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SUMMARY

Incremental dynamic analysis (IDA) has been extended by introducing a set of structural models in
addition to the set of ground motion records which is employed in IDA analysis in order to capture
record-to-record variability. The set of structural models reflects epistemic (modeling) uncertainties, and
is determined by utilizing the latin hypercube sampling (LHS) method. The effects of both aleatory and
epistemic uncertainty on seismic response parameters are therefore considered in extended IDA analysis.
The proposed method has been applied to an example of the four-storey-reinforced concrete frame, for
which pseudo-dynamic tests were performed at the ELSA Laboratory, Ispra. The influence of epistemic
uncertainty on the seismic response parameters is presented in terms of summarized IDA curves and
dispersion measures. The results of extended IDA analysis are compared with the results of IDA analysis,
and the sensitivity of the seismic response parameters to the input random variable using the LHS method
is discussed. It is shown that epistemic uncertainty does not have significant influence on the seismic
response parameters in the range far from collapse, but could have a significant influence on collapse
capacity. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most popular methods for determining seismic response parameters is incremental
dynamic analysis (IDA) proposed by Vamvatsikos and Cornell [1, 2]. It can be used to take into
account the effect of the aleatory uncertainty (record-to-record variability) on the engineering
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demand parameter (EDP) through the set of ground motion records (GMR), and is used for multiple
purposes. For example, many researchers have used IDA for evaluation of the seismic performance
of different types of structures [3–5] for studies related to advanced intensities measures [6, 7]
or damage measure [8], and for the validation of simplified procedures for the prediction of
approximate IDA curves [9–12] or loss estimation methodologies [13].

In addition to the effect of aleatory uncertainty (record-to-record variability) on the EDP, which
can be estimated directly through IDA analysis, it is also important to evaluate the effects of
epistemic uncertainty, referring herein only to modeling uncertainty. Several researchers have
performed such studies using different methods. The sensitivity of a single input variable on the
seismic response parameter is the simplest approach that can be used to study the influence of
modeling uncertainty [14]. Based on the results of such an analysis, first-order second-moment
(FOSM) reliability analysis can be applied in order to estimate the effects of several modeling
uncertainties on the structural response parameters. Among others, Haselton has used the FOSM
reliability approach in order to study the effects of modeling uncertainties on the collapse capacity
of reinforced concrete frames designed for a high seismic region in California [15]. Lee and
Mosalam [16] have studied the sensitivity of seismic demand to possible future earthquakes for a
reinforced concrete shear-wall building using the FOSM method in combination with Monte Carlo
simulation, whereas Baker and Cornell [17] have used the FOSM method in combination with
numerical integration for the propagation of uncertainties in probabilistic seismic loss estimation.
Unfortunately, the FOSM method can become inaccurate for highly nonlinear functions [18, 19].
The alternative in such cases is Monte Carlo simulation, which is computationally extremely
demanding, but has the advantage of direct incorporating modeling uncertainty into the problem.
The computational effort of Monte Carlo simulation can be reduced through combining it with the
response surface method [18, 19].

In this paper a slightly different approach to those mentioned above has been proposed for the
evaluation of the effects of aleatory and epistemic uncertainty, and has been applied to a four-
storey-reinforced concrete frame. The proposed approach combines IDA analysis [1] and the latin
hypercube sampling (LHS) technique [20], which is used to define a set of structural models.
These models reflect the epistemic uncertainty, whereas the set of GMR used in the IDA analysis
simulates the aleatory uncertainty. The results of such analysis are the well-known IDA curves,
which are determined for a set of models and not only for a best-estimate model as in the original
IDA analysis. The summarized IDA curves incorporate the effects of both aleatory and epistemic
uncertainty.

2. METHODOLOGY

The goal of the extended incremental dynamic analysis (extended IDA) is to consider the effects
of epistemic uncertainty on the structural response parameters in addition to record-to-record
variability, which in the IDA analysis is introduced through a set of GMR. In the proposed
methodology, this goal is achieved by introducing a set of structural models, which reflect the
epistemic uncertainty. This set of structural models has to be defined in such a way that it describes
the epistemic uncertainty in the best possible manner, provided that important uncertainties are
considered in the set of structural models, and that the number of structural models is reasonably
low. In this case, the result of the extended IDA analysis is the EDP, which depends on the intensity
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Figure 1. The main steps of the extended IDA analysis.

measure (IM), the selected set of GMR, and the selected random variables Xi , through which
epistemic uncertainty is introduced into the structural models.

The main steps of the extended IDA analysis are presented in Figure 1. Extension of the IDA
analysis is straightforward since the only new step in the extended IDA analysis in comparison
with the IDA analysis introduced by Vamvatsikos and Cornell [1, 2] is the determination of the set
of structural models. For this reason only this step will be described here. However, once the set
of structural models is determined, the single-record IDA curves can be calculated for each GMR
and for each structural model defined, respectively, by the set of GMR and the set of structural
models. Note that exactly the same algorithms as suggested by Vamvatsikos and Cornell [1, 2] can
be used to determine the single-record IDA curves. The extended IDA analysis is therefore more
time consuming since the IDA curves are calculated not only for the different GMR, but also for
a predefined set of structural models. However, it is still less computationally demanding than a
corresponding Monte Carlo simulation.

