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Abstract: This paper presents a CNFET (Carbon Nano-tube FET) based MT (Multi-Threshold)-
SRAM (Static Random Access Memory) design based on the leakage reduction mechanism. A
multi-threshold logic is employed for reducing the leakage current during read/write operations.
Here, the multi-threshold technique is used to insert the high threshold sleep control to the low
threshold circuit. The insertion is performed in a serial manner. The high threshold transistors
are very useful for deriving the low sub-threshold current. Meanwhile, the low threshold transis-
tors are promising for improving the circuit performance. The high-low threshold transistor pairs
are used to change the channel length by modifying the oxide thickness of the transistors. The
overall implementation of the Multi-threshold-based SRAM cells are implemented with the help
of CNFET in-order to avoid the short channel effect, mobility degradation which is occurred while
considering the channel length below 32 nm in CMOS (Complementary Metal Oxide Semiconductor)
devices. The paper clearly represents the performance improvement of the proposed SRAM cells with
above-mentioned technologies.
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1. Introduction

In many electronic devices and microprocessors, the SRAM (Static Random Access
Memory) is commonly used for caches. The SRAM produced better performance compared
with the Dynamic Random Access Memory (DRAM). The DRAM capacity is much greater
than the static type and it needs more time to refresh itself. This time delay causes the
increment of the latency to access the data. In recent electronic devices that are assigned for
particular applications such as multimedia, object tracking, video processing, and medicine,
the computation process and complexity have been increased and it is also reflected in
the power consumption. These devices have unique processors that consumed huge
SRAM sub-modules. Hence, the SRAM is one of the much delegated memory modules for
power considerations [1]. The limitation of the SRAM power consumption is performed by
decreasing Vdd supply voltage or Vth threshold voltage.

1.1. Basics of CNFET

At nano-meter region of channel length, the CMOS devices will achieve the techno-
logical physical limitations. Due to this physical limitation, the failure and defect rate
to be much huge in MOSFET devices. Therefore, an emerging developed technology is
required to achieve the high performance. Hence, the CNFET is one of the most promising
technologies instead of Si-based devices. The reason for taking the CNFET devices over the
silicon devices can be justified by,
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(1) Effect of Gate oxide thickness: If the gate oxide thickness of CMOS devices decreases,
it will increase the quantum capacitance for a variety of gate voltages.

(2) Effect of Temperature: The CMOS behavior and characteristics change with respect
to the increase in the temperature rating. The acceptable temperature rating of the
Si-CMOS device is 150◦. This temperature rating severely affects the Vth (threshold
voltage). For example, if the temperature increases from 27◦ to 227◦, it will vary the
4.6% variation of the Vth. In this case, we definitely stated that the CMOS operates
maximum at 150◦ and device parameter changed at high temperature rate.

(3) Effect of Channel Length (Lch): Channel length is the key factor in CMOS devices.
If we are decreasing the channel length, it will reflect in the changes in the packing
density. As the channel length of CMOS devices scales down to the nano-meter region,
the Vth was also scaled and it will increase the leakage power. The increases in the
leakage power bring changes in leakage current, which becomes the limiting factor of
thinner oxide thickness of 1.5 nm. If the Lch becomes very less, the drain depletion
region will enter the source and it will decrease the e- injection barrier. It automatically
degrades the device performance.

(4) Parameter consideration of CMOS & CNFET: Both devices have unique parame-
ter specifications in circuit design. The following Table 1 illustrates the parameter
variation of the CMOS and CNFETs.

Table 1. Parameters of Si-CMOS and CNFET.

Parameters Si-CMOS CNFET

Vt 0.2–0.5 V 0.293 V, −0.557 V, & −0.293 V

Idlin ID = µCox
W
L [(VGS − VTH)VDS − V2

DS
2 ] Id = Kn[2(Vgs − VT)Vds − V2

ds]

Idsat ID = µCox
W
2L (VGS − VTH)2 Id(sat) = Kn(Vgs − VT)

2

SS ~70 mV/dec (@ Room Temperature) 61.3 mV/dec

DIBL DIBL =
VDD

Th −V low
Th

VDD−V low
D

65.65 mV/V

The CMOS-based SRAM cells suffered from short channel effects (SCEs), mobility
degradation, etc. when considering the channel length of 32 nm. Hence, the CMOS devices
did not produce better performance in 32 nm channel length. This drawback was overcome
by introducing the multi-gate devices such as Fin-FET and CNFET.

