed-up versus number of
processors for larger data sets are shown in Figure 12.30. Post processing of results is now
critical and a typical display is shown as Figure 12.31.

550 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

Mesh No of Processors Analysis Time(secs)

20x20x20 16 1153
 32 596

Figure 12.29 Performance statistics: Program 12.6 (IBM SP2)

0
0

100

200

Super-linear speed up

Number of Processors

Ideal speed up

Sp
ee

d
up

300

100 200 300

Figure 12.30 Speedup versus number of Processors with 4.5 million equations: Program
12.6 (SGI Origin 3000)

Figure 12.31 Typical displays (Margetts 2002): Program 12.6 (Continued on page 551)

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 551

Figure 12.31 (Continued from page 550)

Program 12.7 Three-dimensional analysis of Biot poro-elastic solid. Compare
Program 9.2.

PROGRAM p127
!---
! Program 9.5 3 - D consolidation of a cuboidal Biot elastic
! solid using 20 -node solid hexahedral elements coupled to 8-node
! fluid elements - parallel pcg version - biot_cube
!---
USE precision; USE mp_module;USE gather_scatter6; USE utility; USE timing
USE global_variables1; USE new_library; USE geometry_lib ; IMPLICIT NONE
! nels,neq,ntot,ndof are now in global_variables1
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=4,nod=20,nodf=8,nst=6,ndim=3, &

i,j,k,l,iel, ns,nstep,cjiters,cjits,loaded_freedoms, &
num_no,no_index_start,n_t, neq_temp, nn_temp, nle

REAL(iwp)::kx,ky,kz,e,v,det,dtim,theta,real_time, &
up,alpha,beta,cjtol,aa,bb,cc ,q

LOGICAL :: cj_converged ; CHARACTER(LEN=15) :: element='hexahedron'
!---------------------------- dynamic arrays------------------------------
REAL(iwp) ,ALLOCATABLE :: dee(:,:),points(:,:),coord(:,:),derivf(:,:), &

jac(:,:),kay(:,:),der(:,:),deriv(:,:),weights(:), &
derf(:,:),funf(:), coordf(:,:), bee(:,:), km(:,:), &
eld(:), sigma(:), kc(:,:),ke(:,:),p_g_co_pp(:,:,:),&
kd(:,:),fun(:),c(:,:),loads_pp(:),pmul_pp(:,:), &
vol(:), storke_pp(:,:,:), ans_pp(:) ,volf(:,:) , &
p_pp(:),x_pp(:),xnew_pp(:),u_pp(:),eld_pp(:,:), &
diag_precon_pp(:),diag_precon_tmp(:,:),d_pp(:), &
utemp_pp(:,:), storkd_pp(:,:,:),val(:)

INTEGER, ALLOCATABLE :: rest(:,:),g(:),num(:),g_g_pp(:,:),g_num_pp(:,:), &
g_t(:),no(:),no_local_temp(:),no_local(:)

!-------------------------input and initialisation------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF(numpe==npes)THEN

552 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

OPEN (10,FILE='p127.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,aa,bb,cc,nip, kx, ky, kz, e,v, &

dtim, nstep, theta , cjits , cjtol
END IF
CALL bcast_inputdata_p127(numpe,npes,nels,nxe,nze,aa,bb,cc,nip,kx, &

ky,kz,e,v,dtim,nstep,theta,cjits,cjtol)
CALL calc_nels_pp;ndof=nod*ndim; ntot=ndof+nodf; neq_temp= 0; nn_temp= 0
n_t=nod*nodof ; nye = nels/nxe/nze ; nle = nxe/5
nr = 3*nxe*nye*nze + 4*(nxe*nye+nye*nze+nze*nxe) + nxe+nye+nze + 2
loaded_freedoms = 3*nle*nle + 4*nle + 1
ALLOCATE(dee(nst,nst),points(nip,ndim),coord(nod,ndim),derivf(ndim,nodf),&

jac(ndim,ndim),kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &
derf(ndim,nodf),funf(nodf),coordf(nodf,ndim),bee(nst,ndof), &
km(ndof,ndof),eld(ndof),sigma(nst),kc(nodf,nodf),weights(nip), &
g_g_pp(ntot,nels_pp),diag_precon_tmp(ntot,nels_pp), &
ke(ntot,ntot),kd(ntot,ntot),fun(nod),c(ndof,nodf),g_t(n_t), &
vol(ndof),rest(nr,nodof+1), g(ntot), volf(ndof,nodf), &
p_g_co_pp(nod,ndim,nels_pp),g_num_pp(nod,nels_pp),num(nod), &
storke_pp(ntot,ntot,nels_pp),storkd_pp(ntot,ntot,nels_pp), &
pmul_pp(ntot,nels_pp),utemp_pp(ntot,nels_pp),eld_pp(ntot,nels_pp),&
no(loaded_freedoms),val(loaded_freedoms), &
no_local_temp(loaded_freedoms))

kay=0.0_iwp; kay(1,1)=kx; kay(2,2)=ky ; kay(3,3) = kz
CALL biot_cube_bc20(nxe,nye,nze,rest) ; CALL rearrange(rest)
CALL biot_loading(nxe,nze,nle,no,val) ; val = -val * aa * bb / 12._iwp
CALL sample(element,points,weights);CALL deemat(dee,e,v);ielpe=iel_start

!----------------- loop the elements to set up global arrays-------------
elements_1: DO iel = 1 , nels_pp

CALL geometry_20bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g3(num,g_t,rest); CALL g_t_g(nod,g_t,g)
p_g_co_pp(:,:,iel)=coord; g_g_pp(:,iel)=g; ielpe = ielpe + 1
i = MAXVAL(g); j = MAXVAL(num); g_num_pp(:,iel) = num
IF(i>neq_temp)neq_temp = i; IF(j>nn_temp)nn_temp = j

END DO elements_1
neq = reduce(neq_temp); nn = reduce(nn_temp)
CALL calc_neq_pp; CALL make_ggl(g_g_pp)
IF(numpe==1) THEN
OPEN (11,FILE='p127.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ", npes, " processors"
WRITE(11,'(A)') "Global coordinates and node numbers"
DO i=1,nels_pp,nels_pp-1; WRITE(11,'(A,I8)')"Element ",i
num=g_num_pp(:,i)
DO k=1,nod;WRITE(11,'(A,I8,3E12.4)') &

" Node",num(k),p_g_co_pp(k,:,i);END DO
END DO
WRITE(11,'(A,3(I8,A))') "There are ",nn, " nodes", nr, &

" restrained and ",&
neq, " equations "

WRITE(11,*) "Time after setup is :", elap_time() - timest(1)
END IF
ALLOCATE(loads_pp(neq_pp),ans_pp(neq_pp),p_pp(neq_pp),x_pp(neq_pp), &

xnew_pp(neq_pp),u_pp(neq_pp),diag_precon_pp(neq_pp),d_pp(neq_pp))
loads_pp = .0_iwp ; p_pp = .0_iwp; xnew_pp = .0_iwp
diag_precon_pp = .0_iwp ; diag_precon_tmp =.0_iwp

!-------- element stiffness integration , storage and preconditioner -----
elements_2: DO iel = 1 , nels_pp

coord = p_g_co_pp(:,:,iel)
coordf(1:4,:)=coord(1:7:2,:);coordf(5:8,:)=coord(13:20:2,:)

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 553

km = .0_iwp; c = .0_iwp; kc = .0_iwp
gauss_points_1: DO i = 1 , nip

CALL shape_der(der,points,i); jac = MATMUL(der,coord)
det=determinant(jac);CALL invert(jac);deriv=MATMUL(jac,der)
CALL beemat(bee,deriv); vol(:)=bee(1,:)+bee(2,:)+bee(3,:)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det* weights(i)

!--------------------------now the fluid contribution---------------------
CALL shape_fun(funf,points,i)
CALL shape_der(derf,points,i) ; derivf=MATMUL(jac,derf)

kc=kc+MATMUL(MATMUL(TRANSPOSE(derivf),kay),derivf)*det*weights(i)*dtim
DO l=1,nodf; volf(:,l)=vol(:)*funf(l); END DO
c= c+volf*det*weights(i)

END DO gauss_points_1 ; CALL fmkdke(km,kc,c,ke,kd,theta)
storke_pp(: , : , iel) = ke ; storkd_pp(: , : , iel) = kd
DO k=1,ndof
diag_precon_tmp(k,iel)=diag_precon_tmp(k,iel)+theta*km(k,k)

END DO
DO k=1 , nodf
diag_precon_tmp(ndof+k,iel)=diag_precon_tmp(ndof+k,iel) &

-theta*theta*kc(k,k)
END DO

END DO elements_2 ; CALL scatter(diag_precon_pp,diag_precon_tmp)
diag_precon_pp=1._iwp/diag_precon_pp;DEALLOCATE(diag_precon_tmp)

!----------------------------loaded freedoms -----------------------------
CALL reindex_fixed_nodes &

(ieq_start,no,no_local_temp,num_no,no_index_start)
ALLOCATE (no_local(1:num_no)) ; no_local = no_local_temp(1:num_no)
DEALLOCATE(no_local_temp)

! ------------------------ enter the time-stepping loop-------------------
real_time = .0_iwp

time_steps: DO ns = 1 , nstep
ans_pp = .0_iwp ; real_time=real_time+dtim

IF(numpe==1)THEN;WRITE(11,'(A,E12.4)')"The time is",real_time ; END IF
pmul_pp=.0_iwp ; utemp_pp=.0_iwp ; CALL gather(loads_pp,pmul_pp)

elements_3: DO iel = 1 , nels_pp
utemp_pp(:,iel)=MATMUL(storkd_pp(:,:,iel),pmul_pp(:,iel))

END DO elements_3 ; CALL scatter(ans_pp,utemp_pp)
!-------------------------- ramp loading ------------------------------

IF(ns>10) THEN
DO i=1,num_no ; j = no_local(i)-ieq_start + 1

ans_pp(j)=ans_pp(j) + val(no_index_start+i-1)
END DO

ELSE IF (ns<=10) THEN
DO i=1,num_no ; j = no_local(i)-ieq_start+1

ans_pp(j)=ans_pp(j)+val(no_index_start+i-1)*(.1_iwp*ns+.1_iwp* &
(theta-1._iwp))

END DO
END IF

d_pp = diag_precon_pp*ans_pp; p_pp = d_pp
x_pp = .0_iwp ! depends on starting x = .0

!----------------- solve the simultaneous equations by pcg -------------
cjiters = 0
conjugate_gradients: DO
cjiters = cjiters + 1 ; u_pp = .0_iwp

pmul_pp=.0_iwp ; u_pp=.0_iwp ; CALL gather(p_pp,pmul_pp)
elements_4 : DO iel = 1 , nels_pp
utemp_pp(:,iel)=MATMUL(storke_pp(:,:,iel),pmul_pp(:,iel))

END DO elements_4 ; CALL scatter(u_pp,utemp_pp)

554 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

!----------------------------pcg process ---------------------------------
up =DOT_PRODUCT_P(ans_pp,d_pp); alpha=up/DOT_PRODUCT_P(p_pp,u_pp)
xnew_pp = x_pp + p_pp* alpha; ans_pp = ans_pp - u_pp*alpha
d_pp = diag_precon_pp*ans_pp
beta = DOT_PRODUCT_P(ans_pp,d_pp)/up; p_pp = d_pp + p_pp * beta
CALL checon_par(xnew_pp,x_pp,cjtol,cj_converged,neq_pp)
IF(cj_converged.OR.cjiters==cjits) EXIT

END DO conjugate_gradients
!----------- end of pcg process---

ans_pp = xnew_pp; loads_pp = ans_pp
IF(numpe==1) THEN

WRITE(11,'(A,I5,A)') &
"Conjugate gradients took ",cjiters, " iterations to converge"

WRITE(11,'(A)') " The nodal displacements and porepressures are :"
WRITE(11,'(4E12.4)') ans_pp(1:4)

END IF
!-------------------recover stresses at gauss-points --------------------

eld_pp = .0_iwp; CALL gather(ans_pp,eld_pp) ; iel = 1
coord=p_g_co_pp(:,:,iel) ; eld = eld_pp(:,iel)

IF(numpe==1) WRITE(11,'(A,I5,A)') &
"The Gauss Point effective stresses for element",iel," are"

gauss_pts_2: DO i = 1,nip
CALL shape_der (der,points,i); jac= MATMUL(der,coord)
CALL invert (jac); deriv= MATMUL(jac,der)
CALL beemat(bee,deriv);sigma= MATMUL(dee,MATMUL(bee,eld))
IF(numpe==1.AND.i==1) THEN
WRITE(11,'(A,I5)') "Point ",i;WRITE(11,'(6E12.4)') sigma

END IF
END DO gauss_pts_2

END DO time_steps
IF(numpe==1) WRITE(11,*) "This analysis took :", elap_time()-timest(1)
CALL shutdown()

END PROGRAM p127

New scalar integer:
ns timestep counter

New dynamic real arrays:
ans_pp distributed answer vector
c coupling matrix
kd total element matrix
storkd_pp distributed kd matrices
vol array for volumetric strain
volf array for fluid volumetric strain

Again the main differences between serial and parallel programs relate to the change
in geometry from 2D to 3D. Loop elements_1 uses geometry_20bxz in place of
geom_rect in serial and loop elements_2 with embedded gauss_pts_1 is almost
identical although the parallel version assumes constant element properties. Ramp loading
is also assumed rather than the general pattern allowed in serial (2D). Loop elements_4
carries over from serial to parallel but in the latter case only a few surface displacements
are printed and only the stresses in the “first” (central surface) element are computed
and printed. Data are listed as Figure 12.32 with results as Figure 12.33 and performance
statistics as Figure 12.34.

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 555

nels nxe nze
8000 20 20

aa bb cc nip
0.5 0.5 0.5 8

kx ky kz
1.0 1.0 1.0

e v
1.0 0.0

dtim nstep theta
1.0 20 1.0

cjits cjtol
1000 0.00001

Figure 12.32 Data for Program 12.7 example

This job ran on 32 processors

There are 35721 nodes 28862 restrained and 107180 equations
 Time after setup is : 0.230000000003201421
The time is 0.1000E+01
Conjugate gradients took 360 iterations to converge
 The nodal displacements and porepressures are :
 -0.2591E+00 -0.5907E-02 -0.2582E+00 -0.1201E-01
The Gauss Point effective stresses for element 1 are
Point 1
 -0.2061E-01 -0.2061E-01 -0.9442E-01 0.6251E-03 -0.2071E-03 -0.2071E-03
The time is 0.2000E+01
Conjugate gradients took 262 iterations to converge
 The nodal displacements and porepressures are :
 -0.5495E+00 -0.1402E-01 -0.5478E+00 -0.2875E-01
The Gauss Point effective stresses for element 1 are
Point 1
 -0.5057E-01 -0.5057E-01 -0.1929E+00 0.3545E-02 -0.1009E-02 -0.1009E-02
.
.
.
The time is 0.2000E+02
Conjugate gradients took 313 iterations to converge
 The nodal displacements and porepressures are :
 -0.3638E+01 -0.1177E+00 -0.3623E+01 -0.2354E+00
The Gauss Point effective stresses for element 1 are
Point 1
 -0.4145E+00 -0.4145E+00 -0.9953E+00 0.5245E-02 0.6459E-02 0.6459E-02
 This analysis took : 255.710000000006403

Figure 12.33 Results from Program 12.7 example

Mesh No of Processors Analysis Time(secs)

20 x 20 x 20 16 538
 32 256

Figure 12.34 Performance statistics: Program 12.7 (IBM SP2)

556 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

Program 12.8 Eigenvalue analysis of three-dimensional elastic solid. Compare
Program 10.4.

PROGRAM p128
!---
! Program 10.4 eigenvalues and eigenvectors of a cuboidal elastic
! solid in 3d using uniform 8-node hexahedral elements
! for lumped mass this is done element by element : parallel version
!---
USE new_library ; USE geometry_lib ; USE lancz_lib; USE precision
USE timing ; USE utility; USE mp_module; USE global_variables1
USE gather_scatter6 ; IMPLICIT NONE

! ndof,nels,neq,ntot are global - not declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=3,nod=8,nst=6,i,j,k,iel,ndim=3, &

nmodes,jflag,iflag=-1,lp=11,lalfa,leig,lx,lz,iters,neig=0
REAL(iwp)::aa,bb,cc,rho,e,v,det , el,er, acc
CHARACTER (LEN=15) :: element = 'hexahedron'

!--------------------------- dynamic arrays-------------------------------
REAL(iwp),ALLOCATABLE:: points(:,:),dee(:,:),coord(:,:),vdiag_pp(:), &

fun(:),jac(:,:),der(:,:),deriv(:,:),weights(:), &
bee(:,:),km(:,:),emm(:,:),ecm(:,:),utemp_pp(:,:),&
ua_pp(:),va_pp(:),eig(:),del(:), udiag_pp(:), &
diag_pp(:),alfa(:),beta(:),w1_pp(:),y_pp(:,:), &
z_pp(:,:), pmul_pp(:,:),v_store_pp(:,:), &
p_g_co_pp(:,:,:), diag_tmp(:,:),x(:)

INTEGER, ALLOCATABLE :: rest(:,:), g(:), num(:) , g_num_pp(:,:) , &
g_g_pp (:,:), nu(:),jeig(:,:)

!----------------------input and initialisation---------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF(numpe==npes) THEN
OPEN (10,FILE='p128.dat',STATUS= 'OLD',ACTION='READ')
OPEN (11,FILE='p128.res',STATUS='REPLACE',ACTION='WRITE')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc,rho,e,v, &

nmodes,el,er,lalfa,leig,lx,lz,acc
END IF
CALL bcast_inputdata_p128(numpe,npes,nels,nxe,nze,nip,aa,bb,cc,rho,e,v, &

nmodes, el,er,lalfa,leig,lx,lz,acc)
CALL calc_nels_pp ; ndof=nod*nodof ; ntot = ndof ; nn = 0; neq = 0
nr = (nxe + 1) * (nze + 1) ; nye = nels/nxe/nze
ALLOCATE (rest(nr,nodof+1),points(nip,ndim),pmul_pp(ntot,nels_pp), &

coord(nod,ndim),fun(nod),jac(ndim,ndim), weights(nip), &
g_num_pp(nod,nels_pp),der(ndim,nod),deriv(ndim,nod),dee(nst,nst),&
num(nod),km(ntot,ntot),g(ntot),g_g_pp(ntot,nels_pp), &
ecm(ntot,ntot),eig(leig),x(lx),del(lx),nu(lx),jeig(2,leig), &
alfa(lalfa),beta(lalfa),z_pp(lz,leig),utemp_pp(ntot,nels_pp), &
p_g_co_pp(nod,ndim,nels_pp),bee(nst,ntot),emm(ntot,ntot), &
diag_tmp(ntot,nels_pp))

rest = 0 ; DO i=1,nr; rest(i,1) = i; END DO ;ielpe = iel_start
!------------------ loop the elements to set up global arrays -----------
elements_1 : DO iel =1,nels_pp

CALL geometry_8bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g(num,g,rest) ; g_num_pp(:,iel)=num
p_g_co_pp(:,:,iel)=coord; g_g_pp(:,iel)=g ;ielpe=ielpe + 1

END DO elements_1
nn = (nxe+1)*(nze+1)*(nye+1) ; neq = (nn - nr)*nodof

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 557

CALL calc_neq_pp ; CALL make_ggl(g_g_pp)
IF(numpe==npes) THEN

WRITE(11,'(A,I5,A)') "This job ran on ",npes, " processors"
WRITE(11,'(A)') "Global coordinates and node numbers"
DO i=1,nels_pp,nels_pp-1; WRITE(11,'(A,I8)')"Element ",i

num = g_num_pp(:,i)
DO k=1,nod;WRITE(11,'(A,I8,3E12.4)') &

" Node",num(k),p_g_co_pp(k,:,i); END DO
END DO
WRITE(11,'(A,3(I8,A))') "There are ",nn," nodes",nr, &