The first step in the process of the determination of the set of structural models is the identifi-
cation of the sources of epistemic uncertainty. The most common uncertainties are the mechanical
characteristics of the material, the gravity loads and corresponding masses, viscous damping and
effective beam width, ultimate rotations and others, which can be even more important. Basically,
it is possible to include all types of epistemic uncertainties, which can be described by means of
random variables. However, it is practical to consider only a limited number NVar of the random
variables Xi , i.e. only those that have a significant influence on the seismic response of the struc-
ture, in order to reduce the size of the set of structural models, usually referred to by the number
of simulations NSim.

In the proposed methodology, the set of structural models is determined by employing the
LHS [20]. It uses stratification of the probability distribution function of the random variables Xi
and consequently requires significantly fewer simulations in comparison with the ordinary type
of Monte Carlo simulation. In general, two steps are needed to determine the sample of random
variables, which are directly applied in the structural model. First, each random variable Xi is
sampled using NSim values. The most common strategy used in order to determine the samples of
random variables is:

x j,i =F−1
i (p j,i )=F−1

i

(
j−0.5

NSim

)
, i=1, . . . ,NVar, j =1, . . . ,NSim (1)
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Figure 2. The sampling of random variables Xi .

where x j,i is the j th sample value of the i th random variable Xi , p j,i is the probability that the
random variable Xi is less or equal to x j,i and F−1

i (p j,i ) is the inverse of the cumulative distribution
function of the random variable Xi evaluated at probability p j,i . The probabilities p j,i , represented
by NSim equidistant points in the interval from 0.5/NSim to 1–0.5/NSim, ensure that each random
variable is properly sampled (Figure 2). However, during the sampling of each random variable Xi ,
an undesired correlation between the different random variables is usually introduced. For example,
instead of having a correlation coefficient equal to the prescribed correlation coefficient between
two random variables, e.g. zero if the two random variables are defined as being uncorrelated, the
correlation coefficient, calculated based on the sample values (Equation (1)) of the two random
variables, is actually equal to one if the distribution of the two random variables are of the same
type, or close to one, if the distribution types differ. For this reason the sample values x j,i are not
yet appropriate for the determination of the set of structural models, since the generated correlation
matrix S, which is calculated based on the sample values x j,i , is not yet close to the prescribed
(target) correlation matrix K. Note that in the case that the equidistant interval ( j−0.5)/NSim
(Equation (1)) is based on the random permutations, which is the usual case in the classic LHS
technique, then the correlation coefficient between the sample values of the two random variables
is much less than 1, and is usually close to 0 if the sample size is large. However, the difference
between the two correlation matrices can be minimized by the permutation of elements of the
sample matrix X, which contains the sample values x j,i . This represents the second step in the
process of the determination of the sample of random variables. This problem can be successfully
solved by the stochastic optimization method called simulated annealing [20], which was also
employed in the extended IDA analysis, and is briefly described here.

First, a norm E , which is a measure for the difference between the generated and the prescribed
correlation matrix, is introduced:

E= 2

NVar(NVar−1)

√√√√NVar−1∑
i=1

NVar∑
j=i+1

(Si, j −Ki, j )2 (2)

where Si, j and Ki, j are, respectively, generated and prescribed correlation coefficients between
the random variables Xi and X j , and NVar is the number of random variables. The norm E
takes into account the deviations between all the correlation coefficients and is normalized with
respect to the total number of all correlation coefficients. It therefore represents a good measure
when examples with a different number of random variables are compared. The norm E is also
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an objective function, which is minimized by continuing the two steps: mutation and selection.
Mutation represents the random change of the rank of one randomly selected random variable. For
example, a vector (column) from the sample matrix X, which represents the sample of one random
variable, is randomly selected and the two randomly selected ranks of the randomly selected vector
are then exchanged, i.e. rank m becomes rank n and vice versa. After such a mutation, the sample
matrix X is changed and the new norm E can be calculated. The second step, selection, decides if
the new generation of the arrangement of the sample matrix X is acceptable or not. However, it is
automatically accepted if the new arrangement of the sample matrix X results in a decreasing of the
norm E . Otherwise, if the new arrangement does not decrease the norm E , the new arrangement
is accepted if the random variable

Z =e−�E/T −R (3)

is positive, where �E is the difference between the norm E before and after the mutation, T is
the so-called temperature and R is the uniformly distributed random variable between the interval
0 and 1. Note that the name for parameter T comes from annealing in metallurgy, which is also
the reason for the name of the employed stochastic optimization method simulated annealing [20].
In our case the initial temperature T represents the maximum possible norm E (Equation (2)),
which can be easily calculated from the fact that the correlation coefficients are always within the
interval from −1 to 1. The maximum norm E is therefore obtained by assuming the correlation
coefficient Si, j to be −1 and 1, respectively, if the correlation coefficient Ki, j is negative or
positive. However, after a certain number of mutations the temperature T has to be decreased by a
factor, which is usually taken to be 0.95. The optimization process (mutation and selection) stops
when the temperature T becomes reasonably low (e.g. 10−5). The optimal number of mutations
Nm between the two temperatures depends on the size of the optimization problem. For example,
if NVar is about 10 and NSim is less than 100, then a good choice for Nm is about 1000. The
result after the optimization process is the optimized sample matrix X with NSim rows and NVar
columns, for which the correlation matrix is close to the target correlation matrix.