In recent decades, the CNTs have more attention because of its thermal, electrical and
mechanical properties. Based on the ultra long mean-free path, the CNFETs are classified for
elastic scattering, which is similar for holes, electrons, easy combination of high-K dielectric
materials, and high Fermi velocity characteristics. The fabrication process of the CMOS
and CNFET is similar, and the design approaches of CMOS are separated for CNFET
based circuit design. Due to the huge current drive capability, less PDP (Power Delay
Product), high thermal stability and ballistic transport, the CNFETs have been considered
promising devices [2]. Figure 1 shows the layouts of the CNFET where the channel regions
are highly doped and less dopant are added to the CNT channel. These are considered the
interconnection between the 2 adjacent devices or S/D extended region. The single intrinsic
CNT (inset) model is depicted in Figure 1, which is the origin point of the modeling of
complete CNFET devices [3].

Figure 2a,b show the CNFET’s side and top view, which consist of 6 single walled
CNTs considered as the channel material. The CNT is either a semiconducting or metallic
material based on the chirality factor. The recent CNFETs give considerable percentage
for metallic CNTs (m-CNTs), which short the S/D in CNFETs. This m-CNT is removed by
employing the proper function. Here, two important methods incorporated to neglect the
unwanted m-CNTs, (1) SCE (Selective Chemical Etching) and (2) VMR (VLSI compatible
m-CNT Removal). The above-mentioned two methods eliminate the metallic tube, which
is close to 99.9%. A traditional synthesis process of CNFETs approximately produced
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113 m-CNT and 2/3 s-CNT (semiconducting CNTs). In recent CNT, growth methodologies
reach high amounts (90%) of producing s-CNTs [4]. However, there is no technique
available for achieving 100% CNT-growth. Hence, it is an important for adapting the
different techniques for removing the m-CNTs like chemical etching process and electrical
burning, etc. At the same time, the diameter variation of the CNTs affects the electrical
properties such as threshold voltage and drive current. The multiple diameter distribution
and mean diameters are observed based on the CNTs production method. During the
manufacturing process of the CNFETs, these variations occurred due to doping process
and mis-positioned/mis-aligned CNTs in the transistor. This leads to short the CNFETs.
However, to date, the CNFETs didn’t include this type of source variability [5].
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Figure 2. (a) Side view of a CNFET, (b) Top view of CNFET.

The initial stage of the CNFET fabrication involves the parallel metal strips pre-
patterning in SiO2 substrate. Once the pre-patterning process is completed, CNTs are
deposited at the top in a random manner. This CNTs fall around the two metal strips
and meet all necessary requirements for basic FET. Here, one metal for the source termi-
nal and another for the drain terminal. The source/drain terminals are made from the
chromium/gold materials and SiO2 is used as the gate oxide.

1.2. CNFET Parameters

(1) CNTs Array: CNT is the hollow nature of a nano-structured cylinder which is made
from the carbon atoms. The CNTs have a mono-shell of carbon atoms known as
SWCNTs (single-walled CNTs). The CNFET is different from the MOSFET in that it
contains the channels built with a parallel of CNTs arrays [2].

(2) Diameter: The CNFET’s diameter is defined by the chirality factor (n, m) where n and
m are non-negative integers. Based on (n, m), the nature of the CNFET is defined as
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either metallic or semiconductor. If we are considering diameter as 1.5 nm, then the
chirality factor is equal to (19, 0) [6].

(3) Technology Parameters: The specification of the technology parameters for 32 nm
channel length is described in Table 2.

Table 2. Parameters of CNFET.

Parameters Value

Vdd 0.8 V

Gate Length 32 nm

Chirality Factor (19, 0)

Diameter of PCNFET 1.487 nm

Diameter of NCNFET 0.783 nm

1.3. Existing Methodologies of Designing SRAM Cells

In recent decades, several methodologies boomed for efficient designing of SRAM
cells. A high-speed 10T SRAM cell was developed by [7] in FinFET technology at 14 nm
channel length. The presented 10T-SRAM cell was approximately 2 times greater than the
Six-Transistor HD SRAM cell. Next to this, a low leakage SRAM cell was designed by [8] in
which the memory cells were based on the S (Source)-biased inverter. Additionally, two
transistors were used in the S-biased inverter to diminish the Ileakage current, which results
in saving of leakage power up-to 67% when compared with the traditional inverter. The
double ended low powers SRAM was constructed by ref. [9], which utilize the low-power
stacked inverters for limiting the power dissipation. By introducing cross-coupled inverters
with low Vdd, the power dissipation is further reduced in the hold mode with power
gating techniques.

