
Summing Up Subtraction: A Dual-Purpose Design

Challenge in Verilog.

Course Information:

Fall 2023

Main Instructor: Zahra Sadat Shariatmadar Mortazavi

Contact Via: zshariatmadar@aut.ac.ir

Main Teaching Assistant: Danial Fathpour

Contact Via: dfathpour@aut.ac.ir

Project Assistant: Seyyed Mohammad Hamidi

Contact Via: 1380hamidi@gmail.com

Introduction

In the realm of digital design, the ability to describe and simulate

hardware using high-level languages has revolutionized the way we

approach the creation of digital systems. Among these languages, Verilog

stands out as a pivotal tool for both academia and industry. Verilog, a

hardware description language (HDL), allows designers to describe the

behavior and structure of digital systems in a format that is both

human-readable and machine-simulatable. This dual nature provides a

bridge between abstract design concepts and their tangible realizations

in hardware.

mailto:zshariatmadar@aut.ac.ir
mailto:dfathpour@aut.ac.ir
mailto:1380hamidi@gmail.com

The importance of Verilog cannot be overstated. As digital systems grow

in complexity, the manual design and verification of circuits become

impractical. Verilog offers a systematic approach, enabling designers to

model intricate systems, simulate their behavior, and subsequently

synthesize them into hardware. This iterative process of design,

simulation, and synthesis ensures that the final hardware meets the

desired specifications and functions correctly. For students at the

Amirkabir University of Technology, mastering Verilog is not just an

academic exercise but a crucial skill that will empower them to

contribute effectively to the ever-evolving field of digital design.

Moving from the broader landscape of digital design to the foundational

building blocks, the full adder emerges as a quintessential component.

At its core, the full adder is a digital circuit that performs the

arithmetic sum of three input bits. While this might seem rudimentary,

the full adder is a cornerstone in the construction of more complex

arithmetic units, such as multi-bit adders, subtractors, and even

multipliers. Understanding the intricacies of a full adder, therefore,

provides insight into the inner workings of these larger systems.

The full adder's significance is further magnified when we consider its

role in various applications. From basic calculators to advanced

microprocessors, the full adder's ability to handle binary arithmetic is

indispensable. Its design principles, involving the management of carry

propagation and the handling of multiple input combinations, introduce

students to challenges they will frequently encounter in more advanced

digital circuits.

In this exercise, we will meld the power of Verilog with the

foundational importance of the full adder. By designing a parameterized

full adder/subtractor module, students will not only deepen their

understanding of arithmetic circuits but also hone their skills in

Verilog, preparing them for more advanced projects and real-world

applications.

Table of Content
Introduction... 1
Exercise Objective... 4
Specifications... 4

Inputs...4
Outputs..4
Parameters...5

Requirements... 5
Hints.. 5
Submission... 6
Evaluation Criteria.. 6

Exercise Objective

Design a parameterized full adder/subtractor module in Verilog. The

module should be able to handle operands of varying bit-widths based on

a parameter and perform either addition or subtraction based on a

control signal.

Specifications

Inputs

● A: First operand.

○ Width: Determined by the parameter `WIDTH`.

● B: Second operand.

○ Width: Determined by the parameter `WIDTH`.

● C_in: Carry-in.

○ Width: Single bit.

● Sub: Control signal.

○ Width: Single bit.

○ Functionality:

■ When `Sub` is 1, the module should subtract B from A.

■ When `Sub` is 0, the module should add A and B.

Outputs

● Sum: Represents the sum (or difference) of A and B.

○ Width: Determined by the parameter `WIDTH`.

● C_out: Carry-out.

○ Width: Single bit.

● V: Represents the OverFlown state in the module

○ Width: Single bit

● Z: This bit shows if the sum is zero or not

○ Width: Single bit

Parameters

WIDTH: Determines the bit-width of the operands (A and B) and the sum.

Requirements

● Design: Implement the full adder/subtractor using basic logic gates

or using arithmetic operations in Verilog.

● Modularity: Your design should be modular. Consider using a basic

full adder module and instantiating it multiple times.

● Testbench: Write a testbench to verify the functionality of your

design. The testbench should test various bit-widths and both

addition and subtraction operations.

● Simulation: Simulate your design and testbench. Ensure that the

design works correctly for all possible input combinations.

● Documentation: Comment your code thoroughly. Explain the

functionality of each module and how they interact.

Hints

● Remember that subtraction can be performed using addition. Consider

how the two's complement can be used for this purpose.

● For subtraction, invert the bits of operand B and add 1 (two's

complement) when the `Sub` signal is active.

● The carry-out after the most significant bit can be used as an

overflow indicator for addition and underflow indicator for

subtraction.

Submission

● Verilog Code: Submit your parameterized full adder/subtractor

module and any other supporting modules.

● Testbench Code: Submit your testbench Verilog code.

● Simulation Results: Provide waveforms or screenshots showing the

simulation results for various test cases.

● Report: Write a brief report explaining your design approach, the

challenges you faced, and how you overcame them. Include

observations from your simulation results.

Evaluation Criteria

● Functionality: Does the module correctly perform addition and

subtraction based on the control signal?

● Parameterization: Does the module correctly handle different

operand bit-widths based on the `WIDTH` parameter?

● Code Quality: Is the code well-organized, modular, and thoroughly

commented?

● Testbench Quality: Does the testbench thoroughly test all

functionalities and edge cases?

● Documentation: Is the report well-written, and does it provide a

clear understanding of the design and results?

Best Regards, Hamidi

