Gentration

~ Python Screening Task 3

About these tasks

These tasks are designed to challenge your python skills that you should have picked up during
your Udacity course.

Feel free to use google to research any topics below, however, do not copy and paste any code
directly.

Problem 1

In this problem, we will complete a function that can determine if a string is a palindrome

1. Complete the function is_palindrome.

2. The function is_palindrome should take one argument named text.

3. The function is_palindrome should return true if the value of text is a palindrome, and
should otherwise return false.

Note: A a palindrome is a word, number, phrase, or other sequence of characters which reads
the same backward as forward.

def is_palindrome(text):
text=text.lower()
if(len(text)==1):
return True
elif(len(text)==2):
if(text[0]==text[1]):
return True
else:
return False
elif(len(text)>2 and text[@]==text[-1]):
text=text[1:-1]
result=is_palindrome(text)
if(result):

return True
else:
return False
else:
return False

Do not modify code below the code below this line

assert is_palindrome("redivider") == True
assert is_palindrome("drive") == False
assert is_palindrome("kayak") == True
assert is_palindrome("11211") == True

assert is_palindrome("1115544") == False

~ Problem 2

In this problem, we will try to complete a function that will be able to tell us how many times a
word is found in a collection of sentences.

1. Complete the function find_occurrences.

2. The function should take two arguments sentence_list and search_term.
3. sentence_list should be an array of strings

4. search_term should be a string.

5. The function should return an integer greater than or equal to zero.

6. The number returned should be the number of occurrences of the search_term found
within sentence_list

You can look at the assertions at the bottom of the problem to see how your program is
expected to perform. For example:

assert find_occurrences(["welcome to our Python program", "Python is my favorite language!", "I an
>

Using this we can see, given the list of strings and searching for "Python" we expect the
function to return 4

def find_occurrences(sentence_list, search_term):
Write your code here
return search_term.count(sentence_list)

return 5

Do not modify code below the code below this line
assert find_occurrences(["welcome to our Python program", "Python is my favorite language!

assert find_occurrences(["this is the best day", "Python is the best language for learning

assert find_occurrences(["welcome", "language", "I am", "I love"], "Python") == 0
assert find_occurrences(["What are you doing?", "you like programming?", "We are students”
assert find_occurrences(["welcome welcome", "wikipedia", "wonderland", "we"], "w") == 5
AssertionError Traceback (most recent call last)
<ipython-input-30-a1d@58e658ac> in <module>
9

10 # Do not modify code below the code below this line
---> 11 assert find_occurrences(["welcome to our Python program", "Python is my favol
Pythons", "I love Python"], "Python") == 4

12 assert find_occurrences(["this is the best day", "Python is the best languags
learning”, "I love learning"], "learning") == 3

13 assert find_occurrences(["welcome", "language", "I am", "I love"], "Python")

AssertionError:

SEARCH STACK OVERFLOW

~ Problem 3

In this problem, we will replace a function with an equivalent lambda function

1. Create a lambda function called module_2_lambda that does the same task as module_2
2. Remove the module_2 function
3. Modify the assertion so that it evaluates your lambda

def module_2(num):
return num % 2

Write your code here

Do not modify the function below
def is_a_lambda(v):
LAMBDA = lambda:©
return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA._ _name__

Modify this assertion
assert is_a_lambda(module_2) == True

AssertionError Traceback (most recent call last)
<ipython-input-28-5f06f8adle®3> in <module>

aa

~ Problem 4

In this problem identify the error in the following code and fix it.

1. There should be a function called increase_task_count()

task_count = 5

def increase_task_count():
task_count += 1

increase_task_count()

Do not modify below the code below this line
assert task_count == 6

UnboundLocalError Traceback (most recent call last)
<ipython-input-27-33fb44120687> in <module>

4 task_count += 1

5
----> 6 increase_task_count()

7

8 # Do not modify below the code below this line

<ipython-input-27-33fb44120687> in increase_task_count()

2

3 def increase_task_count():
----> 4 task_count += 1

5

6 increase_task_count()

UnboundLocalError: local variable 'task_count' referenced before assignment

SEARCH STACK OVERFLOW

~ Problem 5

In this problem, we have a function that performs a division operation, but it crashes when
dividing by zero.

1. Modify the following function to catch and handle the ZeroDivisionError

def divide(divisor, dividend):
return (dividend / divisor)

Do not modify below the code below this line

assert divide(@, 10) == "Division by zero not allowed"
ZeroDivisionError Traceback (most recent call last)
<ipython-input-20-0c18ed2a36al> in <module>
3
4 # Do not modify below the code below this line
----> 5 assert divide(@, 10) == "Division by zero not allowed"

<ipython-input-20-0c18ed2a36al> in divide(divisor, dividend)
1 def divide(divisor, dividend):
----> 2 return (dividend / divisor)

3
4 # Do not modify below the code below this line
5 assert divide(@, 10) == "Division by zero not allowed"

ZeroDivisionError: division by zero

SEARCH STACK OVERFLOW

~ Problem 6

In this problem, someone has written some code using the NumPYy library, but has not imported
the library correctly.

1. Import the NumPYy library to be able to run the code.

import numpy as np
arrange = np.arange(15).reshape(3, 5)

Do not modify below the code below this line
assert np.allclose(arrange, [[90,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14]]) == True

Colab paid products - Cancel contracts here