A low-power single-ended 9T SRAM cell was designed by ref. [10], which countered
against LPA and discussed the issue of leakage balance. 7 nm FinFET-based 6T SRAM
cell was designed by [11] and the performance comparison was completed with different
FinFET devices such as PU (Pull-Up): PD (Pull Down): PG (Pass Gate) transistor ratios
to come out suitable devices for LP (low power) and HS (high speed) SRAM applications.
The HP SRAM cell was constructed by ref. [12] by using the array of high-bandwidth with
0.0300-µm Intel 4 CMOS technology. The presented 6T SRAM array was compared with 8T
SRAM cell for the applications of high-bandwidth memories. By using the 12 nm FinFET
technology, the researcher [13] designed an SRAM cell with six transistors. Here, Static
Noise Margin (SNM) was used to determine the SRAM cell’s stability.

The 8T SRAM cell was designed using a pair of PMOS/NMOS transistors as a diode
connection in-order to limit the leakage current [14]. This architecture controlled the
amplitude of the current. As Fin-FET devices gave lower Vth which is much superior to the
gate leakage. The diode-linked NMOS-PMOS was employed to achieve B-S (Bulk-Source)
difference to limit the sub-threshold and gate leakages. The diode connected Multiple
approaches were utilized for reducing the leakage current. Meanwhile, the amount of
leakage power was reduced and increased the performance. The leakage power reduction
on SRAM cells is presented by ref. [15]. Here, the authors performed the dual voltage
assignment for reducing the leakage power effectively. On the other hand, the memristor
based SRAM cell was designed by [16]. Here, the memristor is mainly used for reducing the
area consumption compared with the CMOS design without negotiating the functionality
of the device. The noise margin was improved in the 7T SRAM cell which had the channel
length of 7 nm. By incorporating the technologies like sleep transistors, DTMOS, and
MOSFET, the 7T SRAM were designed and also performance analysis was also completed
in this method [17].

Dual-rail SRAM with embedded level shifting was designed by [18]. This method
was mainly implemented to enhance the dual-rail SRAM’s availability because it had more
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potential to increase demand in low power applications. At low supply voltage, there
was a huge degradation in performance, which couldn’t satisfy the high-performance
cache necessity in modern computers. The author designed the 6T SRAM based on a
comprehensive assessment in 7 nm FinFET technology. Here, the circuit implementation
was completed by quantum physics-based device co-optimization. The power gating
based FinFET SRAMs were developed by [19] and the method contained three techniques
for minimizing the EDP (Energy-Delay Product) and leakage power of 8T and 6T SRAM
cells [20].

In recent years, CNFET (Carbon Nano-tube Field Effect Transistor) technology-based
circuit design has been raised enormously. The author [21] designed the CNFET-based
SRAM cell. The presented design was optimized on the basis of trades such as power
efficiency, stability, and performance. The ternary-based two SRAMs were designed by
ref. [22], which contain different technologies. In the initial design, the cyclic operation was
completed in ternary logic, with a secondary design based on the buffer that was mainly
employed for the ternary inverters in both positive and negative cycles.

As we summarized, the previous SRAM cells suffered from leakage. Hence, multi-
threshold logic is one of an existing and innovative methodology that uses the low-threshold
transistor for designing the circuits. This helps to improve the performance of the circuit in
active mode and saves leakage power in the standby mode. Due to ambi-polar properties,
there is a possibility of leakage in the CNFET devices. So, this special logic (i.e.,) Multi-
Threshold (MT) logic is influenced by the CNFET to reduce leakage while considering the
32 nm channel length of the SRAM cell design.

1.4. Importance of Multi-Threshold (MT) Logic

In VLSI, the power reduction and leakage reduction [23] are mainly aimed at producing
the circuit to be more efficient. This power reduction is very important to meet the desired
temperature characteristics, increase battery life time for compact devices and reduce the
cost of packaging and maintenance.

Multi-Threshold (MT) is also known as the power gating technique, which provides
efficient and simple power gating logic by using the low threshold voltage and high-speed
transistors for constructing the logic cells and uses the high threshold voltage and less
leakage devices as sleep transistors. This sleep transistor (ST) provides higher resistance
between the Vdd and ground to minimize leakage dissipation. The STs are controlled with
the help of sleep control signals. When sleep = 1, the ST in switched OFF during the standby
mode which causes the limiting of leakage by ST. The entire leakage of the circuit is limited
by the ST’s high threshold voltage. During active mode, the sleep signal in ‘0’ state and
provides the connection between the real to virtual ground. As a result of this connection,
the lower threshold logic gates operate in very high speed. In this active mode, the STs are
working like a resistor.

