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A review of definitions of fractional derivatives and other operators

G. Sales Teodoroa, J. A. Tenreiro Machadob, and E. Capelas de Oliveirac

Abstract

Given the increasing number of proposals and definitions of oper-
ators in the scope of fractional calculus, it is important to introduce
a systematic classification. Nonetheless, many of the definitions that
emerged in the literature can not be considered as fractional deriva-
tives. We analyze a list of expressions to have a general overview of the
concept of fractional (integrals) derivatives. Moreover, some formulae
that do not involve the term fractional, are also included due to their
particular interest in the area.

1 Introduction

The non-integer order calculus, usually known as the fractional calculus
(FC), began in 1695 [26, 77, 78]. The term FC is related to the letters be-
tween Leibniz and Bernoulli about the meaning of derivative of order 1/2
of the power function. Leibniz, in a brillant note, not to say prophetic,
presented the correct result and stated that “...the paradox would one day
have several important consequences”. Today, after more than three hun-
dred years, we testimony that the FC became a source of not only of scientific
discussion and progress, but also some controversy under the light of recent
proposals [13].

Several articles describe the progress in the area of FC. We can men-
tion the works by Machado-Kiryakova-Mainardi [55, 56], with an historical
review and some notes about the main scientists that promoted FC along
the history. In Valério-Machado-Kiryakova [88] several pioneers in the ap-
plications of the FC are recalled, and in Valério et al. [89] a survey of useful
formulas is provided, while in Machado-Kiryakova [85], a detailed review
of the FC publications and conferences commemorates the 20 years of the
journal Fractional Calculus and Applied Analysis.
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FC stands out in the modelling problems involving the concepts of non-
locality and memory effect, that are not well explained by the integer-order
calculus. Indeed, FC tackles the concept of derivative operator that, in the
integer order calculus is a local operator, whereas in FC it has a non-local
nature [57].

It was only after the first conference [76] dedicated exclusively to the
FC, that a review of the state of the art was proposed. In particular a clas-
sification criterion was proposed for an operator to be considered fractional
[77]. During the nineties of the twentieth century, some types of fractional
derivatives appeared in the literature [47], and today we verify an increasing
number of proposals for operators [19], both in the form of derivatives and
integrals [15, 87].

We discuss and classify the proposed non-integer order operators. We re-
strict ourselves to the case where the order α is a real number and the order of
the operator is fixed. For complex, variable- and distributed-order operators
see [14, 49, 62, 68, 78] and [18, 53, 73, 100], respectively. Identically, for the
quantum fractional derivative, defined on the basis of Grünwald-Letnikov
derivatives [69], general fractional derivatives [44, 45], and the recent frac-
tional and integer derivatives with continuoulsy distributed lag [84]. Finaly,
for fractional integrals and derivatives as integral transforms involving spe-
cial functions as kernel, and the general singular and non-singular kernels,
see [78].

After our 2014 paper [15] several operators were proposed and new crite-
ria of classification were developed. Presently, besides the criterion designed
by Ross [77] (here denoted by C1) for an operator to be considered a frac-
tional derivative we can find in the literature one proposed by Ortigueira-
Machado [39, 70] (denoted as C2, see Section 3 in the follow-up). Further-
more, it was shown by Tarasov that for a fractional derivative the Leibniz
rule is not valid. As a matter of fact, the Leibniz rule is valid for order 1,
but does not hold for the higher order derivatives [82, 83].

Having this scenario in mind, we propose a classification of the non-
integer order operators divided into four distinct classes, denominated: clas-
sical fractional derivatives; modified derivatives; local “fractional” operators
and “fractional” operators with non-singular kernel. It is important to men-
tion that we write the word fractional in quotation marks, since they can
be considered not fractional, in the viewpoint of the criterion discussed in
[39, 70]. These operators are very controversial and several distinguished
researchers consider that they are not true fractional derivatives. Thus, in
the follow-up the adopted nomenclature is: (i) classical derivatives, F1 class,
(ii) modified derivatives, F2 class, (iii) local operators, F3 class and (iv)
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operators with non-singular kernel, F4 class.
The F1 class includes those operators that began with the formulation

proposed by Sonin [79], from the Riemann-Liouville integral. Liouville in
1832 [50], Gerasimov in 1948 [30] and Caputo in 1967 [16, 17] (also, although
less well known, Dzhrbashyan-Nersesyan [27]), changed the order of the
integral and derivative. Therefore, due to this modification, we can have a
subdivision in this class, in two parts, namely the Riemann-Liouville and
the Caputo types, meaning the derivative of an integral, or the integral of a
derivative, respectively. In this first class we mention, in alphabetic order,
the Caputo, Grünwald-Letnikov, Liouville, Riemann and Riemann-Liouville
derivatives.