" restrained and", neq," equations"
WRITE(11,*) "Time after setup is :", elap_time() - timest(1)

END IF
ALLOCATE (ua_pp(neq_pp),va_pp(neq_pp),vdiag_pp(neq_pp), &

v_store_pp(neq_pp,lalfa),diag_pp(neq_pp),udiag_pp(neq_pp), &
w1_pp(neq_pp), y_pp(neq_pp,leig))

ua_pp = .0_iwp ; va_pp = .0_iwp ; eig = .0_iwp ; diag_tmp = .0_iwp
jeig = 0; x=.0_iwp; del=.0_iwp; nu=0; alfa=.0_iwp; beta=.0_iwp
diag_pp=.0_iwp;udiag_pp=.0_iwp; w1_pp=.0_iwp; y_pp=.0_iwp; z_pp=.0_iwp
CALL sample(element, points, weights); CALL deemat(dee,e,v)

!--------------- element stiffness integration and assembly---------------
elements_2:DO iel=1,nels_pp

coord = p_g_co_pp(:,:,iel); g = g_g_pp(: ,iel)
km=0.0_iwp ; emm=0.0_iwp

integrating_pts_1: DO i=1,nip
CALL shape_fun(fun,points,i)
CALL shape_der(der,points,i); jac=MATMUL(der,coord)
det= determinant(jac) ; CALL invert(jac)
deriv = MATMUL(jac,der);CALL beemat(bee,deriv)
km= km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
CALL ecmat(ecm,fun,ntot,nodof);emm=emm+ecm*det*weights(i)*rho

END DO integrating_pts_1
DO k=1,ntot
diag_tmp(k,iel)=diag_tmp(k,iel)+sum(emm(k,:));END DO

END DO elements_2
CALL scatter(diag_pp,diag_tmp); DEALLOCATE(diag_tmp)

!------------------------------find eigenvalues---------------------------
diag_pp = 1._iwp / sqrt(diag_pp) ! diag_pp holds l**(-1/2)
DO iters = 1 , lalfa
CALL lancz1(neq_pp,el,er,acc,leig,lx,lalfa,lp,iflag,ua_pp,va_pp, &

eig,jeig,neig,x,del,nu,alfa,beta,v_store_pp)
IF(iflag==0) EXIT
IF(iflag>1) THEN

IF(numpe==npes) THEN
WRITE(11,'(A,I5)') &

" Lancz1 is signalling failure, with iflag = ",iflag;EXIT
END IF

END IF
!---- iflag = 1 therefore form u + a * v (done element by element)-----

vdiag_pp= va_pp; vdiag_pp = vdiag_pp * diag_pp!vdiag is l**(-1/2).va
udiag_pp = .0_iwp ; pmul_pp = .0_iwp; CALL gather(vdiag_pp,pmul_pp)
elements_3 : DO iel = 1 , nels_pp

! utemp_pp(:,iel) = MATMUL(km,pmul_pp(:,iel))
CALL dgemv('n',ntot,ntot,1.0, &

km,ntot,pmul_pp(:,iel),1,0.0,utemp_pp(:,iel),1)

558 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

END DO elements_3
CALL scatter(udiag_pp,utemp_pp) !udiag is A.l**(-1/2).va
udiag_pp = udiag_pp * diag_pp ; ua_pp = ua_pp + udiag_pp

END DO
!-------------- iflag = 0 therefore write out the spectrum ---------------

IF(numpe==npes) THEN
WRITE(11,'(2(A,E12.4))') "The range is",el," to ",er
WRITE(11,'(A,I8,A)') "There are ",neig," eigenvalues in the range"
WRITE(11,'(A,I8,A)') "It took ",iters," iterations"
WRITE(11,'(A)') "The eigenvalues are :"
WRITE(11,'(6E12.4)') eig(1:neig)

END IF
! calculate the eigenvectors

IF(neig>10)neig = 10
CALL lancz2(neq_pp,lalfa,lp,eig,jeig,neig,alfa,beta,lz,jflag,y_pp, &

w1_pp,z_pp,v_store_pp)
!------------------if jflag is zero calculate the eigenvectors ----------

IF (jflag==0) THEN
IF(numpe==npes) THEN
WRITE(11,'(A)') "The eigenvectors are :"
DO i = 1 , nmodes

udiag_pp(:) = y_pp(:,i) ; udiag_pp = udiag_pp * diag_pp
WRITE(11,'("Eigenvector number ",I4," is: ")') i
WRITE(11,'(6E12.4)') udiag_pp(1:6)

END DO
ELSE

! lancz2 fails
WRITE(11,'(A,I5)')" Lancz2 is signalling failure with jflag = ",jflag

END IF
END IF

IF(numpe==npes) WRITE(11,*)"This analysis took :", elap_time()-timest(1)
CALL shutdown()

END PROGRAM p128

New scalar integers:
iflag failure flag
jflag failure flag
lalfa length of alfa array
leig length of eig array
lp output channel number
lx problem dependent array size
lz problem dependent array size
neig problem dependent array size
nmodes number of eigenmodes computed

New scalar reals:
acc accuracy parameter
el left limit of eigenvalue spectrum
er right limit of eigenvalue spectrum

lancz1 and lancz2 are aliases for ep25a/ad and ep25e/ed of HSL (2002).

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 559

New dynamic integer arrays:
jeig intermediate array
nu intermediate array

New dynamic real arrays:
alfa intermediate array
beta intermediate array
del intermediate array
diag_tmp diagonal mass matrix
ecm element consistent mass matrix
eig intermediate array
emm accumulated element mass matrix
ua_pp distributed {U} in product {U} + [A]{V}
va_pp distributed {V} in product {U} + [A]{V}
vdiag_pp distributed diagonal vector
v_store_pp distributed stored Lanczos vectors
w1_pp intermediate array
x local element array
z_pp intermediate array

Loop elements_1 is a good illustration of the transition from serial to paral-
lel code. Routine geometry_8bxz, to create a cuboidal mesh of 8-node hexahedra,
replaces geom_rect, and find_g replaces num_to_g. Distributed arrays g_num_pp,
p_g_co_pp and g_g_pp replace their serial counterparts g_num, g_coord and g_g.
Loop elements_2 with embedded loop integrating_points_1 clearly carries over
although the parallel version assumes uniform element properties throughout the mesh. In
all other aspects the serial and parallel programs are essentially identical although of course
the serial and parallel solution algorithm libraries are not interchangeable. Data are listed as
Figure 12.35 involving about a quarter of a million equations with results as Figure 12.36
and some performance statistics as Figure 12.37. For larger data sets, Figures 12.38 and
12.39 show performance measured on an SGI Origin 3000 computer.

nels nxe nze nip
78125 25 25 8

aa bb cc rho
0.04 0.04 0.04 1.0

e v
1.0 0.3

nmodes
5

el er
0.0 1.0

lalfa leig lx lz acc
5000 20 100 5000 1.0e-9

Figure 12.35 Data for Program 12.8 example

560 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

This job ran on 32 processors

There are 85176 nodes 676 restrained and 253500 equations
 Time after setup is : 1.52999999999883585
The range is 0.0000E+00 to 0.1000E+01
There are 9 eigenvalues in the range
It took 1005 iterations
The eigenvalues are :
 0.1580E-02 0.3217E-01 0.4592E-01 0.9977E-01 0.2610E+00 0.2894E+00
 0.7217E+00 0.8033E+00 0.8873E+00
The eigenvectors are :
Eigenvector number 1 is:
 0.6026E+00 0.6025E+00 -0.6662E-01 0.6026E+00 0.6025E+00 -0.7326E-01
Eigenvector number 2 is:
 0.9296E-01 0.6500E+00 -0.8792E-04 0.3099E-01 0.6500E+00 0.8798E-04
Eigenvector number 3 is:
 -0.5045E+00 -0.5034E+00 0.2030E+00 -0.5045E+00 -0.5034E+00 0.2231E+00
Eigenvector number 4 is:
 -0.9671E-03 0.4628E-04 0.6334E+00 -0.9672E-03 -0.4628E-04 0.6334E+00
Eigenvector number 5 is:
 0.4333E+00 0.4247E+00 -0.2817E+00 0.4335E+00 0.4250E+00 -0.3083E+00
 This analysis took : 85.7199999999975262

Figure 12.36 Results from Program 12.8 example

Mesh No of Processors

25 x 125 x 25 16 163.8
32 85.7 [22]

Analysis Time(secs)[Using BLAS]

Figure 12.37 Performance statistics: Program 12.8 (IBM SP2)

320,000 elements, 1.1M equations

Processors 16 64 256 384

Total 327.4 70.5 21.3 17.4

Setup 52.0 12.9 4.5 4.9

Iterations 1,609 1,636 1,629 1,663

Figure 12.38 Larger data set: Program 12.8 (SGI Origin 3000)

2.56M elements, 7.8M equations

Processors <186 192 256 384
 insufficient
 memory

Total 1,636.8 414.2 252.1

Setup 141.6 108.8 72.4

Iterations 3,174 3,198 3,254

Figure 12.39 Larger data set: Program 12.8 (SGI Origin 3000)

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 561

Program 12.9 Forced vibration analysis of a three-dimensional elastic solid. Implicit
integration in time. Compare Program 11.4.

PROGRAM p129
!---
! Program 11.6 forced vibration of a 3 - d elastic
! solid using uniform 20-node hexahedral elements (nxe even)
! numbered in the x-z direction - lumped or consistent mass
! implicit integration by theta method : parallel version
!---
USE new_library; USE geometry_lib ; USE precision; USE gather_scatter6
USE global_variables1;USE timing;USE mp_module;USE utility; IMPLICIT NONE
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=3,nod=20,nst=6,neq_temp,nn_temp, &

i,j,k,iel,ndim=3,nstep,npri,iters,limit , it,is ,nres
! ndof, nels, ntot, neq are now global variables ; not declared
REAL(iwp)::aa,bb,cc,e,v,det,rho,alpha1,beta1,omega,theta,period,pi,dtim, &

volume,c1,c2,c3,c4,real_time,tol,big,up,alpha,beta
CHARACTER(LEN=15)::element='hexahedron'
LOGICAL :: consistent = .FALSE. , converged

!----------------------------- dynamic arrays-----------------------------
REAL(iwp),ALLOCATABLE::loads_pp(:),points(:,:),dee(:,:),coord(:,:), &

fun(:),jac(:,:), der(:,:),deriv(:,:), weights(:), &
bee(:,:),km(:,:),p_g_co_pp(:,:,:),x1_pp(:), &
d1x1_pp(:),d2x1_pp(:),emm(:,:),ecm(:,:),x0_pp(:), &
d1x0_pp(:),d2x0_pp(:),store_km_pp(:,:,:),vu_pp(:), &
store_mm_pp(:,:,:),u_pp(:),p_pp(:),d_pp(:), &
x_pp(:),xnew_pp(:),pmul_pp(:,:),utemp_pp(:,:), &
diag_precon_pp(:),diag_precon_tmp(:,:),temp_pp(:,:,:)

INTEGER, ALLOCATABLE::rest(:,:), g(:), num(:), g_num_pp(:,:), g_g_pp(:,:)
!------------------------input and initialisation-------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)
IF(numpe==npes) THEN
OPEN (10,FILE='p129.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) nels,nxe,nze,nip,aa,bb,cc,rho,e,v, &

alpha1,beta1,nstep,npri,theta,omega,tol,limit
END IF
CALL bcast_inputdata_p129(numpe,npes,nels,nxe,nze,nip,aa,bb,cc,rho,e,v, &

alpha1,beta1,nstep,theta,npri,omega,tol,limit)
CALL calc_nels_pp ; ndof=nod*nodof ; neq_temp = 0 ; nn_temp = 0
ntot = ndof; nye = nels/nxe/nze; nr=3*nxe*nze+2*nxe+2*nze+1
nres = 3*(nye*(nxe+1)*(nze+1)+nr*(nye-1)+(nxe+1))
ALLOCATE(rest(nr,nodof+1),points(nip,ndim),g(ntot),fun(nod), &

dee(nst,nst),coord(nod,ndim),jac(ndim,ndim),weights(nip), &
der(ndim,nod), deriv(ndim,nod), bee(nst,ntot), km(ntot,ntot), &
num(nod),g_num_pp(nod,nels_pp),g_g_pp(ntot,nels_pp), &
emm(ntot,ntot),ecm(ntot,ntot),p_g_co_pp(nod,ndim,nels_pp), &
store_km_pp(ntot,ntot,nels_pp),utemp_pp(ntot,nels_pp), &
pmul_pp(ntot,nels_pp),store_mm_pp(ntot,ntot,nels_pp), &
temp_pp(ntot,ntot,nels_pp),diag_precon_tmp(ntot,nels_pp))

rest = 0; DO i=1,nr; rest(i,1) = i; END DO ; ielpe = iel_start
pi=ACOS(-1._iwp) ; period = 2._iwp*pi/omega ; dtim =period/20._iwp
c1=(1._iwp-theta)*dtim; c2=beta1-c1
c3=alpha1+1._iwp/(theta*dtim); c4=beta1+theta*dtim
CALL deemat (dee,e,v); CALL sample(element,points,weights)

!-------------- loop the elements to set up global arrays ----------------
elements_1: DO iel = 1 , nels_pp

CALL geometry_20bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g(num , g , rest) ; g_num_pp(:,iel) = num

562 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

p_g_co_pp(:,:,iel) = coord; g_g_pp(:,iel)=g; ielpe=ielpe+1
i = MAXVAL(g); j = MAXVAL(num)
IF(i>neq_temp)neq_temp = i ; IF(j>nn_temp)nn_temp = j

END DO elements_1
neq = reduce(neq_temp); nn = reduce(nn_temp)
CALL calc_neq_pp ; CALL make_ggl(g_g_pp)
DO i=1,neq_pp; IF(nres==ieq_start+i-1) THEN; it=numpe; is = i; END IF
END DO
IF(numpe==it) THEN
OPEN (11,FILE='p129.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ", npes, " processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i= 1, nels_pp , nels_pp - 1

WRITE(11,'(A,I8)')"Element ",i; num = g_num_pp(:,i)
DO k = 1,nod;WRITE(11,'(A,I8,3E12.4)') &
" Node",num(k),p_g_co_pp(k,:,i); END DO

END DO
WRITE(11,'(A,3(I8,A))') "There are ",nn," nodes",nr," restrained and",&

neq," equations"
WRITE(11,*) "Time after setup is :", elap_time() - timest(1)

END IF
ALLOCATE(x0_pp(neq_pp),d1x0_pp(neq_pp),x1_pp(neq_pp),vu_pp(neq_pp), &

diag_precon_pp(neq_pp),u_pp(neq_pp), &
d2x0_pp(neq_pp),loads_pp(neq_pp),d1x1_pp(neq_pp),d2x1_pp(neq_pp),&
d_pp(neq_pp),p_pp(neq_pp),x_pp(neq_pp),xnew_pp(neq_pp))

xnew_pp=.0_iwp; p_pp=.0_iwp; diag_precon_pp=.0_iwp
store_km_pp=.0_iwp;store_mm_pp=.0_iwp;diag_precon_tmp = .0_iwp

!-- element stiffness and mass integration ,storage and preconditioner --
elements_2: DO iel = 1 , nels_pp

coord=p_g_co_pp(:,:,iel);km=.0_iwp;volume=.0_iwp; emm=.0_iwp
gauss_points_1: DO i = 1 , nip

CALL shape_der (der,points,i) ; jac = MATMUL(der,coord)
det = determinant(jac) ; CALL invert(jac)
deriv = matmul(jac,der) ; CALL beemat (bee,deriv)
km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee) *det* weights(i)
volume=volume + det*weights(i); CALL shape_fun(fun,points,i)
IF(consistent) THEN
CALL ecmat(ecm,fun,ntot,nodof); ecm=ecm*det*weights(i)*rho
emm = emm + ecm
END IF

END DO gauss_points_1
IF(.NOT.consistent) THEN

DO i=1,ntot; emm(i,i)=volume*rho/13._iwp; END DO
DO i=1,19,6 ; emm(i,i)=emm(4,4)*.125_iwp; END DO
DO i=2,20,6 ; emm(i,i)=emm(4,4)*.125_iwp; END DO
DO i=3,21,6 ; emm(i,i)=emm(4,4)*.125_iwp; END DO
DO i=37,55,6; emm(i,i)=emm(4,4)*.125_iwp; END DO
DO i=38,56,6; emm(i,i)=emm(4,4)*.125_iwp; END DO
DO i=39,57,6; emm(i,i)=emm(4,4)*.125_iwp; END DO

END IF
store_km_pp (: , : , iel) = km ; store_mm_pp(: , : , iel) = emm
DO k=1,ntot
diag_precon_tmp(k,iel)=diag_precon_tmp(k,iel)+emm(k,k)*c3+km(k,k)*c4
END DO

END DO elements_2 ; CALL scatter(diag_precon_pp,diag_precon_tmp)
diag_precon_pp = 1._iwp / diag_precon_pp; DEALLOCATE(diag_precon_tmp)

!-----------------------initial conditions -------------------------------
x0_pp = .0_iwp; d1x0_pp = .0_iwp; d2x0_pp = .0_iwp

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 563

!----------------------- time stepping loop ------------------------------
real_time = .0_iwp
IF(numpe==it) THEN

WRITE(11,'(A)') " Time t cos(omega*t) Displacement Iterations"
END IF
timesteps: DO j = 1 , nstep

real_time = real_time + dtim ; loads_pp = .0_iwp
u_pp = .0_iwp ; vu_pp = .0_iwp
elements_3: DO iel = 1 , nels_pp ! gather for rhs multiply

temp_pp(:,:,iel)=store_km_pp(:,:,iel)*c2+ store_mm_pp(:,:,iel)*c3
END DO elements_3
CALL gather(x0_pp,pmul_pp)
DO iel=1,nels_pp

utemp_pp(:,iel) = MATMUL(temp_pp(:,:,iel),pmul_pp(:,iel))
END DO ; CALL scatter(u_pp,utemp_pp)

!-------------------- Velocity Bit ---------------------------------------
temp_pp = store_mm_pp/theta; CALL gather(d1x0_pp,pmul_pp)
DO iel = 1,nels_pp

utemp_pp(:,iel)=MATMUL(temp_pp(:,:,iel),pmul_pp(:,iel))
END DO ; CALL scatter(vu_pp,utemp_pp) ! doesn't add to last u_pp
IF(numpe==it) THEN

loads_pp(is)=theta*dtim*cos(omega*real_time)+ &
c1*cos(omega*(real_time-dtim)) !