2. Traditional SRAM Cells
2.1. 6T-SRAM Cell

A collection of 6-transistors, along with a sense amplifier, write circuitry, and row and
column decoders are used to construct the conventional SRAM cell, and its schematic view
is depicted in the Figure 3 [24].

Read Operation: SRAM cell addresses are decoded by the column and row decoders in
which the data has to be read. Initially, the BL is pre-charged to V before the read operation
starts. Once the word line (WL) is activated, the B is discharged via the M5 transistor. The
voltage variation in the BL is very small due to the limited capability of the cell driving
current. The small voltage difference across BLs is sensed by the sense amplifier, and finally,
whether the value “1” or “0” is stored in the SRAM cell.
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Write Operation: with the help of the external devices, the data has to be stored.
The column-row decoders are used for providing the address of the cell. When the WL
is enabled, the write function is processed to write the data into the cell, which is fully
dependent on the column gate condition. The amount of time consumed by the write
operation is less when compared with the reading operation time because the write buffer
has a high capability to drive the huge driving current.

2.2. 7T-SRAM Cell

The 7T-SRAM cell is mainly considered for reducing the static power and improvising
the read operation. Here, the transistor M7 is connected to form the feedback mechanism
in order to boost the high value at the primary inverter and lower value on the secondary
inverter, and vice-versa. The read and write operations are performed by M5 and M6
transistors by enabling WS and RS signals, respectively. During the read cycle, the M7
transistor is in ON condition and M7 is OFF in write operation. By resizing the M6 and
M7 transistors, the performance of the read cycles is improvised, and the charging of
the RB (Read Bit-line) becomes faster. The 7T-SRAM cell configuration is illustrated in
Figure 4 [24,25].
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2.3. 8T-SRAM Cell

Figure 5 illustrates the schematic view of an 8T-SRAM cell. The structure of the
8T-SRAM cell looks like a 6T SRAM cell in which additional 2 transistors are used for
separating the internal inverter and WL during read cycle operation. Before initialization
of read operation, the RB is pre-charged to the supply voltage Vdd. Here, the read cycle is
enabled by bit RW whereas RB remains in either logic 1 or logic 0 states, which depends
on the Q internal node. The write cycle of the 8T-SRAM is similar to the 6T-SRAM write
operation [24].
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2.4. 9T-SRAM Cell

The pairs M4–M5 and M1–M3 are used for constructing the internal inverters, whereas
one bit information is stored as illustrated in Figure 6. With the aid of WB and transistor
M2, the write cycle has been performed. Meanwhile, the bit RB and transistors M6, M7,
and M8 are utilized for performing the read cycle. Due to 9T structure, the read cycle data
stability has been significantly improved [24].
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2.5. Difference between 6T, 7T, 8T and 9T SRAM Cells

The stated 6T, 7T, 8T, and 9T SRAM cells are uniquely designed for particular reason.

• In 6T SRAM cell, the transistor pairs (M1–M3 and M2–M4) are used to form the
inverters. In this structure, these transistor pair employed to store the information of
bits. The transistors M5 and M6 called as access transistors for performing read and
write operations. By selecting, dual bit-lines, the noise margin can be improved.

• In 7T SRAM Cell, an additional feedback transistor is employed for improving the
read and write cycle and it also reduces the static power consumption.

• In 8T SRAM Cell, an additional two transistors are used for isolating the inverter pairs
from accidental write operation while performing read operation. It produces high
noise margin compared with the 6T SRAM Cell.

• During Read cycle of 9T SRAM Cell, the data stability is improved when compared
with other SRAM cells.

3. Proposed Multi-Threshold SRAM Cells
3.1. Mathematical Modeling of MT-Logic

A sleep transistor (ST) is either N-type or P-type, and it is mainly employed to shut
off or switch on the power supplies to design parts in standby mode. Generally, the P-
type ST is used to switch on the Vdd supply, and hence is known as a “Header switch”.
The N-type ST normally controls the Vss supply, so it is known as “Footer switch”. The
approach of the ST is straight forward; the optimized design of the ST is a challenge due
to various effects, such as performance, routability, entire power dissipation, area, and
signal/power integrity.

The high quality of the ST design is justified by three important metrics, such as
efficiency of the area, IR drop, and switch efficiency. The ST can be optimized in terms of
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gate length, width, and body bias, and finger size in order to achieve a high amount of area
and switching efficiency, IR drop, and less leakage current.