In the F2 class, we have, in alphabetic order, the following formula-
tions [87]: Canavati, Chen, Davidson-Essex, Erdélyi, Hadamard, Hilfer, Ju-
marie, Kober, Marchaud, and Weyl [15]. Among the most recent, also in
alphabetic order, we mention: ψ-Caputo [4], Caputo-Hadamard [5], Caputo
type fractional derivative [64], Hilfer-Katugampola [63], k-fractional Hilfer
[25], (k, ρ)-fractional [65], Ortigueira [66, 67], ψ-Hilfer [90], and ψ-Riemann-
Liouville [43].

In the F3 class, we include the so-called local operators. This class of
formulations emerged by the end of the nineties and for a review we suggest
interested readers to see [46]. The most recent formulations are: Katugam-
pola [40, 41]; conformable [42] leading to the so-called conformable calculus
[1]; M-operator [91] and M- and V-truncated operators [92, 93, 94, 95].

Finally, the F4 class includes the operators with non-singular kernel.
This class includes the Caputo-Fabrizio [19, 71], where the formulation was
introduced, and the Losada-Nieto [54] that proposed the corresponding in-
tegral formulation and studied several properties. In this class we find also
the most recent formulations: Atangana [8]; Atangana-Baleanu [9]; Yang et
al. [98]; Agarwal et al. [2]; Garra et al. [29] and Panchal et al. [74]. Also,
we cite the paper by Zhao-Luo, where a general fractional derivative with
memory effect is introduced [102].

It is important to note four preliminary issues. We find several articles
that confront two or more formulations [31] and discuss their validity for
being considered a fractional operator [82, 83]. Second, this paper does not
intends to present any criticism to a given researcher or proposal. The paper
simply analyses present day known proposals that emerged in a fast moving
scientific area. In fact, we believe that an open discussion under the light
of the intellectual and gentlemen’s behaviour has been the playground of
the true Science for centuries. Therefore, any non-scientific discussions or
personal disputes are outside of the classical and ethical formalism that the
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authors try to adopt here. Third, we apologize if it is missing some proposal
or formulation relevant in the scope of this paper. Fourth, the paper does
not intendes to cover details on the historical developments of FC.

The work is organized as follows. In section 2, we present the fractional
operators, citing the corresponding specific reference. We discuss the local
operators and we include the definitions, since they were not listed in [15].
Additionally, we cover the fractional derivatives with non-singular kernel.
In section 3, a possible criterion for the formulations of the third and fourth
classes are discussed, and several tables clarify their details and properties.
Finally, in section 4 we summarize the concluding remarks.

2 Non-integer order derivatives

Here we present the fractional classical derivatives, modified derivatives,
local operators and operators with non-singular kernel.

2.1 F1 class: Classical derivatives

The so-called Grünwald-Letnikov derivative was introduced in a general form
by Liouville [50], considered by some the father of FC. Later, Grünwald [32]
and Letnikov [48], in 1867 and 1868, respectively, addressed this definition
more specifically. Recently, this formula was extended to the complex plane
[68].

This formulation is important in numerical problems and generalizes the
ordinary differentiation, by means of a series [78].

We consider:

• Grünwald-Letnikov left-sided derivative

GLDα
a+ [f(x)] = lim

h→0

1

hα

�n�∑
k=0

(−1)k
Γ(α+ 1)f(x− kh)

Γ(k + 1)Γ(α− k + 1)
, nh = x− a

• Grünwald-Letnikov right-sided derivative

GLDα
b− [f(x)] = lim

h→0

1

hα

�n�∑
k=0

(−1)k
Γ(α+ 1)f(x+ kh)

Γ(k + 1)Γ(α− k + 1)
, nh = b− x

• Riemann-Liouville left-sided derivative
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RLDα
a+ [f(x)] =

1

Γ(n− α)

dn

dxn

∫ x

a
(x− ξ)n−α−1f(ξ) dξ, x ≥ a

• Riemann-Liouville right-sided derivative

RLDα
b− [f(x)] =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x
(ξ − x)n−α−1f(ξ) dξ, x ≤ b

• Caputo left-sided derivative

CDα
a+ [f(x)] =

1

Γ(n− α)

∫ x

a
(x− ξ)n−α−1 dn

dξn
[f(ξ)] dξ, x ≥ a

• Caputo right-sided derivative

CDα
b− [f(x)] =

(−1)n

Γ(n− α)

∫ b

x
(ξ − x)n−α−1 dn

dξn
[f(ξ)] dξ, x ≤ b

2.2 F2 class: Modified derivatives

Here, we include the modified derivatives, that are obtained by means of
a particular modification of one classical derivative. The Hilfer deriva-
tive [34] retrieves the Riemann-Liouville and Caputo derivatives for par-
ticular values of the parameters. Jumarie proposed the modified Riemann-
Liouville operator [36, 37, 51], with the purpose of correcting the fact that
the Riemann-Liouville derivative of the constant, that must not be confused
with the so-called Heaviside unit step, whose derivative is not necessarily
zero. Also, the Hilfer-Katugampola operator [63], depending on the appro-
priate choice of parameters recovers those derivatives from Hilfer, Hilfer-
Hadamard, Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard, Li-
ouville, and Weyl. This formulation is defined in terms of generalized
fractional integral, and can be viewed as a generalization of the Riemann-
Liouville and Hadamard integrals.