END IF
loads_pp = u_pp + vu_pp + loads_pp

!------------------ solve simultaneous equations by pcg ------------------
d_pp = diag_precon_pp*loads_pp; p_pp = d_pp; x_pp = .0_iwp
iters = 0
iterations : DO

iters = iters + 1 ; u_pp = 0._iwp ; vu_pp = .0_iwp
temp_pp=store_mm_pp*c3+store_km_pp*c4;CALL gather(p_pp,pmul_pp)
elements_4 : DO iel = 1, nels_pp

utemp_pp(:,iel) = MATMUL(temp_pp(:,:,iel),pmul_pp(:,iel))
END DO elements_4 ; CALL scatter(u_pp,utemp_pp)

!---------------------------pcg equation solution-------------------------
up=DOT_PRODUCT_P(loads_pp,d_pp);alpha=up/DOT_PRODUCT_P(p_pp,u_pp)
xnew_pp = x_pp + p_pp* alpha ; loads_pp=loads_pp - u_pp*alpha
d_pp = diag_precon_pp*loads_pp !
beta=DOT_PRODUCT_P(loads_pp,d_pp)/up; p_pp=d_pp+p_pp*beta
u_pp = xnew_pp
CALL checon_par(xnew_pp,x_pp,tol,converged,neq_pp)
IF(converged .OR. iters==limit) EXIT

END DO iterations
x1_pp=xnew_pp
d1x1_pp=(x1_pp-x0_pp)/(theta*dtim)-d1x0_pp*(1._iwp-theta)/theta
d2x1_pp=(d1x1_pp-d1x0_pp)/(theta*dtim)-d2x0_pp*(1._iwp-theta)/theta

IF(j/npri*npri==j .AND. numpe==it) WRITE(11,'(3E12.4,I10)') &
real_time,cos(omega*real_time),x1_pp(is),iters
x0_pp = x1_pp; d1x0_pp = d1x1_pp; d2x0_pp = d2x1_pp

END DO timesteps
IF(numpe==it) WRITE(11,*)"This analysis took :", elap_time()-timest(1)
CALL shutdown()

END PROGRAM p129

New scalar reals:
alpha1 Rayleigh damping parameter
beta1 Rayleigh damping parameter

564 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

c1
c2 intermediate reals
c3
c4
period period of oscillation
volume element volume

New scalar logicals:
consistent .TRUE. if element mass is “consistent”

New dynamic real arrays:
d1x0_pp distributed old velocity vector
d2x0_pp distributed old acceleration vector
d1x1_pp distributed new velocity vector
d2x1_pp distributed new acceleration vector
store_mm_pp distributed element mass storage
temp_pp distributed intermediate vector
vu_pp distributed intermediate vector
x0_pp distributed old displacement vector
x1_pp distributed new displacement vector

The now familiar consistency of loops elements_1 and elements_2 with embed-
ded gauss_pts_1 appears again. The parallel (3D) version has the lumped mass
matrix for 20-node elements hand-coded in place of the elmat routine used in the
serial (2D) case which used 8-node elements. The time stepping loop involves compa-
rable loop elements_3 while the pcg section involves comparable loop elements_4.
Data are listed as Figure 12.40 with results as Figure 12.41 and performance statistics as
Figure 12.42.

nels nxe nze nip
2560 8 8 27

aa bb cc rho
0.125 0.125 0.125 1.0

e v
1.0 0.3

alpha1 beta1
0.0008 0.5

nstep npri theta
32 1 1.0

omega tol limit
0.01 0.0001 3000

Figure 12.40 Data for Program 12.9 example

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 565

This job ran on 32 processors

There are 12465 nodes 225 restrained and 36720 equations
 Time after setup is : 0.339999999996507540
 Time t cos(omega*t) Displacement Iterations
 0.3142E+02 0.9511E+00 0.3469E+03 428
 0.6283E+02 0.8090E+00 0.5158E+03 420
 0.9425E+02 0.5878E+00 0.4672E+03 419
.
.
.
 0.9425E+03 -0.1000E+01 -0.5935E+03 421
 0.9739E+03 -0.9511E+00 -0.5696E+03 421
 0.1005E+04 -0.8090E+00 -0.4899E+03 422
 This analysis took : 562.680000000000291

Figure 12.41 Results from Program 12.9 example

Mesh No of Processors Analysis Time(secs)

8 x 40 x 8 16 1601
 32 562.7

Figure 12.42 Performance statistics: Program 12.9 (IBM SP2)

Program 12.10 Forced vibration analysis of three-dimensional elasto-plastic solid.
Explicit integration in time. Compare Program 11.5.

PROGRAM p1210
!---
! Program 11.7 forced vibration of an elastic-plastic(Von Mises) solid
! using 20-node hexahedral elements; nxe even; viscoplastic strain method
! regular box mesh : lumped mass, explicit integration: parallel version
!---
USE new_library; USE geometry_lib; USE mp_module; USE timing; USE utility
USE global_variables1; USE precision; USE gather_scatter6; IMPLICIT NONE
! ndof,nels,neq,ntot are now global variables - not declared
INTEGER::nxe,nye,nze,nn,nr,nip,nodof=3,nod=20,nst=6,loaded_nodes,nres, &

i,j,k,jj,iel,ndim=3,nstep ,npri,num_no,no_index_start , &
neq_temp,nn_temp, is,it

REAL(iwp) ::aa,bb,cc,rho,dtim,e,v,det,sbary,pload,sigm,f,fnew,fac, &
volume,sbar,dsbar,lode_theta,real_time

CHARACTER (LEN = 15) :: element = 'hexahedron'
!---------------------------- dynamic arrays------------------------------
REAL(iwp), ALLOCATABLE :: points(:,:),bdylds_pp(:),x1_pp(:),d1x1_pp(:), &

stress(:),pl(:,:),emm(:),d2x1_pp(:),tensor_pp(:,:,:), &
etensor_pp(:,:,:),val(:),dee(:,:),coord(:,:),mm_pp(:),&
jac(:,:),weights(:), der(:,:),deriv(:,:),bee(:,:), &
eld(:),eps(:),sigma(:),bload(:),eload(:),mm_tmp(:,:), &
p_g_co_pp(:,:,:),pmul_pp(:,:),utemp_pp(:,:)

INTEGER, ALLOCATABLE :: rest(:,:), g(:), no(:), num(:),no_local(:), &
g_num_pp(:,:), g_g_pp(:,:),no_local_temp(:)

!-----------------------input and initialisation--------------------------
timest(1) = elap_time() ; CALL find_pe_procs(numpe,npes)

566 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

IF(numpe==npes) THEN
OPEN (10,FILE='p1210.dat',STATUS= 'OLD',ACTION='READ')
READ (10,*) aa,bb,cc,sbary,e,v,rho,pload, &

nels,nxe,nze,nip,loaded_nodes,dtim,nstep,npri
END IF
CALL bcast_inputdata_p1210(numpe,npes,nels,nxe,nze,nip,loaded_nodes, &

aa,bb,cc,rho,e,v,sbary,pload,nstep,dtim,npri)
CALL calc_nels_pp; ndof=nod*nodof ; ntot = ndof ; neq_temp = 0
nn_temp = 0 ;nr = 3*nxe*nze+2*nxe+2*nze+1 ; nye = nels/nxe/nze
nres = 3*(nye*(nxe+1)*(nze+1)+nr*(nye-1)+(nxe+1))
ALLOCATE (rest(nr,nodof+1), points(nip,ndim),weights(nip),num(nod), &

p_g_co_pp(nod,ndim,nels_pp),dee(nst,nst),coord(nod,ndim), &
tensor_pp(nst,nip,nels_pp),no(loaded_nodes), pl(nst,nst), &
etensor_pp(nst,nip,nels_pp),jac(ndim,ndim),der(ndim,nod), &
deriv(ndim,nod),g_num_pp(nod,nels_pp),bee(nst,ntot),eld(ntot),&
eps(nst),sigma(nst),emm(ntot),bload(ntot),eload(ntot),g(ntot),&
stress(nst),val(loaded_nodes),g_g_pp(ntot,nels_pp), &
mm_tmp(ntot,nels_pp),pmul_pp(ntot,nels_pp), &
utemp_pp(ntot,nels_pp),no_local_temp(loaded_nodes))

tensor_pp=.0_iwp; etensor_pp=.0_iwp; mm_tmp=.0_iwp; pmul_pp=.0_iwp
utemp_pp=.0_iwp
rest = 0; DO i=1,nr; rest(i,1) = i; END DO ; ielpe = iel_start
no = nres; val = pload

!----------- loop the elements to set up global arrays -------------------
elements_0:DO iel = 1 , nels_pp

CALL geometry_20bxz(ielpe,nxe,nze,aa,bb,cc,coord,num)
CALL find_g(num,g,rest) ; g_num_pp(:,iel) = num
i = MAXVAL(g) ; j = MAXVAL(num)
IF(i > neq_temp) neq_temp=i; IF(j > nn_temp)nn_temp = j
p_g_co_pp(:,:,iel)=coord; g_g_pp(:,iel)=g;ielpe=ielpe+1

end do elements_0
neq = reduce(neq_temp); nn = reduce(nn_temp)
CALL calc_neq_pp ; CALL make_ggl(g_g_pp)
DO i = 1 , neq_pp; IF(nres==ieq_start+i-1) THEN; it=numpe; is=i; END IF
END DO
IF(numpe==it) THEN

OPEN (11,FILE='p1210.res',STATUS='REPLACE',ACTION='WRITE')
WRITE(11,'(A,I5,A)') "This job ran on ",npes, " processors"
WRITE(11,'(A)') "Global coordinates and node numbers "
DO i= 1, nels_pp , nels_pp - 1

WRITE(11,'(A,I8)')"Element ",i ; num = g_num_pp(:,i)
DO k = 1,nod;WRITE(11,'(A,I8,3E12.4)') &
" Node",num(k),p_g_co_pp(k,:,i); END DO

END DO
WRITE(11,'(A,3(I8,A))') "There are ",nn," nodes",nr," restrained and",&

neq," equations"
WRITE(11,*) "Time after setup is :", elap_time() - timest(1)

END IF
ALLOCATE(bdylds_pp(neq_pp),x1_pp(neq_pp),d1x1_pp(neq_pp), &

d2x1_pp(neq_pp),mm_pp(neq_pp))
bdylds_pp=.0_iwp; x1_pp=0.0_iwp; d1x1_pp=0.0_iwp
d2x1_pp=0.0_iwp; mm_pp=0.0_iwp ; CALL sample(element,points,weights)

!--------------------calculate diagonal mass matrix ----------------------
elements_1: DO iel = 1 , nels_pp

coord = p_g_co_pp(:,:,iel); volume= .0_iwp
gauss_pts_1: DO i = 1 , nip

CALL shape_der (der,points,i); jac = MATMUL(der,coord)
det = determinant(jac); volume=volume+det*weights(i)*rho

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 567

END DO gauss_pts_1
emm=volume/13._iwp;emm(1:19:6)=emm(4)*.125_iwp
emm(2:20:6)=emm(4)*.125_iwp; emm(3:21:6)=emm(4)*.125_iwp
emm(37:55:6)=emm(4)*.125_iwp;emm(38:56:6)=emm(4)*.125_iwp
emm(39:57:6)=emm(4)*.125_iwp

mm_tmp(:,iel)=mm_tmp(:,iel) + emm
END DO elements_1
CALL scatter(mm_pp,mm_tmp); DEALLOCATE(mm_tmp)

!------------------------- reindexing information ------------------------
CALL reindex_fixed_nodes &

(ieq_start,no,no_local_temp,num_no,no_index_start)
ALLOCATE(no_local(1:num_no)) ; no_local = no_local_temp(1:num_no)
DEALLOCATE (no_local_temp)

!--------------------- explicit integration loop -------------------------
real_time = .0_iwp
IF(numpe==it) THEN
WRITE(11,'(A)') " Time Displacement Velocity Acceleration"
WRITE(11,'(4e12.4)')real_time,x1_pp(is),d1x1_pp(is),d2x1_pp(is)

END IF
time_steps : DO jj = 1 , nstep

!------------------------- apply the load -------------------------------
real_time = real_time + dtim
x1_pp = x1_pp +(d1x1_pp+d2x1_pp*dtim*.5_iwp)*dtim ; bdylds_pp = .0_iwp

!-------------------- element stress-strain relationship -----------------
pmul_pp = .0_iwp; utemp_pp = .0_iwp; CALL gather(x1_pp,pmul_pp)
elements_2: DO iel = 1 , nels_pp

coord=p_g_co_pp(:,:,iel); bload=.0_iwp; eld = pmul_pp(:,iel)
gauss_pts_2: DO i =1 , nip; dee=.0_iwp; CALL deemat(dee,e,v)
CALL shape_der (der,points,i); jac = MATMUL(der,coord)
det = determinant(jac) ; CALL invert(jac)
deriv = MATMUL(jac,der) ; CALL beemat (bee,deriv)
eps=MATMUL(bee , eld) ; eps = eps - etensor_pp(:, i , iel)
sigma= MATMUL(dee , eps); stress=sigma+tensor_pp(:,i,iel)
CALL invar(stress,sigm,dsbar,lode_theta);fnew = dsbar-sbary

!---------------------- check whether yield is violated ------------------
IF(fnew>=.0_iwp) THEN
stress= tensor_pp(:,i,iel)
CALL invar(stress,sigm,sbar,lode_theta)
f = sbar - sbary; fac = fnew/(fnew - f)
stress = tensor_pp (: , i , iel)+(1._iwp-fac) * sigma
CALL vmpl(e,v,stress,pl); dee = dee - fac * pl

END IF
sigma=MATMUL(dee ,eps); sigma=sigma+tensor_pp(: , i , iel)
eload=MATMUL(sigma,bee); bload=bload+eload*det * weights(i)

!-----------------------update Gauss point stresses and strains ----------
tensor_pp(: , i , iel) = sigma
etensor_pp(: , i , iel) = etensor_pp(: , i , iel) + eps

END DO gauss_pts_2
utemp_pp(:,iel) = utemp_pp(:,iel) - bload

END DO elements_2
CALL scatter (bdylds_pp,utemp_pp)

DO i = 1 , num_no
j = no_local(i) - ieq_start + 1
bdylds_pp(j) = bdylds_pp(j)+val(no_index_start + i - 1) * pload

END DO
bdylds_pp = bdylds_pp / mm_pp
d1x1_pp=d1x1_pp+(d2x1_pp+bdylds_pp)*.5_iwp*dtim; d2x1_pp = bdylds_pp
IF(jj==jj/npri*npri .AND. numpe==it) WRITE(11,'(4E12.4)')real_time, &

568 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

x1_pp(is),d1x1_pp(is),d2x1_pp(is)
END DO time_steps
IF(numpe==it) WRITE(11,*) "This analysis took :", elap_time()-timest(1)
CALL shutdown()
END PROGRAM p1210

New scalar integers:
jj simple counter
loaded_nodes number of loaded nodes

New scalar reals:
fac yield factor
fnew new yield function
pload load multiple
sbar shear stress
sbary shear yield stress

New dynamic real arrays:
etensor_pp distributed element strains
mm_pp distributed mass vector
mm_tmp temporary vector
pl plasticity matrix

In the parallel version, an extra loop, elements_0, creates geometry as is done by
elements_1 in serial. Then parallel elements_1 creates the lumped mass matrix for
20-node hexahedral elements. Following this, loops elements_2 in both programs are
equivalent. Uniform elements are assumed in 3D. Data are listed as Figure 12.43 with
results as Figure 12.44 and performance statistics as Figure 12.45

aa bb cc sbary
0.1 0.1 0.1 1.0e8

e v rho
1.0 0.3 1.0

pload
-1.0

nels nxe nze nip
5000 10 10 27

loaded_nodes
1

dtim nstep npri
0.005 1000 100

Figure 12.43 Data for Program 12.10 example

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 569

This job ran on 32 processors

There are 23441 nodes 341 restrained and 69300 equations
 Time after setup is : 0.289999999993597157
 Time Displacement Velocity Acceleration
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.5000E+00 0.7171E+02 -0.1272E+03 -0.1294E+04
 0.1000E+01 0.7047E+02 -0.7126E+02 0.1556E+04
 0.1500E+01 0.7305E+02 -0.8662E+00 -0.2327E+03
 0.2000E+01 0.7149E+02 0.1814E+02 0.1927E+04
 0.2500E+01 0.7584E+02 -0.3821E+02 -0.2451E+03
 0.3000E+01 0.7851E+02 -0.1181E+02 0.5939E+03
 0.3500E+01 0.8550E+02 -0.1367E+02 -0.1659E+04
 0.4000E+01 0.8610E+02 -0.3553E+02 0.4863E+03
 0.4500E+01 0.8925E+02 0.1898E+02 -0.5803E+03
 0.5000E+01 0.9213E+02 -0.2836E+01 -0.5797E+03
 This analysis took : 707.939999999995052

Figure 12.44 Results from Program 12.10 example

Mesh No of Processors Analysis Time(secs)

10x50x10 16 1392
 32 708

Figure 12.45 Performance statistics: Program 12.10 (IBM SP2)

12.3 Performance data for a “Beowulf” PC cluster
The results, which follow in Figures 12.46 and 12.47, show speed-up performance for
Programs 12.1 and 12.3 respectively on a low-cost cluster of about 8 standard PCs at the
Department of Civil Engineering, University of Madrid.

1 2 3 4 5 6 7 8
Number of processors

1
2

3
4

5

Sp
ee

du
p

ra
tio

20 × 20 × 20 mesh
40 × 40 × 40 mesh
50 × 50 × 50 mesh

Figure 12.46 Performance data: Program 12.1 (MARIAN Cluster)

The results are qualitatively similar to those given by Smith (2000) for a different PC
cluster. It seems that substantial gains in processing speed can be achieved for up to at
least 10 processors.

Again, substantial savings in analysis time can be achieved for modest numbers of
processors. Perhaps more importantly is the ease with which problems involving millions
of unknowns can be successfully tackled using such low cost hardware.

570 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

1 2 3 4 5 6 7 8

Number of processors

1
2

3
4

5
6

Sp
ee

du
p

ra
tio

100 × 100 × 100 mesh

Figure 12.47 Performance data: Program 12.3 (MARIAN Cluster)

12.4 Conclusions

All the serial program types described in Chapters 5 to 11 have been parallelised using a
consistent strategy. Performance data are excellent for a certain genre of current “super-
computer”, circa 2002. Analyses have “scaled” well for up to about 50 million elements and
about 500 processors. For lower cost systems, typified by “Beowulf” PC clusters, the ratio
of processing to communication speed is far higher—indeed many PCs may have faster
processors than a supercomputer. This seems to limit “scalability” on a current cluster with
simple Ethernet communication to about 10 PCs. Nevertheless very large problems with
millions of elements have been successfully solved on such a cluster. A current trend is to
produce a new range of “supercomputer” with faster processors but essentially unchanged
communication capabilities. In that case we can anticipate a deterioration in scalability
and there is scope for improving the gather/scatter routines used herein and for developing
iterative algorithms in which potential communication is minimised. These developments
would be of benefit both to “supercomputers” and to “clusters”.