At the absence of the ST, the delay (Td) of the single gate is expressed in following
Equation (1).

Td =
CLVdd

(Vdd − VtL)α
(1)

where CL represents load capacitance connected at the gate terminal, Vt
L is the lower

threshold voltage, Vdd is the supply voltage, and the velocity saturation index is represented
as α. If the ST is present, then the delay of a single gate (Td

sleep) will be measured with the
help of following Equation (2).

Tsleep
d =

CLVdd
(Vdd − Vx − VtL)α

(2)

where Vx is the virtual ground potential. The multi-threshold logic will slow down in the
presence of large current spikes, but it speeds up again while performing the transition.
In the MT logic, the input vectors robustly influence the delay, and it plays vital role in
determining the worst-case of the input for accurate sizing of ST. One more alternative
approach also available to size the worst-case input vector is to make the worst-case peak
current. Meanwhile, it is necessary to ensure that the virtual ground should be limited
within the threshold voltage. To highlight this, the maximum amount of current for input
vector transition (00 00 to FF 81) is considered as 1.174 mA (not necessary be a maximum
peak current). If the virtual ground is employed, then 50 mV of offset will be induced and
it will be produced degradation of 5%. Hence, the circuit can tolerate the degradation of
5% in the presence of ST. Then the ratio of Td and Td

sleep is given in Equation (3).

Td

Tsleep
d

= 95% (3)

By substituting Equations (1) and (2) in Equation (3), we can get Equation (4).

1 − VX
(Vdd − VtL)

= 95% (4)

Therefore, we can formulate the Vx as shown in Equation (5).

Vx = 0.05(Vdd − VtL) (5)

3.2. Proposed MT-SRAM Cells in CNFET

The proposed design of SRAM cells contains the technique called multi-threshold (MT)
technique. In this, the transistor consists of double threshold voltages (Vth) to optimize
the delay and power. Generally, the multiple threshold voltage lies in the gate terminal
of the transistor at which this creates the inversion layer and interface between the oxide
and body layer. Therefore, the transistor will quickly switch ON with minimum threshold
voltage and also it reduces the critical path clock period. One of the main drawbacks of
this lower threshold is that it exhibits huge amount of leakage power. Hence, to limit
this leakage current, a transistor with high-threshold voltage is introduced which has the
minimum amount of static power. This causes the reduction of static leakage 10 times
better than the lower threshold transistors [26].

In this technique, the sleep transistor is used to detach the transistor with lower
threshold voltage and it has the high threshold voltage transistor that located in both
bottom and top of the circuit. In the proposed design, the MT technique is infused to the
traditional SRAM Cells and presented SRAM cells in CNFET are shown in Figures 7–10.
The sleep transistor is controlled by the sleep signals. During the active state of the transistor,
there is a distortion in the sleep signal which results in the ON condition of the higher
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threshold voltage transistor and it supplies the virtual power and lower threshold voltage
to be grounded. During the inactive state of the transistor, a step signal is generated and
pushes the transistor to higher threshold voltage which moves into the cutoff region. This
results in the disconnection of power from the less threshold voltage. Finally, the minimum
current exhibited at the region of threshold from power to ground.
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3.3. Systematic Variability of SRAM Cells

The impact of the variations in the across-field of the transistor terminals will lead
to the nominal changes in the width (W) and length (L) fluctuations [27]. The width and
length fluctuations are affected the performance of the SRAM cells. But the standard
CNFET devices designed with W = 64 nm and L = 32 nm. If we are reducing the channel
length less than the 32 nm, it will make the SRAM cells to be more complex and produce
inaccurate results. Similarly, if we are increasing the channel length greater than 32 nm, it
will produce the Schottky barrier. Due to this effect, we didn’t get the accurate results. So,
the proposed SRAM cells focused only on 32 nm channel length.
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4. Simulation Results

The overall implementations of the existing and proposed methods are implemented
in the two different technologies at 32 nm channel length in LTspice and HSpice simulators.
The CNFET device can be realized with the help model files available in [28].

Low power consumption is the ultimate aim in VLSI circuits. To achieve this, we
have to measure the power consumption of different SRAM cell and this can be held by
parameter Pavg. Another important parameter is delay which shows the time taken by the
SRAM cells to produce the outputs from input bit-lines. If we achieved less amount of
delay, then the SRAM cells will be operated in high-speed. For proving the SRAM cells
performance, we calculate Vout, Iavg, Pavg, Eavg and delay. For detailed comparison, the
design approaches implemented in multiple frequencies varies from 10 KHz–500 KHz.