The set of structural models is then simply determined by employing the optimized sample
matrix X. For example, the j th structural model from the set of structural models is determined
based on the sample values defined in the j th row of the optimized sample matrix X. Since the
number of rows of the sample matrix X is equal to NSim, the same number of structural models,
which form a set of structural models, has to be generated. Note that one random variable may
affect more than one parameter in the structural model. For example, if mass is simulated with a
random variable, it affects not only the mass but also the vertical loading, or, if the slab effective
width is modeled with a random variable, it has influence on the moment of inertia of the beam
and also on the moment–rotation relationship of the plastic hinge of the beam.

Once the set of structural models is obtained, the single-record IDA curves can be calculated
for each structural model from the set of structural models, and for each GMR from the set of
GMR. The total number of all single-record IDA curves is therefore now NGmr ·NSim, where NGmr
is the number of GMR used in the set of GMR and NSim is the number of structural models in the
set of structural models. The results based on extended IDA analysis can be used for performance
evaluation taking into account the record-to-record variability and epistemic uncertainty for the
determination of the probability of exceedance of a given limit state.

In addition to IDA curves, which are the primary result of the extended IDA analysis, the
importance of the effect of the input random variables on the selected EDP can also be determined.
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Since the determination of the set of structural models is based on the LHS method, the simple
approach to determine the sensitivity of the EDP to the input random variables, which has been
used and explained more in greater detail elsewhere [20, 21], is based on the Spearman rank-order
correlation coefficient �, which for the i th input random variable, is defined as

�i =1− 6
∑NSim

j=1 (r(x j,i )−r(EDP j ))
2

NSim(N 2
Sim−1)

(4)

where x j,i is the value of the random variable Xi for the j th simulation, taken from the opti-
mized sample matrix X, EDP j is the EDP for the j th simulation, e.g. maximum storey drift, top
displacement, an IM corresponding to a given limit state, or other, NSim is the number of structural
models used in the extended IDA analysis, and r denotes the rank of the j th sample value of the
input random variable or response variable EDP. The parameter � may assume values between 1
and −1. If � has value close to 1 it means that the response variable EDP has a strong positive
dependence on the selected input random variable, or vice versa, if � is close to −1. On the other
hand, the input random variable does not have an influence on the response variable when � has
a value close to 0.

3. CASE STUDY: A FOUR-STOREY-REINFORCED CONCRETE FRAME

3.1. Description of the structure

Extended IDA analysis was applied to a four-storey plane RC frame, which had been designed
to reproduce the design practice in southern European countries about forty to fifty years ago
[22]. However, it can also be typical for buildings built more recently, but without the application
of capacity design principles (especially the strong column—weak beam concept), and without
up-to-date detailing. The elevation, plan and typical reinforcement in the columns are presented in
Figure 3. The reinforcement is reduced in the top two stories in columns B and C. In column B
only three �12mm bars are placed on each of the long sides of the column. Such a configuration
results in 6�12mm bars in the cross-section of column B. For column C, in the top two stories
only 4�16mm bars are used in the corners of the cross-section, whereas the same reinforcement
(2�12mm bars) is used in the middle of the long side of the cross-section.

All the beams are 0.25m wide and 0.50m deep. The bottom longitudinal reinforcement in the
beams consists of 2�12mm bars. Three�12mm bars are used for the top longitudinal reinforcement
at the connection to column A (Figure 3). The top reinforcement in the beams connected to
column B and column D amounts to 2�12+2�16mm bars. Beams, connected from both sides to
column C, have the strongest reinforcement at the top of the beam (2�12+5�16mm bars). The
slabs are 0.15m thick and reinforced with �8/10cm.

The design base shear coefficient amounted to 0.08. In the design, concrete of quality C16/20
and smooth steel bars of class Fe B22k (according to Italian standards) were adopted [22]. The
mean strength of the concrete amounted to 16MPa and the mean yield strength of the steel
amounted to 343.4MPa. The structure was also pseudo-dynamically tested at full scale at the
ELSA Laboratory. The results of the experiments can be found in the ECOEST2-ICONS Report
No. 2 [22].
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Figure 3. View and typical reinforcement of the columns of the structure.

Figure 4. Schematic moment–rotation relationship of a plastic hinge (Y-yield,
M-maximum, NC-near collapse).

3.2. The deterministic model

The model of the structure consisted of one-component lumped plasticity elements, which were used
for modeling the beams and columns. The schematic moment–rotation envelopes of the inelastic
rotational hinges are shown in Figure 4. The yield and the maximum moment in the columns were
calculated taking into account the axial forces due to the vertical loading on the frame, which
amounted to 9.1 and 8.0kN/m2 for the bottom three stories and for the top storey, respectively.
Potential reduction in flexural strength due to insufficient anchorage length of the reinforcing bars
was not considered when determining the moment–rotation envelopes. The effective beam width
of 75 and 125 cm were determined according to the Eurocode 2 procedure [23] for the short and
long beams, respectively.