More recently we find the formulation by Sousa and Oliveira [90] for
the so-called ψ-Hilfer derivative. Sugumarana et al. [80] presented neces-
sary conditions for the existence of solution of a differential equation with
the ψ-Hilfer derivative. The ψ-Hilfer formulation admits the particular
cases of Caputo [16], Weyl [96], Chen [21], Jumarie [36, 37, 51], ψ-Caputo
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[4], ψ-Riemann-Liouville [43], Katugampola [40], Hadamard [33], Caputo-
Hadamard [5], Caputo-Katugampola [7], Hilfer-Hadamard [38], Hilfer-Ka-
tugampola [63], Riemann [59], Prabhakar [75], Erdélyi-Kober [43], Hilfer
[34], Liouville [15], Liouville-Caputo [61], Riesz [15], Feller [58, 103], and
Riesz-Caputo [35].

We consider:

• Weyl

xD
α
∞[f(x)] = Dα

−[f(x)] = (−1)m
(

d

dξ

)n

[xW
α
∞[f(x)]]

with [xW
α
∞[f(x)]] =

1

Γ(α)

∫ ∞

x
(t− x)α−1f(t) dt.

• Marchaud

Dα
+[f(x)] =

α

Γ(1− α)

∫ x

−∞
f(x)− f(ξ)

(x− ξ)1+α
dξ

• Hadamard

Dα
+[f(x)] =

x

Γ(1− α)

d

dx

∫ x

a

(
ln

x

τ

)2−α
f(τ)

dτ

τ

• Chen

Dα
c [f(x)] =

1

Γ(1− α)

d

dx

∫ x

c

(x− ξ)−αf(ξ) dξ, x ≥ c

• Davidson-Essex

Dα
0 [f(x)] =

1

Γ(1− α)

dn+1−k

dxn+1−k

∫ x

0
(x− ξ)−α dk

dξk
[f(ξ)] dξ

• Canavati

aD
ν
x[f(x)] =

1

Γ(1− μ)

d

dx

∫ x

0
(x− ξ)μ

dn

dξn
[f(ξ)] dξ, n = �ν�, μ = n− ν
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• Jumarie

Dα
x [f(x)] =

1

Γ(n− α)

dn

dxn

∫ x

0
(x− ξ)n−α−1[f(ξ)− f(0)] dξ

• Erdélyi-Kober derivative [78]:

Dα
a+;σ,ηf(x) = x−σ(α+η)

(
1

σxσ−1

d

dt

)n

xσ(α+n+η)Iα+n
a+;σ,ηf(x), α > −n,

with

Iαa+;σ,ηf(x) =
σx−σ(α+η)

Γ(α)

∫ x

a
f(τ)(xσ − τσ)α−1τση+σ−1dτ, α > 0

and

Dα
b−;σ,ηf(x) = xση

(
− 1

σxσ−1

d

dt

)n

xσ(n−η)Iα+n
b−;σ,η−n

f(x), α > −n,

with

Iαb−;σ,ηf(x) =
σxση

Γ(α)

∫ b

x
f(τ)(τσ − xσ)α−1τσ(1−α−η)−1dτ, α > 0

• Regularized Liouville derivative [72]:

Dα
f f(t) =

1

Γ(−α)

∫ ∞

0
τ−α−1

[
f(t− τ)−

N−1∑
m=0

(−1)mf (m)(t)

m!
τm

]
dτ,

with N = �α�+ 1 and �α� the integer part of α.

• Riesz/Feller derivative [72]:

Dα
θ f(t) =

1

2 sin(απ)Γ(−α)

∫
R

f(t− τ) sin
[
(α+ θ · sgn(τ))π

2

]
|τ |−α−1 dτ,

with θ ∈ R and sgn(·) denoting the signal function.

• Two-sided derivative [72]:
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Dγ
Cf(t) = lim

h→0+
h−γ

+∞∑
n=−∞

(−1)n
Γ(γ + 1)

Γ
(
γ+θ
2 − n+ 1

)
Γ
(
γ−θ
2 + n+ 1

)f(t− nh),

with γ > −1.

• Hilfer derivative [34]:

Dα,μ
a± f(t) = ±I

μ(1−α)
a±

(
d

dt

)
I
(1−μ)(1−α)
a± f(t), 0 ≤ μ ≤ 1,

where 0 < α < 1 and

Iαa+f(t) =
1

Γ(α)

∫ t

a
f(τ)(t− τ)α−1dτ, t ≥ a

Iαb−f(t) =
1

Γ(α)

∫ b

t
f(τ)(τ − t)α−1dτ, t ≤ b.