Glossary of variable names used in Chapter 12

Scalar integers:
cjiters conjugate gradient iteration counter
cjits conjugate gradient iteration ceiling
cjtot total number of conjugate gradient iterations
cj_tot total number of BiCGStab iterations
ell l in the BiCGStab(l) process
fixed_freedoms number of fixed freedoms
fixed_nodes number of fixed nodes
i simple counter

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 571

iel element counter
iflag failure flag
incs number of load increments
is location of desired output freedom
it processor on which desired output resides
iters iteration counter
iy simple counter
j simple counter
jflag failure flag
jj simple counter
k simple counter
l simple counter
lalfa length of alfa array
leig length of eig array
limit iteration ceiling
loaded_freedoms number of loaded freedoms
loaded_nodes number of loaded nodes
lp output channel number
lx problem dependent array size
lz problem dependent array size
ndim number of dimensions
neig problem dependent array size
neq_temp temporary equation sum
nip number of integrating points
nle number of loaded elements (side of square)
nmodes number of eigenmodes computed
nn number of nodes in the mesh
nn_temp temporary node sum
nod number of nodes per element
nodf number of pressure degrees of freedom per element
nodof number of degrees of freedom per node
no_index_start start address of loaded/fixed freedoms
npri print interval
nr number of restrained nodes
nres number of output freedom
ns timestep counter
nst number of stress–strain terms
nstep number of timesteps in analysis
num_no number of processors holding load/displacement data
nxe number of elements in x direction
nye number of elements in y direction
nze number of elements in z direction
n_t total number of degrees of freedom per element
plasiters plastic iteration counter
plasits plastic iteration ceiling

572 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

Scalar reals:
aa x dimension of elements
acc accuracy parameter
alpha pcg parameter
alpha1 Rayleigh damping parameter
bb y dimension of elements
beta pcg parameter
beta1 Rayleigh damping parameter
big largest component of a vector
c cohesion
cc z dimension of elements
cjtol conjugate gradient iteration tolerance
cons consolidation pressure
c1
c2 intermediate reals
c3
c4
det determinant of Jacobian matrix
dq1 Mohr–Coulomb plastic potential derivative
dq2 Mohr–Coulomb plastic potential derivative
dq3 Mohr–Coulomb plastic potential derivative
dsbar shear stress invariant
dt viscoplastic “time” step
dtim timestep
e Young’s Modulus
el left limit of eigenvalue spectrum
er right limit of eigenvalue spectrum
error residual error
f current stress state
fac yield factor
fnew new yield function
gama intermediate value
kappa kappa in BiCGStab process
kx conductivity in x-direction
ky conductivity in y-direction
kz conductivity in z-direction
lode_theta Lode angle
norm_r norm of residual
omega intermediate value
penalty value of penalty restraint
period period of oscillation
phi angle of internal friction
plastol plastic iteration tolerance
pload load multiple
pp intermediate value
presc prescribed value of load/displacement

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 573

psi angle of dilation
q total load
real_time accumulated time
rho density
rho1 intermediate value
r0_norm starting residual norm
sbar shear stress
sbary shear yield stress
sigm mean stress invariant
snph sine of angle of internal friction
theta parameter in “theta” integrator
tol convergence tolerance
ubar average x velocity
up pcg parameter
v Poisson’s Ratio
val0 initial value
vbar average y velocity
visc viscosity
volume element volume
wbar average z velocity
x0 start value

Scalar characters:
element element type

Scalar logicals:
cj_converged set to .TRUE. if conjugate gradient iterations converged
consistent set to .TRUE. if element mass is “consistent”
converged set to .TRUE. if solution converged
plastic_converged set to .TRUE. if plastic iterations converged

Dynamic integer arrays:
g element steering vector
g g pp distributed global steering matrix
g num pp distributed global element node numbers matrix
g t total element g vector
jeig intermediate array
no freedoms to be loaded/fixed
no f vector of fixed freedom numbers
no local local (processor) freedoms
no local temp temporary store
no local temp f temporary vector
nu intermediate array
num element node numbers
rest node freedom restraints

Dynamic real arrays:
alfa intermediate array

574 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

ans pp distributed answer vector
bdylds pp distributed body loads vector
bee strain-displacement matrix
beta intermediate array
bload element body loads
b pp distributed right hand side vector
c coupling matrix
col column array
coord element nodal coordinates
coordf nodal coordinates of pressure nodes
c11
c12
c21
c23 c arrays—see equation (2.115)
c32
c24
c42
dee stress–strain matrix
del intermediate array
der derivatives wrt local coordinates
derf local derivatives of pressure shape functions
deriv derivatives wrt global coordinates
derivf global derivatives of pressure shape functions
devp increment of viscoplastic strain
diag pp distributed diagonal vector
diag precon pp distributed diagonal preconditioning matrix
diag precon tmp temporary store
diag tmp diagonal mass matrix
d1x0 pp distributed old velocity vector
d1x1 pp distributed new velocity vector
d2x0 pp distributed old acceleration vector
d2x1 pp distributed new acceleration vector
d pp distributed pcg vector
ecm element consistent mass matrix
eig intermediate array
eld element nodal displacements
eld pp distributed nodal displacements
eload accumulating element body loads
emm accumulated element mass matrix
eps element strains
erate viscoplastic strain rate
etensor pp distributed element strains
evp viscoplastic strains
evpt pp distributed total viscoplastic strains
flow viscoplastic flow
fun element shape functions
funf intermediate array

PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES 575

funny intermediate array
funnyf intermediate array
gamma intermediate array
gg intermediate array
globma pp distributed global mass matrix
globma tmp temporary storage mass mass vector
jac Jacobian matrix
kay conductivity property matrix
kc conductivity matrix
kcx x contribution to conductivity matrix
kcy y contribution to conductivity matrix
kcz z contribution to conductivity matrix
kd total element matrix
ke element “stiffness” matrix
km element stiffness matrix
loads pp distributed loads vector
mass element lumped mass matrix
mm pp distributed mass vector
mm tmp temporary vector
m1 plastic potential derivatives matrix
m2 plastic potential derivatives matrix
m3 plastic potential derivatives matrix
newlo pp distributed new loads
oldis pp previous distributed displacements
pl plasticity matrix
pm element mass matrix
points integrating point local coordinates
p g co pp distributed nodal coordinates
pmul pp gather-scatter matrix
p pp distributed pcg vector
qinc vector of load increment terms
row row array
rowf row of fluid derivative matrix
row1
row2 intermediate arrays
row3
rt pp distributed vector
r pp distributed pcg vector
s intermediate array
sigma element stresses
store mm pp distributed element mass storage
store pm pp distributed pm matrices
store pp distributed penalty storage
storka pp distributed storage of pm and km
storkb pp distributed storage of pm and km
storkd pp distributed kd matrices
storke pp distributed ke matrices

576 PARALLEL PROCESSING OF FINITE ELEMENT ANALYSES

storkm pp distributed stored element stiffness matrices
stress stress vector
temp pp distributed intermediate vector
tensor pp distributed stresses
totd pp distributed total displacements
ua pp distributed {U} in product {U} + [A]{V}
utemp pp gather-scatter matrix
uvel x-velocity
u pp distributed pcg vector
val prescribed load/displacement values
vvel y-velocity
val f values of fixed freedoms
va pp distributed {V} in product {U} + [A]{V}
vdiag pp distributed diagonal vector
vol array for volumetric strain
volf array for fluid volumetric strain
vu pp distributed intermediate vector
v store pp distributed stored Lanczos vectors
weights weighting coefficients
wvel z-velocity
w1 pp intermediate array
x local array
xnew pp distributed pcg vector
x0 pp distributed old displacement vector
x1 pp distributed new displacement vector
x old pp distributed previous x vector
x pp distributed pcg vector
y pp distributed y vector
y1 pp distributed y1 vector
z pp intermediate array

References
HSL 2002 A Collection of Fortran Codes for Large-scale Scientific Computation. See http://

www.cse.clrc.ac.uk/nag/hsl/.
Margetts L 2002 Parallel Finite Element Analysis. PhD thesis, University of Manchester, U.K.
Pettipher MA and Smith IM 1997 The development of an MPP implementation of a suite of finite

element codes. High-Performance Computing and Networking: Lecture Notes in Computer Science.
Springer-Verlag, Berlin, pp. 1225:400–409.

Smith IM 2000 A general purpose system for finite element analyses in parallel. Eng Comput 17(1),
75–91.

Smith IM and Margetts L 2003 Portable parallel processing for nonlinear problems. Proc COMPLAS
2003, Barcelona.

Smith IM and Wang A 1998 Analysis of piled rafts. Int J Numer Anal Methods Geomech 22(10),
777–790.

A

Equivalent Nodal Loads

LOAD TYPE

PLANAR ELEMENTS (2D)

Width of loaded face = 1 unit

3-node
triangle

1/2 1/2 1/6 1/3

6-node
triangle

1/6 2/3 1/6 0 1/3 1/6

10-node
triangle

1/8 1/8
3/8 3/8

1/60
3/40 3/10

13/120

15-node
triangle

7/90
16/45 7/90

16/45
2/15

4/45 7/90
4/15

1/150

TriangularUniform

1 unit 1 unit

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

578 EQUIVALENT NODAL LOADS

LOAD TYPE

TriangularUniform

4-node
quadrilateral

1/2 1/2 1/6 1/3

8- and 9-node

quadrilaterals

1/6 2/3 1/6 1/3 1/60

1 unit 1 unit

PLANAR ELEMENTS (2D)

Width of loaded face = 1 unit

3-node
triangle

F2F1

r1

r0

F2F1

AXISYMMETRIC ELEMENTS (2D)

Loading over 1 radian

LOAD TYPE

TriangularUniform

1 unit

r1

r0

1 unit

F1 = 1
6 (r2

1 + ror1 − 2r2
o) F1 = 1

12 (r2
1 − r2

o)

F2 = 1
6 (2r2

1 − ror1 − r2
o) F2 = 1

12 (3r2
1 − 2ror1 − r2

o)

EQUIVALENT NODAL LOADS 579

F1 F2 F3

6-node

triangle

F1 F2 F3

AXISYMMETRIC ELEMENTS (2D)

Loading over 1 radian

r1

r0

LOAD TYPE

TriangularUniform

1 unit

r1

r0

1 unit

F1 = 1
6 (ror1 − r2

o) F1 = − 1
60 (r2

1 − 2ror1 + r2
o)

F2 = 1
3 (r2

1 − r2
o) F2 = 1

15 (3r2
1 − ror1 − 2r2

o)

F3 = 1
6 (r2

1 − ror1) F3 = 1
60 (9r2

1 − 8ror1 − r2
o)

10-node

triangle

F2 F3 F4F1 F2 F3 F4F1

F1 = 1
120 (2r2

1 + 11ror1 − 13r2
o) F1 = 1

120 (r2
1 − r2

o)

F2 = 1
40 (3r2

1 + 9ror1 − 12r2
o) F2 = 3

40 (ror1 − r2
o)

F3 = 1
40 (12r2

1 − 9ror1 − 3r2
o) F3 = 3

40 (3r2
1 − 2ror1 − r2

o)

F4 = 1
120 (13r2

1 − 11ror1 − 2r2
o) F4 = 1

120 (12r2
1 − 11ror1 − r2

o)

580 EQUIVALENT NODAL LOADS

15-node

triangle

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

AXISYMMETRIC ELEMENTS (2D)

Loading over 1 radian

r1

r0

LOAD TYPE

TriangularUniform

1 unit

r1

r0

1 unit

F1 = 7
90 (ror1 − r2

o) F1 = − 1
252 (r2

1 − 2ror1 + r2
o)

F2 = 4
45 (r2

1 + 2ror1 − 3r2
o) F2 = 4

315 (3r2
1 + ror1 − 4r2

o)

F3 = 1
15 (r2

1 − r2
o) F3 = 1

105 (r2
1 + 5ror1 − 6r2

o)

F4 = 4
45 (3r2

1 − 2ror1 − r2
o) F4 = 4

315 (17r2
1 − 13ror1 − 4r2

o)

F5 = 7
90 (r2

1 − ror1) F5 = 1
1260 (93r2

1 − 88ror1 − 5r2
o)

4-node
quadrilateral

F1 F2 F1 F2

F1 = 1
6 (r2

1 + ror1 − 2r2
o) F1 = 1

12 (r2
1 − r2

o)

F2 = 1
6 (2r2

1 − ror1 − r2
o) F2 = 1

12 (3r2
1 − 2ror1 − r2

o)

EQUIVALENT NODAL LOADS 581

8- and 9-node

quadrilaterals

F1 F2 F3 F1 F2 F3

F1 = 1
6 (ror1 − r2

o) F1 = − 1
60 (r2

1 − 2ror1 + r2
o)

F2 = 1
3 (r2

1 − r2
o) F2 = 1

15 (3r2
1 − ror1 − 2r2

o)

F3 = 1
6 (r2

1 − ror1) F3 = 1
60 (9r2

1 − 8ror1 − r2
o)

14-node
hexahedron (type 6)

20-node
hexahedron

F5
F1

F4

F3F2
F1 F2

F3 F4 F5

F6F7F8

4-node
tetrahedron

8-node
hexahedron

1/3

1/3

1/3

1/4
1/4

1/4
1/4

THREE DIMENSIONAL ELEMENTS (3D)

Area of loaded face = 1 unit
Unit stress applied

F1 = F2 = F3 = F4 = 1
12 F1 = F3 = F5 = F7 = − 1

12

F5 = 2
3 F2 = F4 = F6 = F8 = 1

3

B

Shape Functions and Element
Node Numbering

1D elements

2-node rod

N1 = 1 − x
L

N2 = x
L

x

L

1 2

2-node beam

N1 = 1
L3 (L3 − 3Lx2 + 2x3)

N2 = 1
L2 (L2x − 2Lx2 + x3)

N3 = 1
L3 (3Lx2 − 2x3)

N4 = 1
L2 (x3 − Lx2)

1 3

4

x2

L

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

584 SHAPE FUNCTIONS AND ELEMENT NODE NUMBERING

2D elements

3-node triangle

N1 = L1

N2 = (1 − L1 − L2)

N3 = L2

L1

L2

(1, 0)(0, 0)

(0, 1)

12

3

6-node triangle

N1 = (2L1 − 1)L1

N2 = 4(1 − L1 − L2)L1

N3 = (2(1 − L1 − L2) − 1)(1 − L1 − L2)

N4 = 4L2(1 − L1 − L2)

N5 = (2L2 − 1)L2

N6 = 4L1L2

L1

L2

(1, 0)(0, 0)

(0, 1)

4

5

6

123

10-node triangle

N1 = 1
2(3L1 − 1)(3L1 − 2)L1

N2 = − 9
2(L2 + L1 − 1)(3L1 − 1)L1

N3 = 9
2(3L2 + 3L1 − 2)(L2 + L1 − 1)L1

N4 = − 1
2(3L2 + 3L1 − 1)(3L2 + 3L1 − 2)(L2 + L1 − 1)

N5 = 9
2(3L2 + 3L1 − 2)(L2 + L1 − 1)L2

N6 = − 9
2(3L2 − 1)(L2 + L1 − 1)L2

N7 = 1
2(3L2 − 1)(3L2 − 2)L2

N8 = 9
2(3L2 − 1)L2L1

N9 = 9
2(3L1 − 1)L2L1

N10 = −27(L2 + L1 − 1)L2L1
L1

L2

(1, 0)(0, 0)

(0, 1)

6

7

8

1234

5 10 9

SHAPE FUNCTIONS AND ELEMENT NODE NUMBERING 585

15-node triangle

L1

L2

(1, 0)(0, 0)

(0, 1)

8

9

10

6 121314

7 1115

12345

N1 = 32
3 L1(L1 − 1

4)(L1 − 1
2)(L1 − 3

4)

N2 = 128
3 L1(1 − L1 − L2)(L1 − 1

4)(L1 − 1
2)

N3 = 64L1(1 − L1 − L2)(L1 − 1
4)(1 − L2 − L1 − 1

4)

N4 = 128
3 L1(1 − L1 − L2)(1 − L2 − L1 − 1

4)(1 − L2 − L1 − 1
2)

N5 = 32
3 (1 − L1 − L2)(1 − L2 − L1 − 1

4)(1 − L2 − L1 − 1
2)(1 − L2 − L1 − 3

4)

N6 = 128
3 (1 − L1 − L2)L2(1 − L2 − L1 − 1

4)(1 − L2 − L1 − 1
2)

N7 = 64(1 − L1 − L2)L2(L2 − 1
4)(1 − L1 − L2 − 1

4)

N8 = 128
3 (1 − L1 − L2)L2(L2 − 1

4)(L2 − 1
2)

N9 = 32
3 L2(L2 − 1

4)(L2 − 1
2)(L2 − 3

4)

N10 = 128
3 L2L1(L2 − 1

4)(L2 − 1
2)

N11 = 64L2L1(L2 − 1
4)(L1 − 1

4)

N12 = 128
3 L2L1(L1 − 1

4)(L1 − 1
2)

N13 = 128L2L1(1 − L1 − L2)(L1 − 1
4)

N14 = 128L2L1(1 − L1 − L2)(1 − L2 − L1 − 1
4)

N15 = 128L2L1(L2 − 1
4)(1 − L1 − L2)

586 SHAPE FUNCTIONS AND ELEMENT NODE NUMBERING

4-node quadrilateral

N1 = 1
4 (1 − ξ)(1 − η)

N2 = 1
4 (1 − ξ)(1 + η)

N3 = 1
4 (1 + ξ)(1 + η)

N4 = 1
4 (1 + ξ)(1 − η)

x

h

1

2 3

4

(1, 1)(−1, 1)

(−1, −1) (1, −1)

(0, 0)

8-node quadrilateral

N1 = 1
4(1 − ξ)(1 − η)(−ξ − η − 1)

N2 = 1
2(1 − ξ)(1 − η2)

N3 = 1
4(1 − ξ)(1 + η)(−ξ + η − 1)

N4 = 1
2(1 − ξ 2)(1 + η)

N5 = 1
4(1 + ξ)(1 + η)(ξ + η − 1)

N6 = 1
2(1 + ξ)(1 − η2)

N7 = 1
4(1 + ξ)(1 − η)(ξ − η − 1)

N8 = 1
2(1 − ξ 2)(1 − η)

x

h

1

2

3
4

5

6

7

8

(1, 1)(−1, 1)

(−1, −1) (1, −1)

(0, 0)

9-node quadrilateral

N1 = 1
4ξ(ξ − 1)η(η − 1)

N2 = − 1
2ξ(ξ − 1)(η + 1)(η − 1)

N3 = 1
4ξ(ξ − 1)η(η + 1)

N4 = − 1
2 (ξ + 1)(ξ − 1)η(η + 1)

N5 = 1
4ξ(ξ + 1)η(η + 1)

N6 = − 1
2ξ(ξ + 1)(η + 1)(η − 1)

N7 = 1
4ξ(ξ + 1)η(η − 1)

N8 = − 1
2 (ξ + 1)(ξ − 1)η(η − 1)

N9 = (ξ + 1)(ξ − 1)(η + 1)(η − 1)

x

h

1

2

3
4

5

6

7

8

9

(1, 1)(−1, 1)

(−1, −1) (1, −1)

(0, 0)

SHAPE FUNCTIONS AND ELEMENT NODE NUMBERING 587

3D elements

4-node tetrahedron

N1 = L1

N2 = L2

N3 = L3

N4 = (1 − L1 − L2 − L3)

L3

L2

L1

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

(0, 0, 0)

1

2

3

4

8-node hexahedron

N1 = 1
8(1 − ξ)(1 − η)(1 − ζ)

N2 = 1
8(1 − ξ)(1 − η)(1 + ζ)

N3 = 1
8(1 + ξ)(1 − η)(1 + ζ)

N4 = 1
8(1 + ξ)(1 − η)(1 − ζ)

N5 = 1
8(1 − ξ)(1 + η)(1 − ζ)

N6 = 1
8(1 − ξ)(1 + η)(1 + ζ)

N7 = 1
8(1 + ξ)(1 + η)(1 + ζ)

N8 = 1
8(1 + ξ)(1 + η)(1 − ζ)

z

7

8

x

h

(−1, −1, −1)

(−1, −1, 1)

(−1, 1, 1)
(1, 1, 1)

(1, 1, −1)

(1, −1, −1)
41

2 3

6

(1, −1, 1)

588 SHAPE FUNCTIONS AND ELEMENT NODE NUMBERING

14-node hexahedron (Type 6)

z

x

h

1

3

5

7

8

11 12

(−1, −1, −1)

(−1, −1, 1)

(−1, 1, 1)
(1, 1, 1)

(1, 1, −1)

(1, −1, −1)

(1, −1, 1)

4

13

2

N1 = 1
8 (ξη + ξζ + 2ξ + ηζ + 2η + 2ζ + 2)(ξ − 1)(η − 1)(ζ − 1)

N2 = − 1
8(ξη − ξζ + 2ξ − ηζ + 2η − 2ζ + 2)(ξ − 1)(η − 1)(ζ + 1)

N3 = − 1
8(ξη − ξζ + 2ξ + ηζ − 2η + 2ζ − 2)(ξ + 1)(η − 1)(ζ + 1)

N4 = 1
8 (ξη + ξζ + 2ξ − ηζ − 2η − 2ζ − 2)(ξ + 1)(η − 1)(ζ − 1)