The characteristic rotations, which describe the moment–rotation envelope of a plastic hinge,
were determined according to the procedure described by Fajfar et al. [24]. The zero moment
point was assumed to be at the mid-span of the columns and beams. The ultimate rotation �u in
the columns at the near collapse (NC) limit state, which corresponds to a 20% reduction in the
maximum moment, was estimated by means of the conditional average estimate method [25]. For
the beams, the EC8-3 [26] formulas were used, the parameter �el being assumed to be equal to
1.0. Owing to the absence of seismic detailing, the ultimate rotations of beams were multiplied
by a factor of 0.85 [26].
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Figure 5. The calculated time histories for drift and shear force in the critical third storey,
compared with the experimental results.

The deterministic model was validated by comparing the results of nonlinear dynamic analysis
with the experimental results obtained in pseudo-dynamic tests [22]. The input GMR was supposed
to be representative for a moderate to high European seismic hazard scenario. Two tests were
performed in a series, assuming the same ground motion. The peak ground acceleration amounted
to 0.22g and 0.29g, respectively, for the first and second test. Comparisons between the calculated
and experimental time histories for drift and shear force in the critical third storey are presented
in Figure 5. Very good correlation between the calculated and test results can be observed. It can
be also observed that the second test was stopped after 7 s since imminent collapse was attained at
the third storey [22], which is properly simulated by means of nonlinear dynamic analysis, which
was performed by OpenSees [27].

3.3. Input random variables, statistical correlation and sampling

The sources of uncertainty, which is assumed in this study, were: mass, strength of the concrete
and the reinforcing steel, effective slab width, damping, and the model for determining the initial
stiffness and ultimate rotation in the plastic hinges of the beams and columns. Mass was the
only source of uncertainty, which was modeled with more than one random variable, since it was
assumed that it can vary from storey to storey. All the input random variables considered for
the determination of the set of structural models were assumed to be uncorrelated. The statistical
characteristics of the input random variables are presented in Table I. A normal distribution was
assumed for the majority of the random variables. The exception is the strength of the reinforcing
steel, for which a lognormal distribution was assumed as recommended in the Probabilistic Model
Code [30] and the random variables that model the uncertainty in prediction of the initial stiffness
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Table I. The statistical characteristics of the input random variables.

Name Mean or Median COV Distribution Reference

Mass first storey m1 46 t 0.1 Normal Ellingwood et al. [28],
Mass second storey m2 46 t 0.1 Normal Haselton [15]
Mass third storey m3 46 t 0.1 Normal
Mass fourth storey m4 40 t 0.1 Normal

Concrete strength fcm 16MPa 0.2 Normal Melchers [29]
Steel strength fy 343.6MPa 0.05 Lognormal Melchers [29],

JCSS [30]
Effective slab width beff 75 or 125 cm 0.2 Normal Ellingwood et al. [28]

Haselton [15]
Damping � 2 0.4 Normal Porter et al. [14]
Initial stiffness �y,c 1 computed 0.36 Lognormal
of the columns Panagiotakos and Fardis [31]
Initial stiffness �y,b 1 computed 0.36 Lognormal
of the beams
Ultimate rotation �u,c 1 computed 0.4 Lognormal Peruš et al. [25]
of the columns
Ultimate rotation �u,b 1 computed 0.6 Lognormal Panagiotakos and Fardis [31]
of the beams

and ultimate rotation of columns and beams. The mean/median values of the random variables
correspond to the best estimates employed in the deterministic model.

The coefficients of variation were taken from the literature and are presented in Table I. The
highest value (0.6) was adopted for the prediction of the ultimate rotations in the beams. This is a
rounded value of that reported by Panagiotakos and Fardis [31]: 0.64. A smaller value (0.4) was
used for the coefficient of variation of the ultimate rotation in the columns. This is the consequence
of the more reliable model that was used to determine the ultimate rotation of the columns [25].
Quite high a value for the coefficient of variation was also adopted for the initial stiffness of the
beams and columns [31], and for the damping [14], which was modeled as being proportional
to the tangent stiffness. For the sake of brevity, discussion regarding the dispersion of the other
input random variables has been omitted, since the coefficient of variation is substantially smaller
[15, 28, 29] than those described above.

The random variables were then sampled for different selected NSim values. There are two
reasons for doing so. First, in general it is not known in advance which size of sample is appropriate
for further analysis and second, it is important to know how much the NSim influences the EDPs.
This influence will be discussed later. However, the appropriate size of the sample NSim, which
is equal to the size of the set of structural models, can be based on the acceptable norm E
(Equation (2)). When the norm E is reasonably low, it is assumed that the sample of random
variables is appropriate. The norm E , which is calculated on the basis of the optimized sample
matrix (Section 2) for different sizes of the sample NSim, and the maximum difference between the
generated and prescribed correlation coefficients (Emax) are presented in Table II. From the results
presented in Table II it can be concluded that, as expected, both norms decrease if NSim increases.
However, it is more important to observe that after NSim exceeds the number of random variables
NVar, which is in our case equal to 12, both norms are substantially reduced. For example, if
NSim=10 the maximum difference between the generated and prescribed correlation coefficients
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Table II. The norm E (Equation (2)) and the maximum difference between the generated
(S j,i ) and prescribed (K j,i ) correlation coefficients for the random variables Xi and

X j , presented for different sample sizes NSim.