• k-Hilfer derivative [25]:

kDμ,νf(t) = I
ν(1−μ)
k

(
d

dt

)
I
(1−μ)(1−ν)
k f(t), 0 ≤ μ ≤ 1,

where 0 < ν < 1 and

Iαk f(t) =
1

kΓk(α)

∫ t

0
f(τ)(t− τ)

α
k
−1dτ, t ≥ 0.

• Hilfer-Katugampola [63]:

ρDα,β
a± f(x) =

[
±ρI

β(1−α)
a±

(
t1−ρ d

dt

)
ρI

(1−β)(1−α)
a±

]
f(t), ρ > 0,

where 0 < α < 1, 0 ≤ β ≤ 1 and

ρIαa+f(x) =
ρ1−α

Γ(α)

∫ x

a
f(τ)(xρ − τρ)α−1dτ, x > a

ρIαb−f(x) =
ρ1−α

Γ(α)

∫ b

x
f(τ)(τρ − xρ)α−1dτ, x < b.
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• ψ-Hilfer derivative [90]:

H
D
α,β;ψ
a+ f(x) = I

β(n−α);ψ
a+

(
1

ψ′(x)
d

dx

)n

I
(1−β)(n−α);ψ
a+ f(x), 0 ≤ β ≤ 1,

and

H
D
α,β;ψ
b− f(x) = I

β(n−α);ψ
b−

(
− 1

ψ′(x)
d

dx

)n

I
(1−β)(n−α);ψ
b− f(x), 0 ≤ β ≤ 1.

Here n − 1 < α < n with n ∈ N, I = [a, b] is an interval such that −∞ ≤
a < b ≤ ∞, ψ denotes an increasing function such that ψ′(x) �= 0 for all
x ∈ I and ψ ∈ Cn([a, b],R). The corresponding integral (on the left and on
the right) are given by

Iα;ψa+ f(x) =
1

Γ(α)

∫ x

a
ψ′(t)[ψ(x)− ψ(t)]α−1f(t)dt

and

Iα;ψb− f(x) =
1

Γ(α)

∫ b

x
ψ′(t)[ψ(t)− ψ(x)]α−1f(t)dt ,

respectively.
The Hilfer, k-Hilfer and ψ-Hilfer derivatives are given in terms of two

integrals and one derivative of integer order. We note that, differently from
other formulations, the Hilfer-Katugampola, recovers as particular cases, the
Riemann-Liouville ρ = 1 and β = 0; Caputo ρ = 1 = β; Hilfer ρ = 1; Weyl
ρ = 1, β = 0 and a → −∞; Hilfer-Hadamard ρ → 0+; Caputo-Hadamard
ρ → 0+ and β = 1 and Hadamard ρ → 0+ and β = 0. The most general is ψ-
Hilfer derivative that generalizes twenty-two other formulations, mentioned
above. We omit their definitions here, and for the values of the parameters
that recovers each of them see [90].

2.3 F3 class: Local operators

In this sub-section we present a brief summary of the so-called local formu-
lations. These formulations should not contain the name fractional, since it
was recently shown [83] that, at most, they are a multiplicative factor of the
derivative of order one. In spite of this, such proposals that appeared in the
late nineties of the twentieth century had some widespread since 2010.

Chen, in 2006, presented the local operator in order to model phenomena
of turbulence [22] and anomalous diffusion [23]. The conformable operator
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was proposed by Khalil et al. [42] in 2014. We find its applications in New-
tonian mechanics [24], diffusion equation [28] and the solution of a nonlinear
differential equation [12]. In 2017, the so-called deformable operator [104]
was advanced since the proposal in [42] does not include zero as a possibility
for the order of the derivative. In 2014, the Katugampola formulation [40]
was introduced being used in quantum mechanics. More recently, in 2018,
Sousa and Oliveira [91] defined the M-operator as a generalization of the
one proposed by Katugampola [40]. The beta operator brought up by Atan-
gana and Goufo [10] was used in problems involving asymptotic methods
[10] and mathematical models describing infectious diseases [11]. In 2016,
Almeida et al. [6], introduced an operator, here denoted as AGO, gener-
alizing the beta [10] and conformable [42] formulations. In 2017, Akkurt
et al. [3] proposed another generalization encompassing the Katugampola
[40], AGO [6] and conformable [42] operators. Recently, in 2018, Vanterler-
Oliveira [92, 94, 95] proposed three operators, namely the V-truncated, the
V-truncated with a Mittag-Leffler function (MLF) with six parameters, and
the M-truncated, that unifies a series of expressions that support the prop-
erties of the integer-order derivative.

We now present the local operators definitions. In what follows we con-
sider f a real function, 0 < α ≤ 1, k : [a, b] → R a continuous nonnegative
map such that k′(x) �= 0, whenever x > a > 0 and Eα(x) the classical MLF
with one parameter.

