Homework 1

Upload your source code file from DEUZEM SAKAI until November 14, 2021, 23:55.

Upload only a single *.cs file.
The name of the file: number_name_surname.cs
For example: 2019510028_ali_yildirim.cs

Calendar

Write a C\# program that takes the followings from the user separately:

- two dates (day, month, and year) later than 01.01.2015
- a positive number (n)
and then prints each $n^{\text {th }}$ day between given dates.
The program must also print the day of the week (i.e., Monday) and the season (Winter, Spring, Summer, or Autumn).
The first date can be before or after the second date.

The program should control all possible invalid user inputs and give an approriate error message.

Examples:

Inputs: day $=31$	Inputs: day $=-2$	Inputs: day $=29$
month $=$ ApriL	month $=$ programming	month $=$ february
year $=2021$	year $=2021$	year $=2017$
Output: day is wrong	Output: day is wrong	month is wrong

The program may use one of the following methods to determine the day of the week:

- Zeller's algorithm
- Gauss's algorithm
- Tomohiko Sakamoto's algorithm
- Schwerdtfeger's method
- or others
https://en.wikipedia.org/wiki/Determination_of_the_day_of_the_week

Don't use any Date related command, library, and data type such as DayOfWeek(), AddDays(), DateTime, etc.
Don't use "array" data structure.
If you want, you may write your own "procedure(s) and/or function(s)".
This homework will be graded by Res.Asst. Elife ÖZTÜRK KIYAK.
You can ask your questions to her from the "FORUM \rightarrow Homework 1 - Questions" part of the DEUZEM SAKAI software.

Example:		Example:		
Inputs: D1=10 M1=MAY	$\mathrm{Y} 1=2019$	Inputs: D1=17	M1 = november	$\mathrm{Y} 1=2021$
D2=18 M2=January	$\mathrm{Y} 2=2020$	D2 $=10$	M2=October	$\mathrm{Y} 2=2021$
$\mathrm{n}=10$		$\mathrm{n}=3$		
Output:		Output:		
Spring		Autumn		
10 May 2019 Friday		10 October 2021 Sunday		
20 May 2019 Monday		13 October 2021 Wednesday		
30 May 2019 Thursday			16 October 2021 Saturday	
		19 October 2021	Tuesday	
Summer		22 October 2021 Friday		
9 June 2019 Sunday		25 October 2021 Monday		
19 June 2019 Wednesday		28 October 2021 Thursday		
29 June 2019 Saturday		31 October 2021 Sunday		
9 July 2019 Tuesday		3 November 2021 Wednesday		
19 July 2019 Friday		6 November 2021 Saturday		
29 July 2019 Monday		9 November 2021 Tuesday		
8 August 2019 Thursday		12 November 2021 Friday		
18 August 2019 Sunday		15 November 2021 Monday		
28 August 2019 Wednesday				

```
Autumn
7 September 2019 Saturday
1 7 \text { September 2019 Tuesday}
2 7 \text { September 2019 Friday}
7 October 2019 Monday
1 7 \text { October 2019 Thursday}
2 7 \text { October 2019 Sunday}
6 \text { November } 2 0 1 9 \text { Wednesday}
1 6 \text { November 2019 Saturday}
26 November 2019 Tuesday
Winter
6 \text { December 2019 Friday}
1 6 \text { December 2019 Monday}
2 6 ~ D e c e m b e r ~ 2 0 1 9 ~ T h u r s d a y ~
7 January 2020 Tuesday
17 January 2020 Friday
```


Notes:

1. Your program must work correctly under all conditions. Try to control all possible errors.
2. You should use meaningful variable names, appropriate comments, and good prompting messages.
3. If you are late, your grade will be decreased 10 points for each day.

After five days, your assignment will not be accepted.
4. Assignment must be your individual work.

Cheating is strictly prohibited.
If any cheating occurs, your assignment will be graded with zero (0).
A software will be used to automatically detect the similarities between students' source-codes.