N5 = − 1
2(ξ + 1)(ξ − 1)(η − 1)(ζ + 1)(ζ − 1)

N6 = − 1
2(ξ − 1)(η + 1)(η − 1)(ζ + 1)(ζ − 1)

N7 = 1
2 (ξ + 1)(ξ − 1)(η + 1)(η − 1)(ζ + 1)

N8 = 1
2 (ξ + 1)(η + 1)(η − 1)(ζ + 1)(ζ − 1)

N9 = − 1
2(ξ + 1)(ξ − 1)(η + 1)(η − 1)(ζ − 1)

N10 = 1
8 (ξη − ξζ − 2ξ + ηζ + 2η − 2ζ − 2)(ξ − 1)(η + 1)(ζ − 1)

N11 = − 1
8(ξη + ξζ − 2ξ − ηζ + 2η + 2ζ − 2)(ξ − 1)(η + 1)(ζ + 1)

N12 = − 1
8(ξη + ξζ − 2ξ + ηζ − 2η − 2ζ + 2)(ξ + 1)(η + 1)(ζ + 1)

N13 = 1
8 (ξη − ξζ − 2ξ − ηζ − 2η + 2ζ + 2)(ξ + 1)(η + 1)(ζ − 1)

N14 = 1
2 (ξ + 1)(ξ − 1)(η + 1)(ζ + 1)(ζ − 1)

SHAPE FUNCTIONS AND ELEMENT NODE NUMBERING 589

20-node hexahedron

1

2

3
5

78

10 11

12

15 17

18

6

4

z

x

h

(1, −1, −1)

(1, −1, 1)

19
(1, 1, −1)

16 (1, 1, 1)(−1, 1, 1)

(−1, −1, 1)

(−1, −1, −1)

N1 = 1
8 (1 − ξ)(1 − η)(1 − ζ)(−ξ − η − ζ − 2)

N2 = 1
4 (1 − ξ)(1 − η)(1 − ζ 2)

N3 = 1
8 (1 − ξ)(1 − η)(1 + ζ)(−ξ − η + ζ − 2)

N4 = 1
4 (1 − ξ2)(1 − η)(1 + ζ)

N5 = 1
8 (1 + ξ)(1 − η)(1 + ζ)(ξ − η + ζ − 2)

N6 = 1
4 (1 + ξ)(1 − η)(1 − ζ 2)

N7 = 1
8 (1 + ξ)(1 − η)(1 − ζ)(ξ − η − ζ − 2)

N8 = 1
4 (1 − ξ2)(1 − η)(1 − ζ)

N9 = 1
4 (1 − ξ)(1 − η2)(1 − ζ)

N10 = 1
4 (1 − ξ)(1 − η2)(1 + ζ)

N11 = 1
4 (1 + ξ)(1 − η2)(1 + ζ)

N12 = 1
4 (1 + ξ)(1 − η2)(1 − ζ)

N13 = 1
8 (1 − ξ)(1 + η)(1 − ζ)(−ξ + η − ζ − 2)

N14 = 1
4 (1 − ξ)(1 + η)(1 − ζ 2)

N15 = 1
8 (1 − ξ)(1 + η)(1 + ζ)(−ξ + η + ζ − 2)

N16 = 1
4 (1 − ξ2)(1 + η)(1 + ζ)

N17 = 1
8 (1 + ξ)(1 + η)(1 + ζ)(ξ + η + ζ − 2)

N18 = 1
4 (1 + ξ)(1 + η)(1 − ζ 2)

N19 = 1
8 (1 + ξ)(1 + η)(1 − ζ)(ξ + η − ζ − 2)

N20 = 1
4 (1 − ξ2)(1 + η)(1 − ζ)

C

Plastic Stress–strain Matrices
and Plastic Potential Derivatives

The following expressions give the plastic stress–strain matrices for 2D applications using
von Mises (Yamada et al. 1968) and Mohr–Coulomb (Griffiths and Willson 1986, see
Chapter 6 references). For 3D applications, the expressions are more conveniently gener-
ated using computer algebra systems (see subroutines vmdpl and mcdpl for von Mises
and Mohr–Coulomb respectively).

A. PLASTIC STRESS–STRAIN MATRICES

1. VON MISES

[Dp] = 2G

t2

s2
x sxsy sxτxy szsx

s2
y syτxy sysz

τ 2
xy szτxy

symmetrical s2
z

where
G = shear modulus

t = second deviatoric stress invariant (6.3)

sx = (2σx − σy − σz)/3, etc.

1. MOHR–COULOMB

If not near a corner, that is |sin θ | ≤ 0.49, then

[Dp] = E

2(1 + ν)(1 − 2ν)(1 − 2ν + sin φ sin ψ)
[A]

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

592 PLASTIC STRESS–STRAIN MATRICES, PLASTIC POTENTIAL DERIVATIVES

where

[A] =

R1C1 R1C2 R1C3 R1C4
R2C1 R2C2 R2C3 R2C4,

R3C1 R3C2 R3C3 R3C4
R4C1 R4C2 R4C3 R4C4

C1 = sin φ + k1(1 − 2ν) sin α

C2 = sin φ − k1(1 − 2ν) sin α

C3 = k2(1 − 2ν) cos α

C4 = 2ν sin φ

(C.1)

R1 = sin ψ + k1(1 − 2ν) sin α

R2 = sin ψ − k1(1 − 2ν) sin α

R3 = k2(1 − 2ν) cos α

R4 = 2ν sin ψ,

α = arctan

∣∣∣∣σx − σy

2τxy

∣∣∣∣
and

k1 =
{

1 if |σy | ≥ |σx |
−1 if |σy | < |σx |

k2 =
{

1 if τxy ≥ 0
−1 if τxy < 0

If near a corner, that is |sin θ | > 0.49, then

[Dp] = E

(1 + ν)(1 − 2ν)(Kφ sin ψ + CφCψt2(1 − 2ν))
[A]

where [A] is defined as before with

C1 = Kφ + Cφ((1 − ν)sx + ν(sy + sz))

C2 = Kφ + Cφ((1 − ν)sy + ν(sz + sx))

C3 = Cφ(1 − 2ν)τxy

C4 = Kφ + Cφ((1 − ν)sz + ν(sx + sy))

(C.2)

R1 = Kψ + Cψ((1 − ν)sx + ν(sy + sz))

R2 = Kψ + Cψ((1 − ν)sy + ν(sz + sx))

PLASTIC STRESS–STRAIN MATRICES, PLASTIC POTENTIAL DERIVATIVES 593

R3 = Cψ(1 − 2ν)τxy

R4 = Kψ + Cψ((1 − ν)sz + ν(sx + sy))

and

Kφ = sin φ

3
(1 + ν)

Kψ = sin ψ

3
(1 + ν)

Cφ =
√

6

4t

(
1 ± sin φ

3

)

Cψ =
√

6

4t

(
1 ± sin ψ

3

)

In the expressions for Cφ and Cψ , the positive sign is valid for θ ≈ −30◦ and the negative
sign is valid if θ ≈ 30◦.

B. PLASTIC POTENTIAL DERIVATIVES

{
∂Q

∂σ

}
= ∂Q

∂σm

{
∂σm

∂σ

}
+ ∂Q

∂J2

{
∂J2

∂σ

}
+ ∂Q

∂J3

{
∂J3

∂σ

}

=
(

∂Q

∂σm

[M1] + ∂Q

∂J2
[M2] + ∂Q

∂J3
[M3]

)
{σ }

where

[M1] = 1

3(σx + σy + σz)

1 1 1 0 0 0
1 1 0 0 0

1 0 0 0
0 0 0

0 0
symmetrical 0

[M2] = 1

3

2 −1 −1 0 0 0
2 −1 0 0 0

2 0 0 0
6 0 0

6 0
symmetrical 6

594 PLASTIC STRESS–STRAIN MATRICES, PLASTIC POTENTIAL DERIVATIVES

[M3] = 1

3

sx sz sy τxy −2τyz τzx

sy sx τxy τyz −2τzx

sz −2τxy τyz τzx
−3sz 3τzx 3τyz

−3sx 3τxy
symmetrical −3sy

and

{σ } =

σx

σy

σz

τxy

τyz
τzx

1. VON MISES

∂Q

∂σm

= 0

∂Q

∂J2
=

√
3

2

1

t

∂Q

∂J3
= 0

2. MOHR–COULOMB

∂Q

∂σm

= sin ψ

∂Q

∂J2
= cos θ√

2t

(
1 + tan θ tan 3θ + sin ψ√

3
(tan 3θ − tan θ)

)

∂Q

∂J3
=

√
3 sin θ + sin ψ cos θ

t2 cos 3θ

D

main Library Subroutines

This Appendix describes the “black box” and general purpose subroutines and functions
held in a library called main, which is attached to the main programs described in
Chapters 4 to 11 in this book through the command USE main. Subroutines in parentheses
are normally called in conjunction with the ones they follow.

All the subroutines except lancz1 and lancz2 are listed in full on the web site
www.mines.edu/fs_home/vgriffit/4th_ed/source/library/main

Subroutine descriptions

The following descriptions indicate the main library subroutines and functions in alpha-
betic order, together with the meaning of their arguments. Arguments in bold are those
returned by the subroutine.

Name Arguments Description

bandred
(bisect)

a, d, e Returns the transformed diagonal d and
off-diagonal e following transformation
of real symmetric band matrix a to tridi-
agonal form by Jacobi rotations.

bandwidth g Function returns the maximum band-
width for an element with steering vec-
tor g.

banmul kb, loads, ans Returns the product of symmetric band
matrix kb stored as a rectangle, and vec-
tor loads to give solution vector ans.

bantmul kb, loads, ans Returns the product of unsymmetric band
matrix kb stored as a rectangle, and vec-
tor loads to give solution vector ans.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

596 MAIN LIBRARY SUBROUTINES

Name Arguments Description

beam_ge ge, ell Returns geometric matrix ge for beam
element of length ell.

beam_km km, ei, ell Returns stiffness matrix km for beam
element of stiffness ei and length ell.

beam_mm mm, fs, ell Returns “mass” matrix mm for beam ele-
ment of density ρA (or foundation stiff-
ness fs) and length ell.

beemat bee, deriv Returns bee matrix for shape function
derivatives deriv.

bee8 bee, coord, xi,
eta, det

Returns “analytical” form of bee matrix
and Jacobian determinant det, for plane
8-node element with nodal coordinates
coord at local coordinates xi,eta.

bisect
(bandred)

d, e, acheps, ifail Returns eigenvalues of a tridiagonal
matrix whose leading diagonal is d and
off-diagonal e. Tolerance is acheps
and failure flag ifail. Eigenvalues over-
write d.

bmat_nonaxi bee, radius, coord,
deriv, fun, iflag,
lth

Returns bee matrix for axisymmetric
bodies subjected to non-axisymmetric
loading from shape functions fun and
derivatives deriv. radius is the r-
coordinate of the Gauss point. lth is
the harmonic, and iflag equals 1 for
symmetry and −1 for anti-symmetry.

checon loads, oldlds,
tol, converged

Returns logical variable converged set to
.FALSE. if relative change in loads and
oldlds is less than tol

contour loads, g coord,
g num, ned, ips

Generates a PostScript contour map to
output channel ips with file name
fe95.con. g coord and g num hold
nodal coordinates and element connectiv-
ity. loads holds the nodal values to be
contoured. ned holds number of required
contour intervals. 4-node quads only.

MAIN LIBRARY SUBROUTINES 597

Name Arguments Description

cross_product b, c, a Returns matrix a which is the cross-
product of column b and row c.

deemat dee, e, v Returns elastic stress–strain dee matrix
in 2D (plane strain) or 3D. e and v are
Young’s modulus and Poisson’s ratio.

determinant jac Function returns the determinant of 2D
or 3D square matrix jac

dismsh loads, nf,
ratmax, g coord,
g num, ips

Generates a PostScript image of the
deformed mesh to output channel ips
with file name fe95.dis. g coord
and g num hold nodal coordinates and
element connectivity. loads holds the
nodal displacements. nf is the nodal
freedom array. ratmax holds the ratio
of the maximum nodal displacement as
plotted as a proportion of the longest x-
or y-dimension of the mesh.

ecmat ecm, fun, ndof,
nodof

Returns the consistent mass matrix ecm
for an element with shape functions fun,
ndof freedoms and nodof freedoms
per node.

exc_nods noexe, exele,
g num, totex, ntote,
nf

Returns the modified nf array accounting
for excavated elements. Updates totex
and ntote. noexe holds number of ele-
ments to be excavated and exele the
element numbers.

fkdiag kdiag, g Returns the bandwidth vector kdiag for
the rows of a skyline storage system
from g.

fmacat vmfl, acat Returns an intermediate matrix acat from
the von Mises flow vector vmfl as used
in Programs 6.5 and 6.6.

fmdsig dee, e, v Returns the elastic stress–strain dee
matrix in 2D (plane-stress). e and v are
Young’s modulus and Poisson’s ratio.

598 MAIN LIBRARY SUBROUTINES

Name Arguments Description

fmkdke km, kp, c, ke, kd,
theta

Returns the coupled matrices ke and kd
from the elastic stiffness matrix km, con-
ductivity matrix kp and coupling matrix
c. theta is the scalar time-stepping
parameter.

fmplat d2x, d2y, d2xy,
points, aa, bb, i

Returns derivative terms d2x, d2y and
d2xy for the ith Gauss point in a rect-
angular plate element of dimensions aa
and bb. points holds the locations of
the Gauss points.

fmrmat vmfl, dsbar, dlam,
dee, rmat

Returns matrix rmat from the von Mises
flow vector vmfl, invariant dsbar,
plastic multplier dlam and elastic matrix
dee as used in equation (6.73).

formaa vmfl, rmat daatd Returns modified matrix daatd from the
von Mises flow vector vmfl, and matrix
rmat as used in equation (6.67).

formke km, kp, c, ke, theta Returns the coupled matrix ke from the
elastic stiffness matrix km, conductivity
matrix kp and coupling matrix c. theta
is the scalar time-stepping parameter.

formku ku, km, g Returns upper triangular global band
matrix ku stored as a rectangle, from
symmetric element matrix km and steer-
ing vector g.

formlump diag, emm, g Returns lumped global mass matrix as a
vector diag from consistent element mass
matrix emm and steering vector g.

formm stress, m1, m2,
m3

Returns matrices m1, m2 and m3 from
stresses stress as used in calculation
of {∂Q/∂σ } (see equation 6.25).

formnf nf Returns nodal freedom array nf from
boundary conditions input of 0 s and 1 s.

formtb pb, km, g Returns global full band matrix pb stored
as a rectangle from unsymmetric element
matrices km and steering vectors g.

MAIN LIBRARY SUBROUTINES 599

Name Arguments Description

formupv ke, c11, c12, c21,
c23, c32

Returns unsymmetric element matrix ke
from constituent matrices c11, c12,
c21, c23 and c32 for use in u-p-v ver-
sion of Navier–Stokes equations.

form_s gg, ell, kappa,
omega, gamma, s

Returns scalar omega, and vectors
gamma and s from array gg, scalar
kappa and integer ell in BiCGStab.

fsparv kv, km, g, kdiag Returns lower triangular global matrix
kv stored as a vector in skyline form,
from symmetric element matrices km and
steering vectors g. kdiag holds the
locations of the diagonal terms.

gauss_band
(solve_band)

pb, work Returns (Gaussian) factorised unsymmet-
ric full band matrix pb and “working”
array work.

glob_to_axial axial, global,
coord

Returns axial force axial in 2D or 3D rod
element from global force components
held in global. Nodal coordinates held
in coord.

glob_to_loc local, global,
gamma, coord

Returns local components local of force
and moments from global components
held in global. gamma holds element
orientation angle (3D only) and coord
holds the nodal coordinates. Called by
SUBROUTINE hinge.

hinge coord, holdr,
action, react,
prop, iel, etype,
gamma

Returns correction reactions react
from existing and incremental reactions
holdr and action respectively.
coord holds nodal coordinates, prop
holds beam properties, iel holds
element number, etype holds element
type, gamma holds element orientation
angle (3D only).

invar stress, sigm,
dsbar, theta

Returns stress invariants sigma, dsbar
(equation 6.4) and Lode angle theta
(equation 6.3), from current stresses held
in stress.

600 MAIN LIBRARY SUBROUTINES

Name Arguments Description

interp k, dtim, rt, rl, al,
nstep

Returns the load/time functions in al at
the calculation time step resolution by
linear interpolation. k holds the load/time
function number, dtim holds the cal-
culation time step, rt and rl hold
the input load/time function and nstep
holds the required number of calculation
time steps.(Program 11.1)

invert matrix Returns the inverse of a small matrix
called matrix onto itself.

lancz1
(lancz2)

n, el, er, acc,
leig, lx, lalfa,
lp, iflag, ua, va,
eig, jeig, neig, x,
del, nu, alfa, beta,
v store

Lanczos method for eigenvalues See
Chapter 10 and reference HSL (2002) for
details.

lancz2
(lancz1)

n, lalfa, lp, eig,
jeig, neig, alfa,
beta, lz, jflag, y,
w1, z, v store

Lanczos method for eigenvectors See
Chapter 10 and reference HSL (2002) for
details.

linmul_sky kv, disps, loads,
kdiag

Returns the product of symmetric matrix
kv and vector disps to give solution
vector loads. kv is stored as a vector in
skyline form, kdiag holds the diagonal
locations in kv.

load_function lf, dtim, al Returns the load/time function in al at
the calculation time step resolution by
linear interpolation. lf holds the input
load/time function and dtim holds the
calculation time step. (Chapter 9)

loc_to_glob local, global,
gamma, coord

Returns global components global of
force and moments from local compo-
nents held in local. gamma holds ele-
ment orientation angle (3D only) and
coord holds the nodal coordinates.
Called by SUBROUTINE hinge.

MAIN LIBRARY SUBROUTINES 601

Name Arguments Description

mesh g coord, g num,
ips

Generates a PostScript image of the ini-
tial (undeformed) mesh to output chan-
nel ips with file name fe95.msh.
g coord and g num hold nodal coor-
dinates and element connectivity.

mcdpl phi, psi, dee
stress, pl

Returns the plastic stress–strain matrix
pl for a Mohr–Coulomb material from
the friction angle phi and dilation angle
psi (in degrees). stress holds the
stresses and dee holds the elastic stress–
strain matrix.

mocouf phi, c sigm,
dsbar, theta, f

Returns the Mohr–Coulomb failure func-
tion f, from the strength parameters
phi and c and stress invariants sigm,
dsbar and theta.

mocouq psi, dsbar, theta,
dq1, dq2, dq3

Returns the plastic potential terms dq1,
dq2 and dq3 for a Mohr–Coulomb mate-
rial from dilation angle psi (in degrees)
and invariants dsbar and theta.

norm x Returns the l2-norm of vector x.

num_to_g num, nf, g Returns the element steering vector g
from the element node numbering num
and the nodal freedom array nf.

pin_jointed km, ea, coord Returns the stiffness matrix km of a rod
element in 2D or 3D. ea holds the ele-
ment stiffness and coord holds the ele-
ment nodal coordinates.

rect_km km, coord, e, v Returns the analytical stiffness matrix
km of a rectangular plane strain 4- or
8-node quadrilateral element assuming 4
Gauss points. coord holds the element
nodal coordinates, e and v hold Young’s
modulus and Poisson’s ratio respectively.