NSim 5 10 15 20 25 30 50

E 0.0526 0.0216 0.0020 0.0011 0.0006 0.0004 0.0001
Emax=max(S j,i −K j,i ) 0.9260 0.3532 0.0371 0.0225 0.0141 0.0069 0.0024

Figure 6. Comparison between the sample values of the selected random variables (concrete strength versus
yield strength of the reinforcement, and beam effective width versus damping) before and after the opti-
mization of the sample matrix X. The comparison has been made for different sizes of the sample (NSim):

(a) NSim=5; (b) NSim=20; and (c) NSim=50.

Emax is still high (0.35), but in the case when NSim=15, the same norm is reduced to 0.037.
Based on these results it was concluded that for this example an NSim equal to or greater than 15
is appropriate for extended IDA analysis.

The influence of the sample size NSim on the prescribed correlation can also be visually presented
as shown in Figure 6. The sample values before and after the optimization of the sample matrix X
(Section 2) are presented for two selected pairs of random variables (concrete strength versus steel
strength and effective slab width versus damping). It can be observed that after optimization of
the sample matrix, and if NSim exceeds NVar, the correlation between the random variables is
practically 0, as prescribed. Note that the method is not limited only to the uncorrelated random
variables used in this example.
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3.4. The set of GMR

The set of GMR consisted of 14 recorded GMR (Table III), which were selected from the European
Strong Motion Database [32]. The acceleration spectra for each GMR and the mean spectrum are
presented in Figure 7. All the records were recorded on stiff soil, and the peak ground accelerations
exceeded 0.1g. Since there are few strong GMR available in the database [32], these were the
only criteria for the selection of the set of GMR, which was also employed in the previous study
[33]. This set of GMR therefore may not have been sufficient for the site-specific uniform hazard
spectrum, which, however, was not the primary goal of this study.

Table III. The set of ground motion records selected from the EESD [32].
Earthquake ID Ground motion records ag(g)

Montenegro 1979 196x Petrovac NS 0.45
196y Petrovac EW 0.31
197x Ulcinj-Olimpic NS 0.29
197y Ulcinj-Olimpic EW 0.24
199x Bar NS 0.38
199y Bar EW 0.36

Campano Lucano 1980 291y Calitri NS 0.16
291x Calitri EW 0.18

Kalamata1986 413x Kalamata-Pre. N265 0.21
413y Kalamata-Pre. N355 0.30
414x Kalamata-OTE N80E 0.24
414y Kalamata-OTE N10W 0.27

Umbro-March. 1997 612x Colfiorito NS 0.12
612y Colfiorito EW 0.11

Figure 7. The elastic response spectra for 5% damping.
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3.5. The sets of structural models

Different sets of structural models were created aimed at studying the influence of sample size
(NSim) and that of the different random variables on the EDPs. First, different sets of structural
models were created taking into account different sample sizes (NSim=5,10,15,20,25,30,50). In
this case only selected random variables, i.e. mass, concrete and steel strength, effective slab width
and damping (Table I), were considered in the analysis. The IDA curves for these sets of structural
models were calculated only for two GMR. The results of this study are presented in the next
section. Finally, two sets of structural models were used for extended IDA analysis considering
all the GMR defined in the set of GMR. In this case both sets consisted of 20 structural models
(NSim=20). However, in the first set only the selected random variables were assumed as sources
of uncertainty, as explained above, whereas in the case of the second set of structural models all
the random variables presented in Table I were considered as sources of uncertainty. The results
of the extended IDA analysis for these sets of structural models are presented in Section 3.7.

Note that some of the other parameters of the structural models, such as elastic modulus, gravity
loads, the axial forces in the columns, used for determination of the moment–rotation relationships
of the plastic hinges, were linked to the appropriate random variables. For example, the elastic
modulus was assumed to depend on the concrete strength according to the Eurocode 2 provisions
[23], and the gravity loads and axial forces were assumed to be proportional to mass, which is
considered as a random variable (Table I).

3.6. The influence of the number of structural models (NSim) on EDPs

In this section, the IDA curves for the given GMR are presented for the different sets of structural
models, together with the summarized IDA curves (16, 50 and 84% fractiles) and collapse points,
which correspond to global dynamic instability. The sets of structural models were determined by
assuming different sample sizes NSim, as explained in the previous section. The IDA curves, which
were calculated for the GMR 197y and 291x , are presented in Figures 8 and 9, respectively. It
can be observed that the summarized IDA curves for low NSim values (5 or 10) differ from the
summarized IDA curves for higher NSim values. However, the results for the higher NSim values
are stable. This can also be concluded from the results presented in Table IV, where the influence
of the number of structural models (NSim) on the median peak ground acceleration (ag,C), median
maximum drift, and median top displacement, all calculated based on the collapse points (see
Figures 8 and 9), is presented. In addition, the dispersion measure, calculated as explained later
in Section 3.8, is presented for each quantity, as well as the difference � between the quantity
determined on the basis of the selected number NSim and the quantity determined by assuming
NSim=50, which is, in our case, the most precise result of this analysis.
It can be observed that the influence of NSim on the median ag,C is negligible also in the case when