4.1. Comparison of Vout

The Figure 11a,b show the output voltage comparison of the existing and multi-
threshold (MT) SRAM cells. If the read and write operations are performed well in the 6T
SRAM cells, they will be automatically reflected to provide a higher output voltage. As
a result of this comparison, the proposed CNFET-based 6T SRAM cell performed better,
and the following Tables 3 and 4 illustrate the improvement percentages of CNFET-6T and
MT-CNFET 6T SRAM along with all other methods.
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son of Proposed MT-SRAM Cells in CMOS and CNFET.

Table 3. Vout Improvement (%)–Traditional CNFET 6T SRAM Cell vs. Other SRAM Cells.

Frequency
(KHz) CMOS-6T [24] CMOS-7T [24] CMOS-8T [24] CMOS-9T [24] CNFET-7T CNFET-8T CNFET-9T

10 89 91 28 87 93 93 93

20 91 91 29 87 93 93 93

30 90 90 22 85 92 92 92

40 87 86 11 80 89 89 90

50 87 87 23 81 90 90 91

60 83 89 10 84 91 92 92

70 88 89 10 84 91 92 92

80 89 89 10 84 91 92 92

90 90 89 10 84 91 92 92

100 82 89 10 84 91 92 92

200 91 91 29 87 93 94 94

500 94 91 29 87 93 94 94
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Table 4. Vout Improvement (%)–Proposed MT- CNFET 6T SRAM Cell vs. Other MT- SRAM Cells.

Frequency (KHz) MT-6T MT-7T MT-8T MT-9T MT-CNFET-7T MT-CNFET-8T MT-CNFET-9T

10 76 78 85 55 71 16 25

20 74 78 85 55 71 15 24

30 60 77 85 52 70 10 17

40 51 78 85 55 71 9 21

50 56 78 85 55 72 6 20

60 65 78 85 55 72 3 19

70 49 78 85 55 72 0.43 19

80 65 78 85 55 72 0.12 18

90 44 78 85 55 72 0.13 18

100 80 78 85 55 72 0.08 17

200 67 78 85 55 74 0.27 17

500 79 78 85 55 76 0.38 17

4.2. Comparison of Iavg

The Figure 12a,b shows the average leakage current comparison of the existing and
proposed MT-SRAM cells. In SRAM cells, thickness of the NCNFET gate oxide layer
and pull down transistor are increased which results in increasing of the Vth (threshold
voltage) and reduction in the leakage current. This leakage current depends on the different
device parameters and terminal voltages. As a result of this comparison, we found that
the existing CMOS based SRAM cells fall in the µA range of the leakage current. But
proposed SRAM cells lie in the range of nA. Hence, we clearly stated that the proposed
SRAM cells (particularly CNFET-6T and MT-CNFET 6T) produce less leakage, and the
following Tables 5 and 6 have shown the improvement percentage.

Table 5. Iavg Improvement (%)–CNFET 6T SRAM Cell vs. Other SRAM Cells.

Frequency
(KHz) CMOS-6T [24] CMOS-7T [24] CMOS-8T [24] CMOS-9T [24] CNFET-7T CNFET-8T CNFET-9T

10 100 100 100 100 83 73 88

20 100 100 100 100 82 73 87

30 100 100 100 100 76 73 85

40 100 100 100 100 75 73 83

50 100 100 100 100 75 73 84

60 100 100 100 100 69 73 82

70 100 100 100 100 69 73 78

80 100 100 100 100 68 72 76

90 100 100 100 100 67 73 74

100 100 100 100 100 67 73 70

200 100 100 100 100 32 72 54

500 99 100 100 100 12 73 48
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Figure 12. (a) Iavg Comparison of Traditional SRAM Cells in CMOS and CNFET. (b) Iavg Comparison
of Proposed MT-SRAM Cells in CMOS and CNFET.

Table 6. Iavg Improvement (%)–Proposed MT- CNFET 6T SRAM Cell vs. Other MT- SRAM Cells.