602 MAIN LIBRARY SUBROUTINES

Name Arguments Description

rigid_jointed km, prop, gamma,
etype, iel, coord

Returns the stiffness matrix km of a
beam–rod element in 2D or 3D. coord
holds nodal coordinates, prop holds
beam properties, iel holds element
number, etype holds element type,
gamma holds element orientation angle
(3D only).

rod_km km, ea, length Returns the stiffness matrix km of a rod
element in 1D. ea holds the element
stiffness and length holds the element
length.

rod_mm mm, length Returns the “mass” matrix mm of a rod
element of unit mass. length holds the
element length.

sample element, s, wt Returns the local coordinates s and
weighting coefficients wt for numerical
integration of a finite element of type
element.

seep4 kp, coord, perm Returns the “analytical” conductivity
matrix kp of a 4-node plane element
based on 4 Gauss points. coord holds
the element nodal coordinates and perm
holds the permeability matrix.

shape_der der, points, i Returns the shape function derivatives
der at the ith integrating point. points
holds the local coordinates of the inte-
grating points.

shape_fun fun, points, i Returns the shape functions fun at the
ith integrating point. points holds
the local coordinates of the integrating
points.

MAIN LIBRARY SUBROUTINES 603

Name Arguments Description

solve_band
(gauss_band)

pb, work, loads Returns solution loads which overwrites
RHS by forward and back substitution
on (Gaussian) factorised unsymmetric full
band matrix pb. work holds “working”
array.

spabac
(sparin)

kv, loads, kdiag Returns solution loads which overwrites
RHS by forward and back substitution on
(Cholesky) factorised vector kv stored as
a skyline. kdiag holds the locations of
the diagonal terms.

spabac_gauss
(sparin_gauss)

kv, loads, kdiag Returns solution loads which overwrites
RHS by forward and back substitution on
(Gaussian) factorised vector kv stored as
a skyline. kdiag holds the locations of
the diagonal terms.

sparin
(spabac)

kv, kdiag Returns the (Cholesky) factorised vector
kv stored as a skyline. kdiag holds the
locations of the diagonal terms.

sparin_gauss
(spabac_gauss)

kv, kdiag Returns the (Gaussian) factorised vector
kv stored as a skyline. kdiag holds the
locations of the diagonal terms.

stability kv, gv, kdiag,
tol, limit,
iters, evec, eval

Returns the smallest eigenvalue eval and
corresponding eigenvector evec of a com-
pressed beam with global stiffness and
geometric matrices held in kv and gv
respectively. kdiag holds the locations of
the diagonal terms, limit is the iteration
ceiling and iters is the number of itera-
tions to reach convergence with tolerance
tol.

604 MAIN LIBRARY SUBROUTINES

Name Arguments Description

stiff4 km, coord, e, v Returns the “analytical” stiffness matrix
km of a general plane strain 4-node
quadrilateral element based on 4 Gauss
points. coord holds the element nodal
coordinates, e and v hold Young’s mod-
ulus and Poisson’s ratio respectively.

vecmsh loads, nf,
ratmax, cutoff,
g coord, g num,
ips

Generates a PostScript image of the
nodal displacement vectors to output
channel ips with file name fe95.vec.
g coord and g num hold nodal coordi-
nates and element connectivity. loads
holds the nodal displacements. nf is the
nodal freedom array. ratmax holds the
ratio of the maximum nodal displacement
as plotted as a proportion of the longest
x- or y-dimension of the mesh, cutoff
gives the length of the shortest vector to
be plotted as a proportion of the longest.

vmdpl dee, stress pl Returns the plastic stress–strain matrix pl
for a von Mises material. stress holds
the stresses and dee holds the elastic
stress–strain matrix.

vmflow stress, dsbar,
vmfl

Returnst:ıthe von Mises flow vector
vmfl. stress holds the stresses and
dsbar holds the second deviatoric
invariant (2D only).

E

geom Library Subroutines

This Appendix describes the “geometry” subroutines held in a library called geom, which
is attached to the main programs described in Chapters 4 to 11 in this book through the
command USE geom.

All the subroutines are listed in full on the web site
www.mines.edu/fs_home/vgriffit/4th_ed/source/library/geom

Subroutine descriptions

The following descriptions indicate the geom library subroutines in alphabetic order,
together with the meaning of their arguments. Arguments in bold are those returned by the
subroutine.

Name Arguments Description

emb_2d_bc nx1, nx2, ny1, ny2,
nf

Returns nodal freedom array nf for a 2D
embankment analysis with mesh defined
by nx1, nx2, ny1 and ny2

emb_2d_geom iel, nx1, nx2, ny1,
ny2, w1, s1, w2, h1,
h2, coord, num

Returns element nodal coordinates coord
and node numbers num for a 2D
embankment analysis with geometry and
mesh defined by nx1, nx2, ny1, ny2,
w1, s1, w2, h1, h2

emb_3d_bc ifix, nx1, nx2,
ny1, ny2, nze nf

Returns nodal freedom array nf for a 3D
embankment analysis with mesh defined
by nx1, nx2, ny1, ny2, nze. ifix
defines boundary conditions.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

606 GEOM LIBRARY SUBROUTINES

Name Arguments Description

emb_3d_geom iel, nx1, nx2, ny1, ny2,
nze, w1, s1, w2, h1, h2,
d1, coord, num

Returns element nodal coordinates
coord and node numbers num for
a 3D embankment analysis with
geometry and mesh defined by
nx1, nx2, ny1, ny2, nze, w1,
s1, w2, h1, h2, d1

fmcoem g num, g coord, fwidth,
fdepth, width, depth,
lnxe, lifts, fnxe,
fnye, itype

Returns the global coordinates
g coord for a sequential 2D
embankment analysis. g num
holds the global node number-
ing. Mesh coordinates fwidth,
fdepth, and width, depth.
Number of columns of element in
embankment lnxe. Foundation
discretisation fnxe, fnye. Num-
ber of lifts lifts. Slope element
type itype.

fmglem fnxe, fnye, lnxe,
g num, lifts

Returns the global node num-
bering g num for a sequential
embankment analysis. Foundation
discretisation fnxe, fnye. Num-
ber of columns of elements in
embankment lnxe. Number of
lifts lifts.

geom_freesurf iel, nxe, fixed seep,
fixed down, down,
width, angs, surf,
coord, num

Returns element nodal coordinates
coord and node numbers num for
a 2D free surface analysis. iel is
the element number. nxe is the
number of columns of elements.
fixed seep is the number of
nodes on the seepage surface.
fixed down and down are the
number of nodes and the fixed head
on the downstream side. width
and angs are the x-coordinates
and inclination angle at the base
of the mesh. surf holds the y-
coordinates of the free surface.

GEOM LIBRARY SUBROUTINES 607

Name Arguments Description

geom_rect element, iel,
x coords, y coords,
coord, num, dir

Returns element nodal coordinates
coord and node numbers num
for a rectangular mesh of tri-
angles or quadrilaterals. Element
type is element. iel is the
element number. x coords and
y coords are the x- and y-
coordinates of the mesh. dir is the
node numbering direction.

hexahedron_xz iel, x coords,
y coords, z coords,
coord,num

Returns element nodal coordinates
coord and node numbers num for
a cuboidal mesh of hexahedra with
nodes numbered in x- then z-
then y-.iel is the element num-
ber. x coords, y coords and
z coords are the x-, y- and z-
coordinates of the mesh.

mesh_size element, nod, nels, nn,
nxe, nye, nze

Returns the number of elements
nels and the number of nodes nn
in a rectangular mesh of triangles
or quadrilaterals. Element type is
element with nod nodes. nxe,
nye and nze are the numbers of
elements in the x-, y- and z-(3D
only) directions.

F

Parallel Library Subroutines

This Appendix describes the additional library subroutines used by the Chapter 12 programs
illustrating parallel finite element computations.

All the subroutines are listed in full on the web site
www.mines.edu/fs_home/vgriffit/4th_ed/source/library/parallel
and further information is at www.parafem.org.uk.

Subroutine descriptions

The following descriptions indicate the library subroutines in alphabetic order, together
with the meaning of their arguments. Arguments in bold are those returned by the subroutine.

Name Arguments Description

bcast_inputdata_p??? REAL and INTEGER
data to be broad-
cast

Broadcasts to all processors in
program p???

biot_cube_bc20 nxe, nye, nze, rest Returns restraint array rest for
numbers of elements in x,y,z
of 20/8 node bricks (Biot).

biot_loading nxe, nze, nle, no,
val

Returns loaded freedoms no
and values val from number of
elements in x and z and num-
ber of loaded elements along
a side of a square (Biot).

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

610 PARALLEL LIBRARY SUBROUTINES

Name Arguments Description

box_bc8 nxe, nye, nze, rest Returns restraint array rest for numbers
of elements in x,y,z of 8-node bricks

calc_nels_pp None Returns number of elements on each
parallel processor

calc_neq_pp None Returns number of equations on each
parallel processor

checon_par xnew_pp, x_pp,
tol, converged,
neq_pp

Parallel version of checon: con-
verged returned as .TRUE. if differ-
ence between xnew_pp and x_pp less
than tol: neq_pp eqns per processor

cube_bc20 nxe, nye, nze, rest Returns restraint array rest for numbers
of elements in x,y,z of 20-node bricks

find_g
find_g3
find_g4

num, g, rest Find steering vector g from nodes num
and restraints rest

find_pe_procs None Returns number of parallel processors
being used

formupvw ke, c11, c12, c21,
c23, c32, c24, c42

Returns the element ke matrix
for coupled 3D Biot consolida-
tion from constituent matrices c11,
c12, c21, c23, c32, c24, c42

gather p_pp, pmul pp Gathers distributed p_pp into pmul pp

geometry_8bxz ielpe, nxe, nze,
aa, bb, cc, coord,
num

Finds nodes num and nodal coordinates
coord for a box of 8-node bricks with
nxe in x and nze in z with x,y,z sizes
aa,bb,cc. ielpe is start address per
processor

geometry_20bxz ielpe, nxe, nze,
aa, bb, cc, coord,
num

Finds nodes num and nodal coordinates
coord for a box of 20-node bricks with
nxe in x and nze in z with x,y,z sizes
aa,bb,cc. ielpe is start address per
processor

g_t_g nod, g_t, g Finds steering vector g (Biot) from total
vector g_t, nod nodes

PARALLEL LIBRARY SUBROUTINES 611

Name Arguments Description

g_t_g_ns nod, g t, g Finds steering vector g (Navier–
Stokes) from total vector g_t, nod
nodes

loading nxe, nze, nle, no, val Returns loaded freedoms no and val-
ues val from number of elements in x

and z and number of loaded elements
along a side of a square

make_ggl g_g_pp Makes the distributed steering vec-
tors

ns_cube_bc20 nxe, nye, nze, rest Returns restraint array rest for num-
bers of elements in x,y,z of 20/8
node bricks

ns_loading nxe, nye, nze, no Returns “loaded” freedoms no for
a cuboid with nxe, nye, nze ele-
ments in x,y,z

rearrange
rearrange_2

rest Reorganise restraint array rest

reduce nn_temp Returns maximum of a distributed
INTEGER variable nn_temp

reindex_fixed_
nodes

ieq_start, no,
no local temp,
num no, no index start

Organises loaded or displaced free-
doms in no to locate them in parallel.

scatter u pp, utemp_pp Scatters utemp_pp to distributed
u pp

vmpl dee, stress, pl See vmdpl, Appendix D

Author Index

Ahmad, S 108

Bai, Z 67, 68, 106
Bathe, KJ 43, 52, 63, 72, 106, 468, 507
Berg, PN 49, 52
Biot, MA 52, 419, 440
Bishop, AW 253, 316

Cardoso, JP 60, 106
Carslaw, HS 368, 385, 402
Chan, SH 67, 106
Chang, CY 225, 317
Chopra, AK 446, 464
Cook, RD 21, 52, 445, 464
Cormeau, IC 231, 232, 316, 317
Cuthill, E 173, 222

Davis, EH 176, 222
Demmel, J 106
van der Vorst, HA 106
Dijkstra, EW 16, 18
Dobbins, WE 391, 402
Dongarra, J 106
Dongarra, JJ 5, 18
Duncan, JM 225, 317

Ergatoudis, J 57, 58, 106, 108

Farraday, RV 402
Finlayson, BA 23, 52
Fix, GJ 21, 53
Fokkema, DR 107

Gere, JM 147, 164
Gilvary, B 106, 107
Gladwell, I 96, 106, 107, 108, 507

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

Goodier, JN 32, 36, 37, 38, 53
Greenbaum, A 66, 106
Griffiths, DV 23, 29, 50, 52, 56, 60, 64,

65, 67, 78, 100, 106, 107, 139,
164, 186, 222, 233, 235, 251,
294, 300, 317, 328, 331, 356,
427, 429, 440, 591

Heshmati, EE 455, 464
Hetenyi, M 128, 164
Hicks, MA 100, 107, 169, 222
Hill, R 225, 317
Ho, DKH 285, 317
Hobbs, R 50, 53, 276, 317, 423, 440
Horne, MR 29, 52, 140, 164
Hughes, TG 46, 53
Hughes, TJR 66, 95, 107, 235, 317
Humpheson, C 317

Irons, BM 58, 83, 106, 107, 108, 194,
222

Jaeger, JC 368, 385, 402
Jennings, A 43, 52, 64, 107

Kelley, CT 66, 107
Key, SW 488, 507
Kidger, DJ 83, 84, 85, 107, 199, 222,

410, 440
King, IP 317
Koelbel, CH 4, 19
Kopal, A 58, 107

Lambe, T 440
Lane, PA 251, 317

614 AUTHOR INDEX

Leckie, FA 27, 52
Lee, FH 106
Lee, GC 34, 53
Levit, I 107
Lewis, RW 317
Lindberg, GM 52
Lindberg 27
Lindsey, CH 16, 19
Livesley, RK 29, 53

Malkus, DS 52, 464
Mar, A 169, 222
Margetts, L 519, 576
McKee, J 173, 222
McKeown, JJ 43, 52, 64, 107
Merchant, W 29, 52
Molenkamp, F 225, 317
Morgenstern, NR 253, 316
Muskat, M 48, 53
Mustoe, GGW 235, 317

Nayak, GC 259, 317
Naylor, DJ 293, 317

O’Connor, BA 402
Ortiz, M 261, 317

Parlett, BN 92, 107, 455, 464
Peano, A 199, 222
Pettipher, MA 4, 19, 509, 576
Phoon, KK 106
Plesha, ME 52, 464
Popov, EP 261, 317
Poulos, HG 176, 222
Przemieniecki, JS 125, 164

Rao, SS 21, 53
Reid, JK 92, 107, 455, 464
Rice, JR 264, 317
Ruhe, A 106

Sakurai, T 317
Sandhu, RS 100, 107
Schiffman, RL 423, 440
Schlichting, H 43, 53
Scott, FC 108

Index compiled by Geraldine Begley

Sleijpen, GLG 66, 67, 107
Smith, IM 4, 5, 19, 23, 47, 49, 50, 52,

53, 64, 65, 66, 67, 83, 84, 85,
95, 106, 107, 108, 147, 164,
199, 222, 223, 276, 285, 317,
393, 396, 402, 423, 440, 449,
455, 464, 489, 507, 509, 519,
524, 569, 576

Strang, G 21, 53
Szabo, BA 34, 53

Taig, IC 34, 53, 56, 107
Taylor, C 46, 53
Taylor, DW 282, 293, 317
Taylor, RL 21, 53, 108, 186, 222, 232,

317
Timoshenko, SP 32, 36, 37, 38, 40, 53,

101, 107, 147, 151, 164
Too, J 108
Tracey, DM 264, 317

Valliappan, S 317
van der Vorst, HA 67, 107
Verruijt, A 338, 356

Walker, DW 5, 18
Wang, A 524, 576
Warburton, GB 472, 507
Weaver, W 107
Whitman, R 440
Willé, DR 3, 19
Willson, SM 233, 317, 591
Wilson, EL 43, 52, 100, 107, 186,

222
Winget, J 107
Woinowsky-Krieger, S 40, 53, 151, 164
Wong, SW 106, 107, 108, 494, 507

Yamada, Y 233, 317, 591
Yoshimura, N 317
Young, D 107

Zienkiewicz, OC 21, 53, 57, 58, 60,
106, 108, 186, 222, 231, 232,
233, 235, 259, 317

Subject Index

advection terms 49–50
analysis

axially loaded elastic rods 1D
110–116

Biot poro-elastic solid 3D
551–555

elastic beams 122–128
elastic pin-jointed frames

116–122
elastic rigid-jointed frames

128–135
elastic solid 3D 190–195
elasto-plastic (Mohr–Coulomb)

solid 526–532
plane free-surface flow 332–340
plane steady state Navier–Stokes

equation 404–411
plane steady state Navier–Stokes

equation (element-by-element
solution) 411–416

plates using 4-node rectangular
plate elements 148–152

steady seepage 1D 320–324
applications software 5–9
arrays 9–17

computation functions 12
dynamic arrays 9–10
inspection functions 12
intrinsic procedures 12–13
sections referencing 11
whole-array manipulations 11–12

aspect ratio 35
assembly subroutines 72t, 90f, 90t

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

axisymmetric analysis, non-rectangular
elements 331

axisymmetric elastic solids,
non-axisymmetric analysis
184–190

axisymmetric elements (2D) 578, 579,
580

axisymmetric foundation analysis 180
axisymmetric strain 36–38

degrees of freedom 88
of elastic solids 77–78
elastic–plastic solid “undrained”

295–300
axisymmetric stress 36–38

backward Euler method 263–264, 265
bandred (main library) 71, 595
bandwidth (main library) 595
bandwidth optimisers 173
banmul (main library) 595
bantmul (main library) 595
bcast−inputdata−p??? (parallel

library) 609
beam−ge (main library) 596
beam−km (main library) 596
beam−mm (main library) 596
beam analysis, nodal loading 124
beam elements

mass matrix 27
node and freedom numbering

124f
slender 25
stiffness matrix 25–27, 123

616 SUBJECT INDEX

beam geometric matrix 28
beam–column elements 27
beam–rod elements

node and freedom numbering (2D)
131f

node and freedom numbering (3D)
134f

stiffness matrix 129
beams

2-node beams 583
with axial forces 28–29
on elastic foundations 29

bee8 (main library) 60, 596
beemat (main library) 173, 596
bending moment 126
bent plate, strain energy 40
Beowulf PC cluster, performance data

569–570
BiCGStab (Stabilised bi-conjugate

gradient) 66
BiCGStab(l) (Stabilised hybrid

bi-conjugate gradient) 66,
67, 98, 403, 414

biot−cube−bc20 (parallel library)
609

biot−loading (parallel library)
609

Biot poro-elastic solids
3D analysis 551–555
plane strain consolidation analysis

(absolute load version)
430–434

plane strain consolidation analysis
(incremental version)
416–423

Biot poro-elastic–plastic materials,
plane strain consolidation
analysis 424–430

Biot’s equations for coupled
consolidation 67

Biot’s theory of coupled solid–fluid
interaction 50

bisect (bandred) (main library) 71,
596

black box routines 71–72, 91,
595–604

BLAS (Basic Linear Algebra) libraries
4–5

bmat−nonaxi (main library) 596
body loads, generation of 230–231
body loads vector 257
boundary conditions 68–70

fixed potential 328
free surface flow 334f
problem-specific routines

513–516
box−bc8 (parallel library) 610
brick element (20-node), stiffness matrix

83
broadcasting 10
buckling load 146, 147, 148f
butress, domain compositions 518f,

519

calc−nels−pp (parallel library)
610

calc−neq−pp (parallel library) 610
Cartesian stress tensor 226
character variables, glossary 436
checon−par (parallel library) 610
checon (main library) 335, 596
Cholesky factorisation 92, 93
coefficient of consolidation 361
compilers 5
computer strategies 1–19
conductivity matrix, numerical

integration 78
conjugate gradient method 64–65
consistent mass approximations 93
consistent tangent matrix 265
consolidation analysis (1D), 2-node