We consider:

• Kolwankar [46]:

Dαf(x) = lim
x′→x

Dα
x [f(x

′)− f(x)],

where Dα
x is the Riemann-Liouville fractional derivative.

• Chen [23]:

∂f(x)

∂xα
= lim

s→x

f(x)− f(s)

xα − sα
.

• Conformable [42]:

Tαf(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
.
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• Katugampola [40]:

Dαf(x) = lim
ε→0

f(xeεx
−α

)− f(x)

ε
.

• M [91]:

Dα,β
M f(x) = lim

ε→0

f(xEβ(εx
−α))− f(x)

ε
, β > 0.

• Deformable [104]:

Dαf(x) = lim
ε→0

(1 + εβ)f(x+ εα)− f(x)

ε
, α+ β = 1.

• Beta [10]:

A
0 D

β
x(f(x)) = lim

ε→0

f

(
x+ ε

(
x+ 1

Γ(β)

)1−β
)
− f(x)

ε
, β ∈ (0, 1].

• AGO [6]:

f (α)(x) = lim
ε→0

f(x+ ε(k(x))1−α)− f(x)

ε
.

• Generalized [3]:

GD
αf(x) = lim

ε→0

f

(
x− k(x) + k(x)e

ε(k(x))−α

k′(x)
)
− f(x)

ε
.

• V-truncated [94]:

ρ
iVδ,p,q

γ,β,αf(x) = lim
ε→0

f
(
x iH

ρ,δ,q
γ,β,p(εx

−α)
)
− f(x)

ε
,

where γ, β, ρ, δ ∈ C, p, q > 0, Re(β) > 0, Re(γ) > 0, Re(ρ) > 0, Re(δ) > 0,
Re(γ) + p ≥ q and

iH
ρ,δ,q
γ,β,p(x) = Γ(β)

i∑
k=0

xk(ρ)kq
Γ(γk + β)(δ)kp

.
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• Conformable of β-type in the Riemann-Liouville sense [60]:

AR β
aDα

t f(x) =
A n

aDα
t (

A n−β
a Itf(x)), Re(β) > 0, n = [Re(β)] + 1.

• General conformable [101]:

Dp
ψf(u) = lim

ε→0

f(u+ εψ(u, p))− f(u)

ε
.

2.4 F4 class: Operators with non-singular kernel

In this sub-section, we present briefly the so-called operators with non-
singular kernel. Many of these formulations involve the name fractional,
but it was shown that none of them satisfies the criterion C2 (see section 3),
to be considered a fractional derivative. In 2016 Yang et al. [98] proposed a
new formulation involving an integral whose kernel is an exponential func-
tion. Atangana-Baleanu [9], presented two expressions with a kernel based
on the MLF. Teodoro-Oliveira [86] formulated a “general” operator that
contains as particular cases the Caputo-Fabrizio [19], Yang et al. [98], and
Atangana-Baleanu [9] operators. In 2016, Caputo-Fabrizio [20] introduced
a new formula with a Gasussian kernel. In 2017, Sun et al. [81] proposed
two new formulations with the kernel composed by an exponential function.
Still in 2017, Yang et al. [99] proposed the Riemann-Liouville and Liouville-
Caputo type expessions with kernels involving MLF with one, two, three and
four parameters. Finally, in 2018, Yang [97] brought out two formulations,
the general Liouville-Caputo and Riemann-Liouville types.

Below, we present the definitions of operators with non-singular kernel.
In what follows we consider Eα(t), the classical MLF with one parameter α,
and Eρ,q

α,β(t), the MLF with four parameters (α, β, ρ, q). Let us also consider

0 < α < 1 and f ∈ H1(a, b) where b > a. The functions (as defined in
original papers)M(α), B(α), R(α) and G(α) denote normalization functions
obeying M(0) = 1 = M(1), B(0) = 1 = B(1), R(0) = 1 = R(1) and
G(0) = 1 = G(1).

• Caputo-Fabrizio [19]:

D
(α)
t f(t) =

M(α)

1− α

∫ t

a
ḟ(τ)e−

α(t−τ)
1−α dτ.

• Atangana-Baleanu Caputo type [9]:
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ABC
bD

α
t (f(t)) =

B(α)

1− α

∫ t

b
f ′(x)Eα

(
−α

(t− x)α

1− α

)
dx, t > b.

• Atangana-Baleanu Riemann-Liouville type [9]:

ABR
bD

α
t (f(t)) =

B(α)

1− α

d

dt

∫ t

b
f(x)Eα

(
−α

(t− x)α

1− α

)
dx, t > b.

• Yang et al. [98]:

Y SMD
(α)
a+ f(t) =

R(α)

1− α

d

dt

∫ t

a
f(τ)e−

α(t−τ)
1−α dτ, t > a.