NSim=5. The influence of NSim on the EDPs, such as the maximum drift and top displacement,
is slightly greater than that observed in the case of peak ground acceleration. However, increasing
NSim does not substantially change the results. The dispersion measures, which are also presented
in Table IV for the median ag,C and both of the EDPs, also do not differ significantly for different
NSim values. If the observed dispersion is low (within value of 0.1) then the relative difference in
the dispersion, calculated based on an analysis with different NSim values, can be high. However,
if NSim>NVar, the absolute difference in the dispersion measure is low and almost always in the
range ±0.03. This is practically negligible in comparison with the difference in the dispersion
measures if the results are compared for the different GMR used in this study. It can happen, as
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Figure 8. The summarized IDA curves (16, 50 and 84% fractiles) for maximum drift versus peak ground
acceleration, the calculated IDA points, and the collapse points for ground motion 197y, for different

sizes of the set of structural models (NSim).

in the case of the top displacement, that the difference in the dispersion measure for comparing
the results for ground motions 197y and 291x is more than 0.3 (Table IV).

The set of structural models, which consisted of 20 structural models (NSim=20), was selected
based on this study for further analysis, since increasing the number of structural models does not
significantly influence the results. Note that for different examples, the selected size (NSim=20)
of the set of structural models may not be appropriate.

3.7. Extended IDA analysis for two sets of structural models (NSim=20) and for all the GMR

Extended IDA analysis was performed for two sets of structural models, each consisting of 20
structural models (NSim=20), and for all the GMR defined by the set of GMR (Section 3.4). The
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Figure 9. The summarized IDA curves (16, 50 and 84% fractiles) for maximum drift versus peak ground
acceleration, the calculated IDA points, and the collapse points for ground motion 291x , for different

sizes of the set of structural models (NSim).

first set of structural models was determined only from the selected random variables, whereas all
of the defined random variables were employed to determine the second set of structural models
(Section 3.5). The IDA curves for each structural model and for each GMR were determined by
IDA [1]. The peak ground acceleration and maximum drift were defined for the IM and EDP,
respectively. A hunt and fill tracing algorithm was used to calculate the IDA curves. The peak
ground acceleration, which corresponds to dynamic instability, was determined with a tolerance
of 0.005g. Peak ground acceleration was selected for the IM in order to simplify the presented
example. The spectral acceleration corresponding to the structure’s first mode period could be a
better IM, but it is not a trivial IM for this example since the period of the structure differs from
model to model.
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Table IV. The influence of the number of structural models (NSim) on the median peak ground acceleration
(ag,C), the median maximum drift (Drift), the median top displacement (Disp.), all calculated based on the
collapse points presented in Figures 8 and 9, the corresponding dispersion measures (�) and the absolute

difference � between the results based on NSim=50 and results based on selected NSim.

ag,C � Drift � Disp. �
NSim (g) (g) �ag,C � (%) (%) �Drift � (cm) (cm) �Disp. �

Ground motion record: 197y
5 0.473 −0.001 0.05 −0.06 6.2 0.1 0.06 −0.01 40.8 0.3 0.05 0.00
10 0.481 0.007 0.08 −0.03 6.2 0.1 0.08 0.01 41.1 0.7 0.06 0.01
15 0.478 0.004 0.09 −0.02 6.2 0.2 0.06 −0.01 41.0 0.6 0.05 0.00
20 0.474 0.0 0.10 −0.01 6.3 0.3 0.08 0.01 41.3 0.8 0.07 0.01
25 0.465 −0.009 0.08 −0.03 6.0 0.0 0.09 0.02 40.7 0.3 0.05 0.00
30 0.479 0.005 0.08 −0.03 6.1 0.0 0.08 0.02 40.6 0.2 0.06 0.00
50 0.474 0.11 6.1 0.07 40.4 0.05

Ground motion record: 291x
5 0.380 0.001 0.24 −0.02 6.8 0.0 0.14 0.02 33.6 2.4 0.27 −0.10
10 0.385 0.006 0.29 0.03 7.6 0.7 0.19 0.06 33.2 2.0 0.34 −0.03
15 0.378 −0.001 0.28 0.02 7.0 0.2 0.11 −0.01 29.1 −2.2 0.41 0.03
20 0.389 0.01 0.25 −0.01 6.9 0.1 0.14 0.01 32.1 0.9 0.35 −0.02
25 0.380 0.001 0.29 0.04 6.8 −0.1 0.14 0.01 32.8 1.6 0.39 0.02
30 0.385 0.006 0.24 −0.02 6.7 −0.1 0.15 0.03 33.4 2.2 0.38 0.00
50 0.379 0.26 6.9 0.12 31.2 0.37

The results are presented for two ground motion records. �= X (NSim)−X (NSim=50).

In addition, IDA was performed for the deterministic model (Section 3.2). In this case, only the
aleatory uncertainty due to the record-to-record variability was captured. The results are presented
in Figure 10(a), where the summarized IDA curves are shown together with collapse points and
the calculated IDA points for different peak ground accelerations and GMR.