“line” elements 358–363
consolidation equation

general 2-(plane) or 3D analysis
382–385

plane or axisymmetric analysis
375–378

constant stiffness iterations 223, 224f,
239, 246

constructors 10
contour (main library) 326, 365,

383, 596

SUBJECT INDEX 617

contour map
excess pore pressure 368, 369f
nodal potential 328, 329f

convergence criterion 266
coupled Navier–Stokes problems,

solution of 96–98
coupled problems 403–440

exercises 439–440
glossary 435–439
programs 404–434

coupled solid–fluid problems (3D),
degrees of freedom per node
88

coupled transient problems, solution of
98–100

Crank–Nicolson method of time
integration 94, 104–105,
362, 469, 481

cross−product (main library) 71,
79, 597

cube−bc20 (parallel library) 610

dams
embankment free surface analysis

configuration and mesh 338f
flow of water through 334–337
sloping sides 338
vertical face dam analysis 337f
vertical-sided 335

deemat (main library) 597
determinant (main library) 71, 597
deviator stress 300
diakoptics 518
diffusion equation 47
diffusion–convection equation 47

plane analysis (self-adjoint
transformation) 386–391

plane analysis (untransformed
solution) 391–396

dilation angle 293
direct Newmark method 468
dismsh (main library) 597
displacement vectors 242–243, 253,

259, 260f, 282, 283f, 292f,
293

distributed arrays, −pp appendage 512
distributed memory systems 4

domain composition, parallel and serial
programs 517–519

Dupuit formula 338
dynamic character arrays, glossary 505
dynamic integer arrays, glossary 154,

213–214, 312, 349–350, 397,
437, 461, 504, 573

dynamic real arrays, glossary
154–155, 214, 312–313, 350,
397–398, 437–439, 461–462,
504–505, 573–576

ecmat (main library) 482, 597
effective stress 419
eigenvalue analysis

3D elastic solids 556–560
elastic beams 442–446

eigenvalue analysis of an elastic solid
using 4- or 8-node rectangular

quadrilaterals 446–452
using 4-node rectangular

quadrilaterals (consistent
mass) 452–457

using 4-node rectangular
quadrilaterals (lumped mass)
457–459

eigenvalue equation 25
eigenvalue problems 43, 52, 64,

441–464
exercises 462–464
glossary 459–462
programs 442–459

eigenvalues, evaluation of 91–93
eigenvectors, evaluation of 91–93
elastic beams

analysis 122–128
eigenvalue analysis 442–446
forced vibration analysis 466–472
stability analysis 145–148

elastic cubes, analysis 524
elastic pin-jointed frames analysis

116–122
elastic rigid-jointed frames analysis

128–135
elastic rod element stiffness matrix

112
elastic rods, 1D analysis 110–116

618 SUBJECT INDEX

elastic solid in plane strain
eigenvalue analysis 446–452
eigenvalue analysis (consistent

mass) 452–457
eigenvalue analysis (lumped mass)

457–459
forced vibration analysis

472–477, 487–491
forced vibration analysis (theta

method) 478–483, 492–496
forced vibration analysis (Wilson’s

method) 483–487
elastic solids

2-(plane strain) or 3D analysis
195–204

3D analysis 190–195
3D strain 204–209
axisymmetric strain 77–78
eigenvalue analysis 556–560
element stiffness 83
forced vibration analysis 561–565
plane or axisymmetric strain

analysis 166–183
elastic stress–strain matrix (3D) 40
elastic-perfectly plastic stress–strain law

226f
elastic–plastic embankments, plane

strain construction 276–283
elastic–plastic excavation, plane strain

construction 286–293
elastic–plastic materials

plane strain bearing capacity
analysis 243–247, 266–271

plane strain bearing capacity
analysis (no global stiffness
matrix assembly) 271–275

plane strain bearing capacity
analysis (viscoplastic strain
method) 235–243

plane strain earth pressure analysis
253–260

plane strain slope stability analysis
248–253

elastic–plastic slopes
3D strain analysis 300–305

viscoplastic strain method analysis
305–309

elastic–plastic solids, axisymmetric
“undrained” strain 295–300

elastic–plastic (von Mises) solid in
plane strain, forced vibration
analysis 496–502

elasto-plastic (Mohr–Coulomb) solid,
3D analysis 526–532

elasto-plastic rate integration 260–264
elasto-plastic solids (3D), forced

vibration analysis 565–569
element assembly technique 266
element conductivity matrix 319, 328,

334–335
element local coordinate systems 135f
element matrix assembly, structure chart

73
element node numbering, shape

functions and 583–589
element stiffness

derivation 30–31
integration and assembly 173

element stiffness matrix 43, 129, 150,
328

element strain energy 35
element-by-element techniques 64–68
element-mass matrix 43, 123
elements

1D elements 583
2D elements 32–35, 79–81, 584
3D elements 81–86, 581, 587
4-node tetrahedron 85, 197
8-node brick-shaped 39
assembly of 86–91
cuboidal 81–83
multi-element assemblies 62–64
plate-bending 40–43
plate-bending elements 40–43

elmat (subroutines) 448
emb−2d−bc (geom library) 251, 605
emb−2d−geom (geom library) 251,

605
emb−3d−bc (geom library) 302, 605
emb−3d−geom (geom library) 302,

606

SUBJECT INDEX 619

embanking process 276–283
energy, elastic plane elements 35
equation solution subroutines 91t
equilibrium equations 49

solution of 91
equivalent nodal loads 577–581
exc−nods (main library) 291, 597
excavations 283–293

forces formulation 284f
vertical cuts 289

exercises
coupled problems 439–440
eigenvalue problems 462–464
forced vibrations 506–507
material non-linearity 314–316
static equilibrium of linear elastic

solids 214–222
static equilibrium of structures

155–164
steady state flow 350–355
transient problems (uncoupled)

398–402

failure criteria 228–230
failure function, calculation 257
failure surfaces, corners on 234–260
find−g (parallel library) 610
find−g3 (parallel library) 610
find−g4 (parallel library) 610
find−pe−procs (parallel library)

610
finite element analysis, parallel

processing 509–576
finite element computations 55–108
finite element mesh, 8-node

quadrilaterals 10, 11f
finite elements

element stiffness matrix 59
spatial discretisation 21–53

first order time dependent problems,
solution of 93–96

fkdiag (main library) 597
flexural stiffness 127
flow equations, simplified 46–50
flow of fluids, Navier–Stokes equations

43–46

fluid elements, stiffness/conductivity
matrix 78

fluid flow, mass matrix 83
fluids, flow of 43–46
fmacat (main library) 597
fmcoem (geom library) 280, 606
fmdsig (subroutine) 75
fmglem (geom library) 280, 606
fmkdke (main library) 433, 598
fmplat (main library) 598
fmrmat (main library) 598
forced vibration analysis

3D elastic solids 561–565
3D elasto-plastic solids 565–569
elastic beams 466–472
elastic–plastic solids 496–502

forced vibration analysis of elastic
solids

using 4- or 8-node rectangular
quadrilaterals 472–477

using 4-node rectangular
quadrilaterals 487–491

using 8-node rectangular
quadrilaterals (theta method)
478–483, 492–496

using 8-node rectangular
quadrilaterals (Wilson’s
method) 483–487

forced vibrations 465–507
exercises 506–507
glossary 502–505
programs 466–487

form−s (main library) 599
formaa (main library) 598
formke (main library) 598
formku (main library) 445, 598
formlump (main library) 598
formm (main library) 598
formnf (main library) 598
formtb (main library) 598
formupv (main library) 599
formupvw (parallel library) 610
Fortran-95 2, 5

arithmetic 7
array features 9–17
conditions 7–8

620 SUBJECT INDEX

Fortran-95 (continued)
and FORTRAN 77 comparison

13
intrinsic procedures 12–13
library routines 14–16
loops 8–9
typical simple program 5–6

forward Euler method 262–263
foundation stiffness 127, 147
foundation stiffness matrix 123
free surface flow, boundary conditions

334f
fsparv (main library) 599

g−t−g−ns (parallel library) 611
g−t−g (parallel library) 610
gather (parallel library) 610
gauss−band (main library) 599, 603
general 2-(plane) or 3D analysis

consolidation equation 382–385
steady seepage 340–344
steady seepage (no global

conductivity matrix assembly)
344–348

geom−freesurf (geom library)
334, 339, 606

geom−rect (geom library) 239, 328,
410, 422, 448, 607

geom library subroutines 605–607
geometric non-linearity 223
geometry−8bxz (parallel library)

610
geometry−20bxz (parallel library)

610
geometry subroutines 165

hexahedron−xz 192, 607
glob−to−axial (main library) 599
glob−to−loc (main library) 599
global conductivity matrix 319, 328,

335
global gravity loading vector 197
global node numbering system 114
global stiffness matrix 112, 114, 123,

127, 138, 151
global variables 511–512

GMRES (Generalised minimum
residual) 66

gravity loads 251, 276

hardware 2
heat conduction equation 47
hexahedron

8-node 587
14-node 83–85, 202f, 588
20-node 192f

hexahedron−xz (geom library)
192, 607

hexahedron (20-node) 589
global node and element numbering

192f
High Performance Fortran (HPF) 4
hinge (main library) 599

IF . . . THEN . . . ELSE structure 7–8,
16

inconsistent tangent matrix 265
initial stress methods 233–234

stress redistribution 256
integration

for quadrilaterals 58–60
for triangles 61

interp (main library) 600
invar (main library) 239, 599
invert (main library) 71, 600
iterations, constant stiffness 223

Jacobi algorithm 92
Jacobi-Davidson method 67

laminar fluid flow (3D), element
conductivity matrix 83

lancz1 (main library) 72, 600
lancz2 (main library) 72, 600
Lanczos method 67, 68, 72, 92–93,

455, 459
Laplace equation, solution of 319, 334
Laplacian flow (3D) 533–537
limiting bending moment 140
limiting torsional moment 140

SUBJECT INDEX 621

linear elastic solids, static equilibrium of
165–222

linear strain rectangle 34
linmul−sky (main library) 328,

600
load−function (main library) 419,

600
load control analysis 138
load displacement behaviour 143f
loading (parallel library) 611
loc−to−glob (main library) 600
local coordinates

quadrilateral elements 55–60
triangular elements 60–61

loops 8–9
lumped mass approximations 93

main Library subroutines 595–604
make−ggl (parallel library) 611
Mandel–Cryer effect 440
Maple (computer algebra system) 58
masking argument 12
mass approximations 93
mass matrix formation 78–79
material non-linearity 223–318

exercises 314–316
glossary 309–313
programs 235–260, 266–283,

286–293, 295–309
MATMUL 4–5, 65, 72, 212
matrix

consistent tangent 265
inconsistent tangent 265

matrix displacement method 109
matrix–vector multiplication subroutine

72t
mcdp1 (main library) 257, 601
memory management 2–3
mesh−size (geom library) 607
mesh (3D), numbering system and data

89f
mesh (main library) 601
mesh generation routines 86
mesh (main library) 166, 173, 326,

365, 383

mesh numbering 63f
mesh-free techniques 64–68

transient analysis 371–380
meshes

deformed 243, 305f
numbering system and data 87

message passing 4
method of fragments 328
minimum residual method (MIN-RES)

67
mocouf (main library) 252, 601
mocouq (main library) 252, 601
Mohr–Coulomb criterion 228,

229–230, 531, 591–593,
594

Mohr–Coulomb failure function 252
Mohr–Coulomb (Tresca) surface 234
moment–curvature relationship,

elastic-perfectly plastic 136,
138f

MPI (message passing interface) 4, 18
libraries 5
library routines 512

Navier–Stokes
3D problems 88
3D steady state analysis 543–551
equations 43–46, 52

Newmark method 104–105, 471
Newmark time-stepping 470
nodal loads, equivalent 577–581
node freedom arrays 88, 516
non-axisymmetric analysis,

axisymmetric elastic solid
184–190

non-vertical elements, transformation
angle 132, 134f

norm (main library) 601
ns−cube−bc20 (parallel library)

611
ns−loading (parallel library) 611
num−to−g (main library) 601

OpenMP 4

622 SUBJECT INDEX

paging 3
parallel libraries 511
parallel library subroutines 609–611
parallel processing

benefits 510
effect of mesh subdivision 510

parallel processing of finite element
analyses 509–576

glossary 570–576
programs 519–569

parallel processors 4
parallel and serial programs

−pp appendage 512
differences between 511–569
domain composition 517–519
gathering and scattering 517
global variables 511–512
load balancing 519
MPI library routines 512
parallel libraries 511
problem-specific boundary

condition routines 513–516
reading and writing 512–513
reindexing 517
rest instead of nf 516–517

partial differential equations,
semi-discretisation 30t

Pascal pyramid of polynomials 84,
86

Pascal’s triangle 85
pcg see preconditioned conjugate

gradient (pcg) technique
penalty technique 123, 173, 360
performance data, “Beowulf” PC cluster

569–570
pin−jointed (main library) 601
pin-jointed frames, in 2D 118
pipelines 3
planar elements 577, 578
plane analysis of the diffusion–

convection equation
386–391

untransformed solution 391–396
plane or axisymmetric analysis

of the consolidation equation
(theta−0 method) 375–378

of the consolidation equation (theta
method) 378–380

of steady seepage 324–331
plane or axisymmetric consolidation

analysis 363–370
plane or axisymmetric consolidation

analysis (theta method)
371–374

plane or axisymmetric strain analysis,
elastic solid 166–183

plane elastic analysis
quadrilateral elements 73–76
triangular elements 76–77

plane element mass matrix 36
plane free-surface flow, analysis

using 4-node quadrilaterals
332–340

plane general quadrilateral elements
55, 56f

plane problems, degrees of freedom
per node 88

plane rectangular elements 55, 56f
plane steady laminar fluid flow 78
plane steady state Navier–Stokes

equation
analysis using 8-node rectangular

quadrilaterals 404–411
analysis using 8-node rectangular

quadrilaterals (element-by-
element solution) 411–416

plane strain 32–35
plane strain bearing capacity analysis of

elastic–plastic materials
243–247

initial stress method 266–271
no global stiffness matrix assembly

271–275
viscoplastic strain method

235–243
plane strain consolidation analysis of

Biot poro-elastic solids
absolute load version 430–434
incremental version 416–423

plane strain consolidation analysis of
Biot poro-elastic–plastic
materials 424–430

SUBJECT INDEX 623

plane strain construction
elastic–plastic embankment

276–283
elastic–plastic excavation

286–293
plane strain earth pressure analysis,

elastic–plastic material
253–260

plane strain slope stability analysis,
elastic–plastic material
248–253

plane stress 32–35
plane triangular grid 143
plastic moments 140
plastic potential derivatives 593–594
plastic stress–strain matrices 591–593
plate elements, node and freedom

numbering 151
plate stiffness matrix 110
plates, analysis using 4-node

rectangular plate elements
148–152

pore pressure 419
potential 319
potential surfaces, corners on 234–260
preconditioned conjugate gradient (pcg)

technique 106, 206, 207f,
308, 347

preconditioned matrix 346
preconditioning 65–66
pressure shape functions 97
principal stress space 226–227, 230
principle of minimum potential energy

35
programming

finite element computations
55–108

using building blocks 70–91
programs

1D analysis of axially loaded
elastic rods 110–116

1D analysis of steady seepage
320–324

1D consolidation analysis
358–363

2-(plane) or 3D analysis of steady
seepage 340–344

3D analysis of Biot poro-elastic
solid 551–555

3D analysis of elastic solid
190–195, 519–526

3D analysis of elasto-plastic
(Mohr–Coulomb) solid
526–532

3D Laplacian flow 533–537
3D steady state Navier–Stokes

analysis 543–551
3D strain analysis of elastic–plastic

slope 300–305
3D strain analysis of elastic–plastic

slope (no global stiffness
matrix assembly) 305–309

3D strain of elastic solid
204–209

3D strain of elastic solid
(vectorised version)
209–212

3D transient flow–explicit analysis
in time 541–543

3D transient flow–implicit analysis
in time 537–540

analysis of elastic beams
122–128

analysis of elastic pin-jointed
frames 116–122

analysis of elastic rigid-jointed
frames 128–135

analysis of elastic–plastic beams or
rigid-jointed frames
136–144

analysis of plane free-surface flow
332–340

analysis of the plane steady state
Navier–Stokes equation
404–411

analysis of the plane steady state
Navier–Stokes equation (no
global matrix assembly)
411–416

analysis of plates 148–152

624 SUBJECT INDEX

programs (continued)
axisymmetric “undrained” strain

of elastic–plastic solids
295–300

eigenvalue analysis of 3D elastic
solids 556–560

eigenvalue analysis of elastic
beams 442–446

eigenvalue analysis of elastic solid
in plane strain 446–452

eigenvalue analysis of elastic solid
in plane strain (consistent
mass) 452–457

eigenvalue analysis of elastic solid
in plane strain (lumped mass)
457–459

forced vibration analysis of 3D
elastic solid 561–565

forced vibration analysis of 3D
elasto-plastic solid
565–569

forced vibration analysis of elastic
beams 466–472

forced vibration analysis of elastic
solid in plane strain 472–477

forced vibration analysis of elastic
solid in plane strain (theta
method) 478–483, 492–496

forced vibration analysis of elastic
solid in plane strain using
rectangular uniform size
4-node quadrilaterals
487–491

forced vibration analysis of elastic
solid in plane strain (Wilson’s
method) 483–487

forced vibration analysis of
elastic–plastic (von Mises)
solid in plane strain 496–502

forced vibrations 466–487
general 2-(plane) or 3D analysis of

the consolidation equation
382–385

general 2-(plane) or 3D analysis of
steady seepage 344–348

general 2-(plane strain) or 3D
analysis of elastic solids
195–204

non-axisymmetric analysis of
axisymmetric elastic solids
184–190

plane analysis of the diffusion–
convection equation
(self-adjoint transformation)
386–391

plane analysis of the diffusion–
convection equation
(untransformed solution)
391–396

plane or axisymmetric analysis of
the consolidation equation
(theta−0 method) 375–378

plane or axisymmetric analysis of
the consolidation equation
(theta method) 378–380

plane or axisymmetric analysis of
steady seepage 324–331

plane or axisymmetric
consolidation analysis
363–370

plane or axisymmetric
consolidation analysis (theta
method) 371–374

plane or axisymmetric strain
analysis of an elastic solid
166–183

plane strain bearing capacity
analysis of elastic–plastic
material 235–243

plane strain bearing capacity
analysis of elastic–plastic
material (initial stress method)
266–271

plane strain bearing capacity
analysis of elastic–plastic
material (no global stiffness
matrix assembly) 271–275

plane strain bearing capacity
analysis of elastic–plastic
material (viscoplastic method)
243–247

SUBJECT INDEX 625

plane strain consolidation analysis
of Biot poro-elastic solid
(absolute load version)
430–434

plane strain consolidation analysis
of Biot poro-elastic solid
(incremental version)
416–423

plane strain consolidation analysis
of Biot poro-elastic–plastic
material 424–430

plane strain construction of
elastic–plastic embankment
276–283

plane strain construction of
elastic–plastic excavation
286–293

plane strain earth pressure analysis
253–260

plane strain slope stability analysis
248–253

stability analysis of elastic beams
145–148

static equilibrium of linear elastic
solids 166–214

steady state flow 320–350
timings of vectorised 212t

propagation problems 52, 64

quadrilateral elements
global matrix assembly for mesh

63t
local coordinates 55–60
mesh 62f
plane elastic analysis 73–76

quadrilaterals
4-node 176, 177f, 578, 580,

586
analytical integration 58–60
numerical integration 58

quadrilaterals (8-node) 79–80, 177,
581, 586

element stiffness matrix 177
global node and element numbering

179f
local node and freedom numbering

180f, 188f

quadrilaterals (9-node) 581, 586
local node and freedom numbering

198

ramp loading 420, 422f
Rankine passive mechanism 259
Rayleigh damping coefficients 101,