• Generalized Caputo type [86]:

gCDα,β
t (f(t)) =

G(α)

1− α

∫ t

b
f ′(x)Eβ

(
−α

(t− x)β

1− α

)
dx, β ∈ [0, 1], t > b.

• Generalized Riemann-Liouville type [86]:

gRLDα,β
t (f(t)) =

G(α)

1− α

d

dt

∫ t

b
f(x)Eβ

(
−α

(t− x)β

1− α

)
dx, β ∈ [0, 1], t > b.

• Caputo-Fabrizio with Gaussian kernel [20]:

CFDαf(t) =
1 + α2√
πα(1− α)

∫ t

a
ḟ(τ)e−

α(t−τ)2

1−α dτ, f(a) = 0, t > a.

• Sun-Hao-Zhang-Baleanu [81]:

SEDα
a+f(t) =

M(α)

(1− α)
1
α

∫ t

a
f ′(τ)e−

α(t−τ)α

1−α dτ, t > a.

• Yang et al. Liouville-Caputo type [99]:

C
Eϕ,φ

D(ν)
α f(t) =

∫ t

a
Eϕ,φ((ν1, v1), · · · , (νnvn); (t− τ)ν)

d

dτ
f(τ)dτ,

13



• Yang et al. Riemann-Liouville type [99]:

RL
Eϕ,φ

D(ν)
α f(t) =

d

dt

∫ t

a
Eϕ,φ((ν1, v1), · · · , (νnvn); (t− τ)ν)f(τ)dτ,

• General Riemann-Liouville type [97]:

D
RL
(Ξ)f(t) =

d

dt

∫ t

0
Ξ(t− τ)f(τ)dτ, t > 0.

• General Liouville-Caputo type [97]:

D
C
(Ξ)f(t) =

∫ t

0
Ξ(t− τ)f ′(τ)dτ, t > 0.

After presenting the four classes (F1, F2, F3, F4), we discuss possible
criteria for analysing the operators.

3 Criteria and tables

In 1975 Ross [77] proposed a criterion, C1, that an operator must satisfy to
be considered a fractional derivative. The criterion C1 includes the following
conditions:

R1
1 : the fractional derivative of an analytic function is also analytic;

R2
1 : (i) when the order is a positive integer, the fractional derivative, must

produce the same result of the ordinary derivative, (ii) when the order
is a negative integer the fractional derivative must produce the same
result of the n-th ordinary integration;

R3
1 : the zero order derivative of a function is the function itself;

R4
1 : the fractional derivative is a linear operator;

R5
1 : the semigroup property is satisfied.

The criterion C2, was proposed in 2015 by Ortigueira et al. [70] and
includes the following conditions:

R1
2 : the fractional derivative is a linear operator;

14



R2
2 : the zero order derivative of a function is the function itself;

R3
2 : when the order is a positive integer, the fractional derivative, must

produce the same result of the ordinary derivative;

R4
2 : the DαDβf(x) = Dα+βf(x) exponent law is satisfied for α < 0 and

β < 0;

R5
2 : the Generalized Leibniz Type Rule is valid

Dα[f(x)g(x)] =
∞∑
k=0

Γ(α+ 1)

Γ(α− k + 1)k!
Dkf(x)Dα−kg(x)·

The two criteria C1 and C2 include five properties, that differ in only one
property: in C1 we have R

1
1 “The fractional derivative of an analytic function

is analytic”, while in C2 we find the property R5
2 “Generalized Leibniz Type

Rule”.
Another way to classify the operators, here denoted by C3, is due to

Tarasov [82, 83], that justifies a fractional derivative through nonlocality and
violation of the Leibniz rule. Linear operators satisfying the classical Leibniz
rule are not fractional derivatives [82], since for this rule to be satisfied, the
order of the fractional derivative must coincide with the differentiation order
of one.

We present in the follow-up Table 1 with the corresponding generalized
Leibniz rule for some operators of the F1 class: classical derivatives and F2
class: modified derivatives.
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Table 1: Generalized Leibniz type rule for classical and modified derivatives.

Classical derivative Generalized Leibniz rule

Grünwald-Letnikov GLD
α(fg)(x) =

∞∑
i=0

(
α

i

)
f (i)(x)GLD

α−ig(x)

Riemann-Liouville Dα(fg)(x) =
∞∑
k=0

(
α

k

)
f (k)(x)Dα−kg(x)

Caputo CDα(fg)(x) =
∞∑
k=0

(
α

k

)
∗Dkf(x)∗Dα−kg(x) + g(0)(f(x)− f(0))

t−α

Γ(1− α)

Hilfer Dα,μ
a± (fg)(x) =

∞∑
m=0

(
α

m

)
f (m)(x)Dα−m,μ

a± g(x)

+
∞∑
k=0

(−(1− μ)(1− α)

k

)
I
k+(1−μ)(1−α)
a± g(a)(f (k)(x)− f (k)(a))