Comparisons between the summarized IDA curves (Figure 10(a)) and the summarized IDA
curves of extended IDA analysis are presented, for both sets of structural models, in Figure 10(b).
Based on these results, it can be observed that the summarized IDA curves of the extended IDA
analysis practically do not deviate from the summarized IDA curves, which are determined by
employing the deterministic model. This observation is valid mostly for the 84% fractile curves and
for the other curves within a limited range of peak ground acceleration. This is an interesting result,
which leads to the conclusion, at least for the presented example, that the epistemic uncertainties
do not significantly influence the summarized seismic response parameters, at least in the range
NC. However, median collapse capacity is reduced for this particular example if uncertainties (see
Table I) are considered in the analysis.

For a better representation of the results of the extended IDA analysis, all the calculated
IDA points are presented together with the collapse points and the summarized IDA curves in
Figure 10(c) and (d). The results presented in Figure 10(c) are based on a set of structural models
that was created considering only selected random variables (Section 3.5), whereas the results in
Figure 10(d) are based on a set of structural models for which all the random variables presented
in Table I were employed in the analysis. Although there is no significant difference between
the two types of summarized IDA curves, substantially higher scatter can be observed in the
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Figure 10. (a) The summarized IDA curves, collapse and IDA points for IDA analysis based on the
deterministic model; (b) comparison between the summarized IDA curves and the summarized IDA curves
of the extended IDA analysis for the two sets of structural models; (c) the summarized IDA curves,
IDA points and collapse points of the extended IDA analysis for the set of structural models based on
the selected random variables; and (d) the summarized IDA curves, IDA points and collapse points of

extended IDA analysis for the set of structural models based on all the random variables.

case of the IDA points, and especially for the collapse points if the results of the extended IDA
analysis (Figure 10(c) and (d)) are compared with the results of the IDA analysis (Figure 10(a)).
In the case of extended IDA analysis for all the random variables (Figure 10(d)), the scatter
in the collapse points is higher than the scatter in the collapse points from the extended IDA
analysis for selected random variables (Figure 10(c)). This result was expected since, in the
first case, the random variables, which have a high coefficient of variation, were not considered
in the analysis. This difference is quantified with the dispersion measure as explained in next
section.
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3.8. Dispersion measures and the sensitivity of ag,C to random variables

An important result of extended IDA analysis consists of the dispersion measures and the sensitivity
of the seismic response parameters (e.g. EDPs, IMs corresponding to different limit states) to the
input random variables used in the analysis. The dispersion measures that are presented here were
calculated based on the collapse points obtained from the extended IDA analysis for the selected
random variables (Figure 10(c)) and for all the random variables (Figure 10(d)). A distinction is
made between the IM-based and EDP-based dispersion measures. In the first case the dispersion
(�agC) was calculated for the peak ground acceleration ag,C, which corresponds to the collapse
points in Figure 10(c) and (d), whereas in the second case the dispersions are determined for the
drift capacity (�C) (collapse points in Figure 10(c) and (d)) and drift demand (�D). Here only the
dispersion for drift demand, which corresponds to the IM at the collapse point of the 84% fractile
curve, is presented. This simplification enables straightforward determination of the dispersion
measure for drift demand from the summarized IDA curves.

In all cases dispersion was defined as the standard deviation of the natural logarithm, which was
calculated as the average value of the �16= log(y50/y16) and �84= log(y84/y50), where y16, y50, y84
represent the counted 16, 50 and 84% fractile in terms of drift demand, drift capacity or peak
ground acceleration, corresponding to the drift capacity.

The extended IDA analysis makes it possible to determine the dispersion measures that reflect
randomness and uncertainty (RU), and also the dispersion measures which are caused only by the
uncertainties (U). In the latter case, the dispersion measures are calculated on the basis of IDA
curves for the different structural models given the GMR. They therefore differ from record-to-
record. However, the dispersion measures due to uncertainty, presented here, are mean values of the
dispersion measures for different GMR. These dispersion measures are compared with the disper-
sion measure due to randomness (R), which is calculated from the IDA analysis (Figure 10(a)).
All the described dispersion measures are presented in Table V. Note that terminology for the
dispersion measures was adopted according to Cornell et al. [34] and also employed in [35]. In
this case the randomness is equivalent to the aleatory uncertainty, and the uncertainty points only
the epistemic uncertainty.

The dispersion for randomness in agC(�agCR=0.68) exceeds the dispersion for uncertainty in
agC(�agCU). Although the dispersion for uncertainty in agC determined from the results of extended
IDA analysis for all random variables (�agCU=0.52) is about twice the size of the dispersion

Table V. The dispersion measures due to randomness (�agCR, �CR, �DR) determined from
IDA analysis and the dispersion measures due to uncertainty (�agCU, �CU, �DU) and due to
both randomness and uncertainty (�agCRU, �CRU, �DRU) determined based on extended IDA

analysis for the selected and for all the random variables.