Frequency (KHz) MT-6T MT-7T MT-8T MT-9T MT-CNFET-7T MT-CNFET-8T MT-CNFET-9T

10 21 97 98 98 92 6 75

20 30 97 98 98 95 5 72

30 49 98 97 98 96 2 70

40 33 98 97 98 98 4 67

50 52 98 98 98 98 5 64

60 45 98 98 98 98 4 58

70 38 98 98 98 98 1 58

80 45 98 98 98 98 1 58

90 41 98 98 98 98 1 57

100 1 98 98 98 98 1 57

200 43 98 98 98 98 0.03 56

500 5 98 98 98 98 5 49
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4.3. Comparison of Pavg

The Figure 13a,b show the average power comparison of the existing and proposed
MT-SRAM cells. Normally, the SRAM cells require less amount of power because it needs
small steady state current. Here, the number of transistors is lower for 6T SRAM cell
compared with 7T, 8T, and 9T cells. Hence, we have to justify the CNFET 6T SRAM cell
consumes less amount of power compared with others. As a result of this comparison,
we found that the existing SRAM cells consume much more power when compared with
the proposed SRAM cells (particularly CNFET 6T and MT-CNFET 6T), and the following
Tables 7 and 8 show the improvement percentage.
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Figure 13. (a) Pavg Comparison of Traditional SRAM Cells in CMOS and CNFET. (b) Pavg Compari-
son of Proposed MT-SRAM Cells in CMOS and CNFET.
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Table 7. Pavg Comparison (%)–CNFET 6T SRAM Cell vs. Other SRAM Cells.

Frequency
(KHz) CMOS-6T [24] CMOS-7T [24] CMOS-8T [24] CMOS-9T [24] CNFET-7T CNFET-8T CNFET-9T

10 83 44 91 96 96 95 97

20 83 44 91 96 96 95 97

30 82 36 91 96 94 95 96

40 83 43 91 96 95 95 95

50 83 44 91 96 94 95 93

60 88 44 91 96 94 95 93

70 83 45 91 96 94 95 91

80 84 45 91 96 94 95 91

90 81 45 91 96 94 95 90

100 83 45 92 96 94 95 89

200 85 46 92 96 90 95 88

500 82 50 92 96 82 95 88

Table 8. Pavg Improvement (%)–Proposed MT- CNFET 6T SRAM Cell vs. Other MT- SRAM Cells.

Frequency (KHz) MT-6T MT-7T MT-8T MT-9T MT-CNFET-7T MT-CNFET-8T MT-CNFET-9T

10 59 57 93 84 3 3 11

20 62 56 93 83 2 1 3

30 73 42 93 83 0.67 11 10

40 64 38 93 83 2 11 5

50 73 39 93 83 4 12 2

60 71 42 93 84 10 16 11

70 67 42 93 84 12 14 9

80 71 42 93 84 12 14 12

90 68 42 93 84 13 13 6

100 46 42 93 84 13 13 2

200 70 42 93 84 27 13.34 3

500 51 43 93 84 39 13 3

4.4. Comparison of Eavg

The Figure 14a,b show the average energy comparison of existing and proposed MT-
SRAM cells. If the power consumption of the proposed MT-SRAM cells reduces, it will
automatically reflect in the reduction of the energy. As a result of this comparison, we
found that the existing SRAM cell consumes much higher energy when compared with
the proposed SRAM cells (particularly the CNFET 6T-MT-CNFET 6T), and the following
Tables 9 and 10 show the improvement percentage.

4.5. Comparison of Delay

The Figure 15a,b show the average delay comparison of the existing and proposed
MT-SRAM cells. Generally, the delay parameter is used for measuring the amount of
time required for performing the transition of input bits to the output. The delay is one
of the important parameters to justify the high-speed read/write operation of the SRAM
cells. In CNFET-Multi-threshold logic, it helps provide very frequent transitions among
the input and output bits. As a result of this comparison, we found that the existing
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CMOS-based SRAM cells consume much more energy when compared with the proposed
SRAM cells (particularly CNFET 6T), and the following Tables 11 and 12 has shown the
improvement percentage.

4.6. Justification of 32 nm CNFET Technology

Here, we used standard 32 nm CNFET technology for implementing our proposed
MT-SRAM cells. From the experimental results, the 32 nm MT-CNFET SRAM cells work
better than CMOS devices. In additionally, we can state that performance effect of the
CNFET devices in less than 32 nm and greater than 32 nm channel length (Lch).

By considering the Lch < 32 nm, the complexity of the proposed design increases
as well as its tendency to produce inaccurate results. While considering Lch > 32 nm,
inaccurate results are produced due to the Schottky barrier effect. That’s why, the proposed
design mainly focused on the standard 32 nm CNFET technology.
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Table 9. Eavg Improvement (%)–CNFET 6T SRAM Cell vs. Other SRAM Cells.