483
rearrange (parallel library)

611
rearrange−2 (parallel library) 611
rect−km (main library) 448, 601
rectangular plate bending elements 41
rectangular quadrilaterals, plane or

axisymmetric consolidation
analysis 363–370

reduce (parallel library) 611
reindex−fixed−nodes (parallel

library) 611
rigid−jointed (main library) 602
rod−km (main library) 602
rod−mm (main library) 602
rod elements 21–24

2-node rods 583
node and freedom numbering

114f
node and freedom numbering (2D)

119f
node and freedom numbering (3D)

122f
rod mass element 24
rod stiffness matrix 21–24
routines, special purpose 72

sample (main library) 173, 602
scalar characters, glossary 213, 311,

349, 397, 460, 503, 573
scalar computers 3
scalar integers, glossary 153,

212–213, 309, 348–349, 396,
435, 459–460, 502, 570–571

scalar logicals, glossary 154, 213, 311,
349, 397, 436, 503, 573

scalar potential problems, degrees of
freedom per node 88

626 SUBJECT INDEX

scalar reals, glossary 153–154, 213,
309–311, 349, 396–397,
435–436, 460, 502–503,
572–573

scatter (parallel library) 611
scattering, gathering and 517
second order time dependent problems,

solution of 100–106
seep4 (main library) 60, 334, 602
seepage analysis 328, 329f
SELECT CASE, construct 16
selective reduced integration (SRI)

220–221
serial and parallel programs, differences

between 511–569
shape−der (main library) 79, 80,

81, 85, 602
shape−fun (main library) 79, 80,

81, 85, 602
shape functions, and element node

numbering 583–589
shared memory systems 4
software, applications 5–9
soil stiffness 127
solid elements, testing admissibility

199
solids, element equations summary 43
solution of coupled transient problems

98–100
absolute load version 99–100
incremental load version 100

solution of first order time dependent
problems 93–96

solution of second order time dependent
problems 100–106

damping 102
explicit methods 106
inclusion of forcing terms 103
modal superposition 101–103
Newmark or Crank–Nicolson

method 104–105
Wilson’s method 105

solve−band (main library) 599, 603
spabac−gauss (main library) 419,

446, 603

spabac (main library) 173, 239, 328,
360, 483, 603

sparin−gauss (main library) 419,
423, 446, 603

sparin (main library) 173, 239, 328,
360, 482, 490, 603

spatial discretisation, by finite elements
21–53

stability (main library) 603
stability analysis, of elastic beams

145–148
static equilibrium of linear elastic solids

165–222
exercises 214–222
glossary 212–214
programs 166–214

static equilibrium problems 64
static equilibrium of structures

109–164
exercises 155–164
glossary 153–155
programs 110–152

static problems 43
steady seepage

1D analysis 320–324
general 2-(plane) or 3D analysis

340–344
general 2-(plane) or 3D analysis

(no global conductivity matrix
assembly) 344–348

plane or axisymmetric analysis
324–331

under sheet pile wall 326
steady state equations 47–49
steady state flow 319–355

exercises 350–355
glossary 348–350
programs 320–350

steady state Navier–Stokes analysis
(3D) 543–551

steady state problems 403
stiff spring technique 123, 173, 360
stiff4 (main library) 60, 604
storage strategies 90f
storage-saving strategies 106
strain (3D), elastic solid 204–209

SUBJECT INDEX 627

strain analysis (3D) of an elastic–plastic
slope 300–305

strain analysis (3D) of elastic–plastic
slope, viscoplastic strain
method 305–309

stress, and strain (3D) 38–40
stress invariants 226–228
stress redistribution, initial stress method

256
stress–strain behaviour 225–226
structure charts 16–17, 112, 169, 170f,

455f, 476f, 477, 481, 485, 499
Biot analysis 420f
element matrix assembly 73
element-by-element product

algorithm 96f
explicit time integration 376f
implicit analysis of transient

problems 360–361
matrix multiplication 17f
Navier–Stokes analysis with global

matrix assembly 409f
pcg algorithm 207f
tangent stiffness approach 270

structured programming 16–17
structures, static equilibrium 109–164
subdomains 517–518
subprogram libraries 14–16
subroutines 71

equation solution 91t
geom library subroutines

605–607
main library subroutines 595–604
matrix–vector multiplication 72
parallel library subroutines

609–611
for solution of linear algebraic

equations 71t
special purpose 86

symmetric eigenvalue systems 67–68
symmetric non-positive definite

equations 67

tangent stiffness methods 264–275
Terzaghi’s 1D consolidation theory

363
tetrahedral elements 85–86

tetrahedron
4-node 85, 197, 200f, 581, 587
8-node 581
14-node 581
20-node 581
constant strain 85, 86
local node and freedom numbering

200f
transient analysis, mesh-free strategies

371–380
transient conditions 49
transient flow (3D)

explicit analysis in time 541–543
implicit analysis in time 537–540

transient problems 52, 403
transient problems, first order

(uncoupled) 357–402
exercises 398–402
glossary 396–398
programs 358–396
structure chart for implicit analysis

360
TRANSPOSE, Fortran 95 intrinsic

function 75
Tresca failure criterion 226, 229, 230,

293
Tresca surface 234
triangles

3-noded 169, 170, 172f, 198, 577,
578, 584

6-noded 81, 577, 584
10-noded 577, 579, 584
15-noded 174f, 577, 580, 585
node numbering system 174, 176
numerical integration 61

triangular elements
local coordinates for 60–61
plane elastic analysis 76–77

two-bay portal frame, proportional
loading 140

uncoupled problems 357–402
exercises 398–402
programs 358–380, 382–396
structure chart for implicit analysis

360

628 SUBJECT INDEX

undrained soil analysis 293–309
unsymmetric systems 66–67

variable names, glossary 212–214,
309–313, 348–350, 396–398,
435–439

variable (tangent) stiffness method
224f

vecmsh (main library) 604
vector processors 3–4
vector subscripts 10–11
velocity shape functions 97

Index compiled by Geraldine Begley

vertical elements, transformation angle
132, 134f

viscoplastic algorithm, structure chart
239, 240f

viscoplasticity 225, 231–232
vmdp1 (main library) 604
vmflow (main library) 604
vmp1 (parallel library) 611
von Mises criterion 228–229, 264,

591, 594

water, flow through dams 334
Wilson’s method 105

	Programming the Finite Element Method FOURTH EDITION
	Contents
	Preface
	Acknowledgement
	1 Preliminaries: Computer Strategies
	1.1 Introduction
	1.2 Hardware
	1.3 Memory management
	1.4 Vector processors
	1.5 Parallel processors
	1.6 BLAS libraries
	1.7 MPI libraries
	1.8 Applications software
	1.8.1 Arithmetic
	1.8.2 Conditions
	1.8.3 Loops

	1.9 Array features
	1.9.1 Dynamic arrays
	1.9.2 Broadcasting
	1.9.3 Constructors
	1.9.4 Vector subscripts
	1.9.5 Array sections
	1.9.6 Whole-array manipulations
	1.9.7 Intrinsic procedures for arrays
	1.9.8 Additional Fortran 95 features
	1.9.9 Subprogram libraries
	1.9.10 Structured programming

	1.10 Conclusions
	References

	2 Spatial Discretisation by Finite Elements
	2.1 Introduction
	2.2 Rod element
	2.2.1 Rod stiffness matrix
	2.2.2 Rod mass element

	2.3 The eigenvalue equation
	2.4 Beam element
	2.4.1 Beam element stiffness matrix
	2.4.2 Beam element mass matrix

	2.5 Beam with an axial force
	2.6 Beam on an elastic foundation
	2.7 General remarks on the discretisation process
	2.8 Alternative derivation of element stiffness
	2.9 Two-dimensional elements: plane strain and plane stress
	2.10 Energy approach
	2.11 Plane element mass matrix
	2.12 Axisymmetric stress and strain
	2.13 Three-dimensional stress and strain
	2.14 Plate-bending element
	2.15 Summary of element equations for solids
	2.16 Flow of fluids: Navier–Stokes equations
	2.17 Simplified flow equations
	2.17.1 Steady state
	2.17.2 Transient state
	2.17.3 Advection

	2.18 Further coupled equations: Biot consolidation
	2.19 Conclusions
	References

	3 Programming Finite Element Computations
	3.1 Introduction
	3.2 Local coordinates for quadrilateral elements
	3.2.1 Numerical integration for quadrilaterals
	3.2.2 Analytical integration for quadrilaterals

	3.3 Local coordinates for triangular elements
	3.3.1 Numerical integration for triangles

	3.4 Multi-element assemblies
	3.5 “Element-by-element” or “Mesh-free” techniques
	3.5.1 Conjugate gradient method
	3.5.2 Preconditioning
	3.5.3 Unsymmetric systems
	3.5.4 Symmetric non-positive definite equations
	3.5.5 Symmetric eigenvalue systems

	3.6 Incorporation of boundary conditions
	3.7 Programming using building blocks
	3.7.1 Black box routines
	3.7.2 Special purpose routines
	3.7.3 Plane elastic analysis using quadrilateral elements
	3.7.4 Plane elastic analysis using triangular elements
	3.7.5 Axisymmetric strain of elastic solids
	3.7.6 Plane steady laminar fluid flow
	3.7.7 Mass matrix formation
	3.7.8 Higher-order 2D elements
	3.7.9 Three-dimensional elements
	3.7.10 Assembly of elements

	3.8 Solution of equilibrium equations
	3.9 Evaluation of eigenvalues and eigenvectors
	3.9.1 Jacobi algorithm
	3.9.2 Lanczos algorithm

	3.10 Solution of first order time dependent problems
	3.11 Solution of coupled Navier–Stokes problems
	3.12 Solution of coupled transient problems
	3.12.1 Absolute load version
	3.12.2 Incremental load version

	3.13 Solution of second order time dependent problems
	3.13.1 Modal superposition
	3.13.2 Newmark or Crank–Nicolson method
	3.13.3 Wilson’s method
	3.13.4 Explicit methods and other storage-saving strategies

	References

	4 Static Equilibrium of Structures
	4.1 Introduction
	Program 4.1 One-dimensional analysis of axially loaded elastic rods using 2-node rod elements
	Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod elements in two or three dimensions
	Program 4.3 Analysis of elastic beams using 2-node beam elements (elastic foundation optional)
	Program 4.4 Analysis of elastic rigid-jointed frames using 2-node beam/rod elements in two or three dimensions
	Program 4.5 Analysis of elastic–plastic beams or rigid-jointed frames using 2-node beam or beam/rod elements in one, two or three dimensions
	Program 4.6 Stability (buckling) analysis of elastic beams using 2-node beam elements (elastic foundation optional)
	Program 4.7 Analysis of plates using 4-node rectangular plate elements. Homogeneous material with identical elements. Mesh numbered in x- or y-direction
	4.2 Concluding remarks
	4.3 Exercises
	References

	5 Static Equilibrium of Linear Elastic Solids
	5.1 Introduction
	Program 5.1 Plane or axisymmetric strain analysis of an elastic solid using 3-, 6-, 10-, or 15-node right-angled triangles or 4-, 8-, or 9-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction
	Program 5.2 Non-axisymmetric analysis of an axisymmetric elastic solid using 8-node rectangular quadrilaterals. Mesh numbered in r- or z-direction
	Program 5.3 Three-dimensional analysis of an elastic solid using 8-, 14-, or 20-node brick hexahedra. Mesh numbered in x-z planes then in the y-direction
	Program 5.4 General two- (plane strain) or three-dimensional analysis of elastic solids
	Program 5.5 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-node brick hexahedra. Mesh numbered in x-z planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver
	Program 5.6 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-node brick hexahedra. Mesh numbered in x-z planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver. Vectorised version
	5.2 Exercises
	References

	6 Material Non-linearity
	6.1 Introduction
	6.2 Stress–strain behaviour
	6.3 Stress invariants
	6.4 Failure criteria
	6.4.1 Von Mises
	6.4.2 Mohr–Coulomb and Tresca

	6.5 Generation of body loads
	6.6 Viscoplasticity
	6.7 Initial stress
	6.8 Corners on the failure and potential surfaces
	Program 6.1 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain method
	Program 6.2 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver
	Program 6.3 Plane strain slope stability analysis of an elastic–plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals. Viscoplastic strain method
	Program 6.4 Plane strain earth pressure analysis of an elastic–plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals. Initial stress method
	6.9 Elasto-plastic rate integration
	6.9.1 Forward Euler method
	6.9.2 Backward Euler method

	6.10 Tangent stiffness approaches
	6.10.1 Inconsistent tangent matrix
	6.10.2 Consistent tangent matrix
	6.10.3 Convergence criterion

	Program 6.5 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Initial stress method. Tangent stiffness. Consistent return algorithm
	Program 6.6 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Initial stress method. Tangent stiffness. Consistent return algorithm. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver
	6.11 The geotechnical processes of embanking and excavation
	6.11.1 Embanking

	Program 6.7 Plane strain construction of an elastic–plastic (Mohr–Coulomb) embankment in layers on a foundation using 8-node quadrilaterals. Viscoplastic strain method
	6.11.2 Excavation

	Program 6.8 Plane strain construction of an elastic–plastic (Mohr–Coulomb) excavation in layers using 8-node quadrilaterals. Viscoplastic strain method
	6.12 Undrained analysis
	Program 6.9 Axisymmetric “undrained” strain of an elastic–plastic (Mohr–Coulomb) solid using 8-node rectangular quadrilaterals. Viscoplastic strain method
	Program 6.10 Three-dimensional strain analysis of an elastic–plastic (Mohr–Coulomb) slope using 20-node hexahedra. Viscoplastic strain method
	Program 6.11 Three-dimensional strain analysis of an elastic–plastic (Mohr–Coulomb) slope using 20-node hexahedra. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver
	6.13 Exercises
	References

	7 Steady State Flow
	7.1 Introduction
	Program 7.1 One-dimensional analysis of steady seepage using 2-node line elements
	Program 7.2 Plane or axisymmetric analysis of steady seepage using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)- direction
	Program 7.3 Analysis of plane free-surface flow using 4-node quadrilaterals. “Analytical” form of element conductivity matrix
	Program 7.4 General two- (plane) or three-dimensional analysis of steady seepage
	Program 7.5 General two- (plane) or three-dimensional analysis of steady seepage. No global conductivity matrix assembly. Diagonally preconditioned conjugate gradient solver
	7.2 Exercises
	References

	8 Transient Problems: First Order (Uncoupled)
	8.1 Introduction
	Program 8.1 One-dimensional consolidation analysis using 2-node line elements. Implicit time integration using the “theta” method
	Program 8.2 Plane or axisymmetric consolidation analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration using the “theta” method
	8.2 Mesh-free Strategies in Transient Analysis
	Program 8.3 Plane or axisymmetric consolidation analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration using the “theta” method. No global stiffness matrix assembly. Diagonal preconditioner conjugate gradient solver
	Program 8.4 Plane or axisymmetric analysis of the consolidation equation using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Explicit time integration using the “theta = 0” method
	Program 8.5 Plane or axisymmetric analysis of the consolidation equation using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. “theta” method using an element-by-element product algorithm
	8.3 Comparison of Programs 8.2, 8.3, 8.4, and 8.5
	Program 8.6 General two- (plane) or three-dimensional analysis of the consolidation equation. Implicit time integration using the “theta” method
	Program 8.7 Plane analysis of the diffusion–convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the “theta” method. Self-adjoint transformation
	Program 8.8 Plane analysis of the diffusion–convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the “theta” method. Untransformed solution
	8.4 Exercises
	References

	9 Coupled Problems
	9.1 Introduction
	Program 9.1 Analysis of the plane steady state Navier–Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in x- or y-direction. Freedoms numbered in the order u-p-v
	Program 9.2 Analysis of the plane steady state Navier–Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in x- or y-direction. Freedoms numbered in the order u-p-v. Element-by-element solution using BiCGStab(l) with no preconditioning. No global matrix assembly
	Program 9.3 Plane strain consolidation analysis of a Biot poro-elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u-v-u(w). Incremental version
	Program 9.4 Plane strain consolidation analysis of a Biot poro-elastic-plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u-v-u(w). Incremental version. Viscoplastic strain method
	Program 9.5 Plane strain consolidation analysis of a Biot poro-elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u-v-u(w). Absolute load version. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver
	9.2 Exercises
	References

	10 Eigenvalue Problems
	10.1 Introduction
	Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam elements. Lumped mass
	Program 10.2 Eigenvalue analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in x- or y-direction
	Program 10.3 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos Method. Consistent mass. Mesh numbered in x- or y-direction
	Program 10.4 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos Method. Lumped mass. Element-by-element formulation. Mesh numbered in x- or y-direction
	10.2 Exercises
	References

	11 Forced Vibrations
	11.1 Introduction
	Program 11.1 Forced vibration analysis of elastic beams using 2-node beam elements. Consistent mass. Newmark time stepping
	Program 11.2 Forced vibration analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in x- or y-direction. Modal superposition
	Program 11.3 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x- or y-direction. Implicit time integration using the “theta” method
	Program 11.4 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x- or y-direction. Implicit time integration using Wilson’s method
	Program 11.5 Forced vibration analysis of an elastic solid in plane strain using rectangular uniform size 4-node quadrilaterals. Mesh numbered in the x- or y-direction. Lumped or consistent mass. Mixed explicit/implicit time integration
	Program 11.6 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x- or y-direction. Implicit time integration using the “theta” method. No global matrix assembly. Diagonally preconditioned conjugate gradient solver
	Program 11.7 Forced vibration analysis of an elastic–plastic (von Mises) solid in plane strain using rectangular 8-node quadrilateral elements. Lumped mass. Mesh numbered in x- or y-direction. Explicit time integration
	11.2 Exercises
	References

	12 Parallel Processing of Finite Element Analyses
	12.1 Introduction
	12.2 Differences between parallel and serial programs
	12.2.1 Parallel libraries
	12.2.2 Global variables
	12.2.3 MPI library routines
	12.2.4 The -pp appendage
	12.2.5 Reading and writing
	12.2.6 Problem-specific boundary condition routines
	12.2.7 rest instead of nf
	12.2.8 Gathering and scattering
	12.2.9 Reindexing
	12.2.10 Domain composition
	12.2.11 Load balancing

	Program 12.1 Three dimensional analysis of an elastic solid. Compare Program 5.5
	Program 12.2 Three dimensional analysis of an elasto-plastic (Mohr–Coulomb) solid. Compare Program 6.11
	Program 12.3 Three dimensional Laplacian flow. Compare Program 7.5
	Program 12.4 Three dimensional transient flow- implicit analysis in time. Compare Program 8.3
	Program 12.5 Three dimensional transient flow-explicit analysis in time. Compare Program 8.4
	Program 12.6 Three dimensional steady state Navier–Stokes analysis. Compare Program 9.2
	Program 12.7 Three-dimensional analysis of Biot poro-elastic solid. Compare Program 9.2
	Program 12.8 Eigenvalue analysis of three-dimensional elastic solid. Compare Program 10.4
	Program 12.9 Forced vibration analysis of a three-dimensional elastic solid. Implicit integration in time. Compare Program 11.4
	Program 12.10 Forced vibration analysis of three-dimensional elasto-plastic solid. Explicit integration in time. Compare Program 11.5
	12.3 Performance data for a "Beowulf” PC cluster
	12.4 Conclusions
	References

	A Equivalent Nodal Loads
	B Shape Functions and Element Node Numbering
	C Plastic Stress–strain Matrices and Plastic Potential Derivatives
	D main Library Subroutines
	E geom Library Subroutines
	F Parallel Library Subroutines
	Author Index
	Subject Index