IM-based EDP-based

Peak ground acceleration (ag) Drift capacity (C) Drift demand (D)

�agCR 0.68 �CR 0.13 �DR 0.46

R. var. Selected All R. var. Selected All R. var. Selected All

�agCU 0.28 0.52 �CU 0.14 0.29 �DU 0.22 0.29
�agCRU 0.71 0.79 �CRU 0.13 0.29 �DRU 0.56 0.56
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for uncertainty in agC determined from the results of extended IDA analysis for selected random
variables (�agCU=0.28), the difference is not reflected in the dispersion for randomness and
uncertainty (�agCRU), which is equal to 0.71 and 0.79, respectively, for selected and all random
variables employed in the extended IDA analysis (Table V).

Significant influence of the uncertainties on the dispersion for randomness and uncertainty can
be observed only in the case of drift capacity. This is the only case where the dispersion for
randomness (�CR=0.13) is less than the dispersion for uncertainty (�CU=0.14), if the latter
dispersion is based on the results of extended IDA analysis for all GMR. It can be concluded that
the uncertainties in the prediction of the ultimate and yield rotation in the plastic hinges of the
columns and beams have an important influence on the seismic response of the test structure.

The dispersion for randomness in the drift demand �DR is 0.46, which is very close to the
suggested value from previous study [35], where it was defined as 0.4 for buildings with moderate
and long predominant periods. Different sets of structural models do not have an influence on the
dispersion for randomness and uncertainty in the drift demand �DRU, which is, in both cases, the
same (0.56).

Note that the total dispersion, which reflects randomness and uncertainty (RU), can be well
approximated by the square root of the sum of the squares of the dispersion measures due to
randomness (R) and uncertainty (U). This is the so-called mean estimate approach, which is
used and described elsewhere [19, 34] and explains the above findings that the dispersion due to
uncertainty is significant when it is large relative to the dispersion due to randomness.

The sensitivity of agC to the random variables is shown in Figure 11. Since the LHS technique
was used for determination of the set of structural models, the sensitivity is measured in terms
of a Spearman rank correlation coefficient (Equation (4)), which is calculated here based on the
extended IDA analysis for all the random variables. The results are presented for the median
value of the Spearman rank correlation coefficient (horizontal line) and also for each GMR (bar).
Uncertainty in damping and in the ultimate and yield rotation in the columns has the greatest
influence on the agC. As expected, the former uncertainties are positively correlated with agC. The
uncertainties that influence the beams are not so important, since the collapse of this structure is
governed by the collapse of the columns. Other random variables, such as masses and material
strength, have only a minor influence on agC, as also observed and discussed elsewhere [15, 16, 36].
However, uncertainty in strength may be important if it is considered spatially distributed, since
it can cause strength irregularities in the structure [37], what was not considered in the presented
example. For some random variables it is not possible to conclude whether they are positively or

Figure 11. The Spearman rank correlation coefficient for the different random
variables presented in Table II.
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negatively correlated with the output random variable. For example, storey masses (Figure 11) can
be positively or negatively correlated with agC.

4. CONCLUSIONS

The popular IDA method has been extended by introducing a set of structural models, which
reflect the epistemic uncertainties. The set of structural models is determined by using the LHS
method. The results of extended IDA consist of IDA curves, which capture the aleatory and
epistemic uncertainties. Thus the dispersion measures, which are needed for the probabilistic
seismic performance evaluation of a structure, incorporate the effects of both types of uncertainty,
and not just the record-to-record variability, which results from IDA.

The applicability of the proposed method has been demonstrated by means of an example of a
four-storey-reinforced concrete frame. It was shown that the accuracy of the results obtained by
using the proposed method depends on the size of the set of structural models (NSim), which has
to be defined prior to their determination. In the case of the presented example, it was found that
the input random variables are properly sampled if the size of the set of structural models (NSim)

is larger than the size of the set of input random variables (NVar). In this case, the norm E obtains
a low value. Increasing the size of the set of structural models much beyond NVar does not improve
the result, since the results are stable within this range, especially if they are expressed in terms of
collapse capacity (ag,C). A similar observation was made in the case of the dispersion measures,
which are needed for probabilistic performance evaluation. The absolute difference between the
dispersion measures is low and almost always within the range ±0.03, if the size of the set of
structural models (NSim) is larger than the size of the set of input random variables (NVar).

Based on the results obtained in the presented example, it can be concluded that epistemic
uncertainty does not have a significant effect on the seismic response parameters within the range
far from collapse, but that the median collapse capacity is reduced if epistemic uncertainties are
taken into account in the analysis. This conclusion is, however, not a general one. From the results
of the sensitivity study it was observed that the greatest effect on the response parameters has those
random variables that have a high coefficient of variation and that affect the collapse mechanism.
In the presented example, these random variables are related to the initial stiffness and ultimate
rotation in the columns.

The increased price for the additional information that can be obtained by employing extended
IDA analysis is the longer computational time. The proposed method should therefore be aimed
at the development of simplified procedures for estimating the influence of epistemic uncertainty
on the seismic response parameters, and, more specifically, to define the typical values of the
dispersion measures of typical structural systems, which can then be incorporated into a more
practical method for the probabilistic seismic performance assessment of structures. It is expected
that further research could lead to improvements in the proposed method in terms of a reduction
in the computational time.
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