HW\# 4: 3-D Benchmark Problem Statement (Due March 3, 2022)

- Use your fem3d-dynamic code with 20 node brick elements to obtain the midspan displacement of the 10 m long simply- supported steel beam shown above.
- The beam is initially at rest. Use a $10 \times 1 \times 1$ mesh and $3 \times 3 \times 3$ integration.
- Use uniform time step size of 0.001 s for a total analysis time of at least 0.1 s .
- Material properties for steel are Young's Modulus E=200 GPa, Poisson's Ratio= 0.3 , and density $=7800 \mathrm{Kg} / \mathrm{m}^{3}, \mathrm{~A}=$ area of beam cross section, and $\mathrm{I}=$ area moment of inertia of beam cross section about the mid-plane.
- The exact solution for displacement history at beam mid-span can be obtained using the given equation. Compare (tabulate and plot) exact solution with the finite element solution for model verification over at least 0.1 s , and find $\%$ error. Here $\hat{\omega}$ is the frequency of the applied load and is equal to $150 \mathrm{rad} / \mathrm{sec}$.

Exact Solution for beam deflection $w(x, t)$ is given by,
$\mathrm{w}(\mathrm{x}, \mathrm{t})=$
$\frac{2 P_{o} L^{3}}{\pi^{4} E I}\left\{\frac{\sin \left(\frac{\pi a}{L}\right) \sin \left(\frac{\pi x}{L}\right)}{1-\left(\frac{\hat{\omega}}{\hat{\omega}_{1}}\right)^{2}}\left[\sin (\hat{\omega} t)-\frac{\hat{\omega}}{\hat{\omega}_{1}} \sin \left(\hat{\omega}_{1} t\right)\right]+\frac{\sin \left(\frac{2 \pi a}{L}\right) \sin \left(\frac{2 \pi x}{L}\right)}{2^{4}-\left(\frac{\hat{\omega}}{\hat{\omega}_{1}}\right)^{2}}\left[\sin (\hat{\omega} t)-\frac{\hat{\omega}}{2^{2} \hat{\omega}_{1}} \sin \left(\hat{\omega}_{1} t\right)\right]+\ldots .\right.$.

Where,

$$
\hat{\omega}_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \sqrt{\frac{E I g}{\gamma \Omega}}
$$

$$
\frac{\gamma \Omega}{g}=\rho A
$$