(x− a)−αμ+μ−1

Γ(μ− αμ)

Weyl Wα
±(fg)(x) =

∞∑
m=0

(
α

m

)
f (m)(x)Wα−m

± g(x)

ψ-Hilfer H
D
α,β;ψ
a+ (fg)(x) =

∞∑
l=0

∞∑
m=0

(−(1− β)(1− α)

m− l

)(
β(α− 1) + 1

l

)
f (m)(x)RL

D
α−m;ψ
a+ g(x)

−
∞∑
k=0

(−(1− β)(1− α)

k

)
I
(1−β)(1−α)+k;ψ
a+ g(a)f (k)(a)

[ψ(x)− ψ(a)]−1−β(α−1)

Γ(β(1− α))

Hadamard Dαa+fg(x) =
∞∑

m=0

[(
α− 1

m

)
+

(
α− 1

m− 1

)]
f (m)(x)RL

D
α−m;ψ
a+ g(x).

Erdélyi-Kober Dα
a+;σ,ηfg(x) = x−σ(2η+α)

∞∑
m=0

[(
α− 1

m

)
+

(
α− 1

m− 1

)] m∑
k=0

Γ(−σ(η + α) + 1)

Γ(−σ(η + α)− k + 1)
x−kf (m−k)(x)RL

D
α−m;ψ
a+ g(x)

ψ-Caputo C
D
α;ψ
a+ (fg)(x) =

∞∑
k=0

(
α

k

)
f (k)(x)RL

D
α−k;ψ
a+ g(x)−

n−1∑
k=0

dk

dxk [f(x)g(x)](a)

Γ(k − α+ 1)
[ψ(x)− ψ(a)]k−α
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Local operators, with exception of deformable case, satisfy the classical
Leibniz rule as shown in Table 2. Nevertheless, this is due to the relationship
of these operators with the derivative of order one.

Table 2: Applications of the C2 criteria to the local operators.

Local operator Linearity
Zero
order

Semigroup
Integer
order

Generalized
Leibniz rule

Chen � × × 
 ×
Conformable � × × � ×
Katugampola � × × � ×
M � × × � ×
Deformable � � × � ×
Beta � × × � ×
AGO � × × � ×
Generalized � 
 × 
 ×
V-trucated � × × 
 ×

Note: the symbol �represents that the property is satisfied, × that the
property is not satisfied and 
 that it is satisfied for special cases only.

Considering that the local formulations do not satisfy the criteria C2

and C3, here we investigate one possible alternative criteria, denoted by C4,
composed of five conditions, as follows:

R1
4 : the local derivative is a linear operator;

R2
4 : the local derivative of order one must produce the same result of the

first ordinary derivation;

R3
4 : the local derivative of a constant is zero;

R4
4 : the classic Leibniz rule holds

Dα[fg](t) = g(t)Dα[f(t)] + f(t)Dα[g(t)];

R5
4 : the chain rule holds

Dα[f(g(t)] = Dαf(t)(g(t))g′(t)·

Table 3 shows the properties for the local operators in the point of view
of criterion C4.
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Table 3: Applications of the criterion C4 to the local operators.

Local operator Linearity
One
order

Derivative of
constant

Leibniz
rule

Chain
rule

Chen � � � � �
Conformable � � � � �
Katugampola � � � � �
M � � � � �
Deformable � � 
 
 

Beta � � � � �
AGO � � � � �
Generalized � 
 � � �
V-truncated � 
 � � �

Note: the symbol �represent that the property is satisfied and 
 that it
is satisfied for special cases, only.

In Table 4 we depict the properties of the operators with non-singular
kernel in the perspective of C2 showing explicitly an expression for the gen-
eralized Leibniz type rule. We observe that such operators do not fulfill all
the properties of the criterion C2 and can not be called fractional derivatives.
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Table 4: Properties of the C2 criterion for non-singular kernel operators.

Non-singular kernel operator 1 2 3 4 Generalized Leibniz type rule

Caputo-Fabrizio [19] � 
 
 
 D
(α)
t [fg](t) =

M(α)

1− α

∞∑
k=0

( −α

1− α

)k ∞∑
s=0

(−k

s

)
f (s)(t)Ik+s

b+ g(t)− M(α)

1− α
e
−α

(t−b)
1−α f(b)g(b)

Atangana-Baleanu
Caputo type [9]

� 
 × � ABC
bD

α
t [fg](t) =

B(α)

1− α

∞∑
k=0

( −α

1− α

)k ∞∑
s=0

(−αk

s

)
f (s)(t)Iαk+s

b+ g(t)− B(α)

1− α
Eα

(
−α

(t− b)α

1− α

)
f(b)g(b)

Atangana-Baleanu
Riemann-Liouville type [9]

� � × � ABR
bD

α
t [fg](t) =

B(α)