Frequency
(KHz) CMOS-6T [24] CMOS-7T [24] CMOS-8T [24] CMOS-9T [24] CNFET-7T CNFET-8T CNFET-9T

10 19 94 91 96 92 74 97

20 24 94 91 59 89 74 95

30 22 94 91 56 87 74 89

40 51 96 94 71 91 83 90

50 66 97 96 79 90 87 92

60 66 97 96 79 85 87 90

70 67 97 96 79 85 87 88

80 68 97 96 79 85 87 86

90 66 97 96 79 85 87 84

100 66 97 96 79 84 87 84

200 75 97 96 79 74 87 82

500 76 98 96 79 54 87 74

Table 10. Eavg Improvement (%)–Proposed MT- CNFET 6T SRAM Cell vs. Other MT- SRAM Cells.

Frequency (KHz) MT-6T MT-7T MT-8T MT-9T MT-CNFET-7T MT-CNFET-8T MT-CNFET-9T

10 99 99 99 98 13 66 91

20 100 99 99 98 15 66 91

30 100 99 99 98 18.66 66 92

40 100 99 99 98 25 68 92

50 100 99 99 98 29 68 92

60 100 99 99 98 37 70 93

70 100 99 99 98 34 70 93

80 100 99 99 98 17 69 93

90 100 99 99 98 26 67 93

100 100 99 99 98 10 64 93

200 100 99 99 98 2 63.82 93

500 100 99 99 98 6 63 93

4.7. 32 nm CNFET vs. 10 nm CMOS Process

From the above discussion in Section 4.6, we proved that 32 nm standard CNFET
device performed well for MT-SRAM cells when compared with the other CNFET devices
(i.e., L > 32 nm and L < 32 nm). Once again, a validation proof can be completed for CNFET
devices versus 10 nm CMOS devices. The model files for N-type and P-type 10 nm CMOS
can be obtained from [29,30] respectively. The following Figure 16a–e graphically compares
the MT-SRAM cells in both the devices on the basis of measured parameters and Table 13
shows the improvement percentage of 32 nm CNFET device.
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Table 11. Delay Improvement (%)–CNFET 6T SRAM Cell vs. Other SRAM Cells.

Frequency
(KHz) CMOS-6T [24] CMOS-7T [24] CMOS-8T [24] CMOS-9T [24] CNFET-7T CNFET-8T CNFET-9T

10 65 89 62 69 77 58 42

20 63 77 68 72 72 56 40

30 54 54 66 67 62 49 30

40 34 37 56 56 53 42 20

50 53 55 51 59 27 33 10

60 35 53 54 61 6 30 6

70 77 57 54 58 6 29 5

80 70 58 44 52 5 28 4

90 71 62 48 57 5 28 4

100 57 67 50 50 3 27 2

200 61 60 46 50 1 25 1

500 47 67 54 50 1 25 1
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Table 12. Delay Improvement (%)–Proposed MT- CNFET 6T SRAM Cell vs. Other MT-SRAM Cells.

Frequency (KHz) MT-6T MT-7T MT-8T MT-9T MT-CNFET-7T MT-CNFET-8T MT-CNFET-9T

10 100 100 100 100 73 36 74

20 100 100 100 100 73 34 74

30 100 100 100 100 72.56 32 73

40 100 100 100 100 72 10 72

50 100 100 100 100 70 20 68

60 100 100 100 100 70 3 67

70 100 100 100 100 70 20 63

80 100 100 100 100 71 20 58

90 100 100 100 100 72 3 51

100 100 100 100 100 73 11 35

200 100 100 100 100 72 18.61 16

500 100 100 100 100 72 30 13

Table 13. Improvement of 32 nm CNFET MT-SRAM Cells over 10 nm CMOS MT-SRAM Cells.

Parameters Taken
10 nm CMOS MT-6T

vs. 32 nm CNFT
MT-6T

10 nm CMOS MT-7T
vs. 32 nm CNFT

MT-7T

10 nm CMOS MT-8T
vs. 32 nm CNFT

MT-8T

10 nm CMOS MT-9T
vs. 32 nm CNFT

MT-9T

Vout Improvement (%) 60.29 36.27 82.58 48.97

Iavg Improvement (%) 95.86 67.08 93.73 88.18

Pavg Improvement (%) 20.07 97.70 81.65 99.86

Eavg Improvement (%) 4.23 98.16 97.98 87.76

Delay Improvement (%) 96.11 92.27 99.57 93.98
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