1− α

∞∑
k=0

( −α

1− α

)k ∞∑
s=0

(−αk

s

)
f (s)(t)Iαk+s

b+ g(t)

Yang et al. [98] � � - � Y SMD
(α)
a+ [fg](t) =

R(α)

1− α

∞∑
k=0

( −α

1− α

)k ∞∑
s=0

(−k

s

)
f (s)(t)Ik+s

b+ g(t)

Generalized
Caputo type[86]

� 
 - 
 gCDα,β
t [fg](t) =

G(α)

1− α

∞∑
k=0

( −α

1− α

)k ∞∑
s=0

(−βk

s

)
f (s)(t)Iβk+s

b+ g(t)− G(α)

1− α
Eβ

(
−α

(t− b)β

1− α

)
f(b)g(b)

Generalized
Riemann-Liouville type [86]

� � - 
 gRLDα,β
t [fg](t) =

G(α)

1− α

∞∑
k=0

( −α

1− α

)k ∞∑
s=0

(−βk

s

)
f (s)(t)Iβk+s

b+ g(t)

Gaussian kernel [20] � � - � CFDα[fg](t) =
1 + α2√
πα(1− α)

∞∑
k=0

(
− α

1− α

)k (2k)!

k!

∞∑
s=0

(−2k

s

)
f (s)(t)I2k+s

a+ g(t)

Sun-Hao-Zhang-Baleanu [81] � × - � SEDα
a+[fg](t) =

M(α)

(1− α)
1
α

[
e
−α(t−a)α

1−α −
∞∑

k=0

(
− α

1− α

)k αΓ(α)

(k − 1)!

∞∑
s=0

(−2α

s

)
f (s)(t)I2α+s

a+ g(t)

]

Yang et al.
Caputo type[99]

� × × × C
E

ρ,q
α,β

D
(α)
a [fg](t) =

∞∑
k=0

(ρ)qk

Γ(αk + β)

1

k!
Γ(αk + 1)

∞∑
s=0

(−αk

s

)
f (s)(t)Iαk+s

a+ g(t)− Eρ,q
α,β((t− a)α)f(a)g(a)

Yang et al.
Riemann-Liouville type [99]

� × × × RL
E

ρ,q
α,β

D
(α)
a [fg](t) =

∞∑
k=0

(ρ)qk

Γ(αk + β)

1

k!
Γ(αk + 1)

∞∑
s=0

(−αk

s

)
f (s)(t)Iαk+s

a+ g(t).

General
Liouville-Caputo type [97]

� 
 � × CT
0D

α
t [fg](t) =

∞∑
k=0

(−α

k

)
f (k)(t)

[
CT

0D
α+k
t g(t) +

1

Γ(α+ k + 1)
g(0)tα+k

]
− 1

Γ(α+ 1)
f(0)g(0)tα

General
Riemann-Liouville type [97]

� � � × RLT
0D

α
t [fg](t) =

∞∑
k=0

(−α

k

)
f (k)(t)RLT

0D
α+k
t g(t)

Note: The symbol �represents that the property is satisfied, × that the property is not satisfied and 
 that it is
satisfied for special cases only. The columns headed with symbols 1 to 4 represent the linear operator property,
order zero, semigroup and derivative of integer order, respectively [86].
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4 Concluding remarks

In this paper we presented a review of present-day proposals for operators
in the scope of FC. When checking the class F1 of classical derivatives we
observe that they fulfill the properties of criterion C2. Therefore, according
to C2, the operators present in this class can be called fractional.

When analyzing the class F3 of local operators, we verify that they can
be written in terms of the ordinary derivative of order one. These opera-
tors do not meet all the conditions of the criterion C2. With respect to the
derivative of the two-function product, such operators satisfy the classical
Leibniz rule, due to their relationship with the standard first-order deriva-
tive. Therefore, this class can not be considered fractional derivative, and
the same conclusion is valid for F4. The paper presented properties for C2

for each class of formulations, with an extra focus in the generalized Leibniz
type rule.

Following these ideas, we present five properties in criterion C4 that
this class of operators should satisfy. Nonetheless, the only property of the
criterion that all formulations of class F4 with non-singular kernel fulfill is
that they are linear operators. For the other properties these proposals do
not follow a global pattern, and the results vary from case to case.

This study can be complemented with four extra classes of derivatives,
namely F5 “Developed FD”: the Integration and Differentiation of Dis-
tributed order; F6 “Generalized FD”: the FD and FI from the Generalized
Fractional Calculus; F7 Operators with “Probabilistic kernel” (Probabil-
ity density function, pdf-kernel); F8 “Hypersingular kernels” among others.
They are not included here for the sake of parsimony, but it is planed for
future work.

We conclude this work recalling again Leibniz about Science and Math-
ematics “The means of obtaining as much variety as possible, but with the
greatest possible order... is the means of obtaining as much perfection as
possible.”
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de la généralisation de l’ordre de dérivation, (These docteur), Université
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