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Noise dominates every aspect of near-term quantum computers, rendering it exceedingly difficult
to carry out even small computations. In this paper we are concerned with the modelling of noise
in Noisy Intermediate-Scale Quantum (NISQ) computers. We focus on three error groups that
represent the main sources of noise during a computation and present quantum channels that model
each source. We engineer a noise model that combines all three noise channels and simulates the
evolution of the quantum computer using its calibrated error rates. We run various experiments of
our model, showcasing its behaviour compared to other noise models and an IBM quantum computer.
We find that our model provides a better approximation of the quantum computer’s behaviour than
the other models. Following this, we use a genetic algorithm to optimize the parameters used by our
noise model, bringing the behaviour of the model even closer to the quantum computer. Finally, a
comparison between the pre and postoptimization parameters reveals that, according to our model,
certain operations can be more or less erroneous than the hardware-calibrated parameters show.

I. INTRODUCTION

Noise is a central obstacle in building large-scale quan-
tum computers and executing long quantum computa-
tions. It is either due to infidelities of the quantum hard-
ware (i.e., gates, measurement devices), or due to un-
wanted interactions with the environment (i.e., thermal,
electromagnetic, gravitational decoherence) [1–4].

It has been proven that arbitrary long quantum com-
putation is possible given constraints on the error rates
and the error locality [5–7]. One method for mitigating
quantum noise is through quantum error correction [6–
16], which relies on knowing what the most likely error
sources are. It has been found that error correcting meth-
ods optimized for specific noise in a system can dramati-
cally outperform generic ones [17, 18]. Thus, identifying,
characterizing and simulating the noise in quantum com-
puters is important and can lead to much more efficient
calibration and error correction, which are necessary for
large-scale quantum computing [19].

The most common error model is a depolarizing Pauli
channel. Effectively, a Pauli operator is chosen to be ap-
plied at operations that have a probability to produce
an erroneous result [10, 13, 20]. This unital channel is
generally a good approximation of most error processes
that lead to a maximally mixed noisy state. Alterna-
tive depolarizing channels can use Clifford operations to
effectively approximate quantum errors [21].

A large source of error comes from non-unital inter-
actions between the quantum system and the environ-
ment. Noise of this type causes decoherence during the
computation in various forms. The most common one is
thermal relaxation/excitation, which plays a central role
in our model. The non-unital nature of such quantum
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noise makes it difficult to simulate it with Pauli or Clif-
ford operations, leading to a more complicated approach.
Other forms of decoherence, like electromagnetic or grav-
itational, are more complex and thus not considered in
this paper.

Within this work we are concerned with three main
sources of error in a quantum computer: (i) gate infi-
delities, (ii) state preparation and measurement (SPAM)
errors and (iii) thermal decoherence and dephasing of the
physical qubits. Each noise source adheres to different as-
pects of the hardware and of the interaction between the
system and its environment and is modelled as a quan-
tum channel. We then proceed to combine these three
quantum channels into a single, architecture aware noise
model and we compare it against state-of-the-art mod-
els on quantum walk circuits implemented on an IBM
quantum computer. The analysis shows that our unified
model offers more accurate approximations of an IBM
quantum computer’s evolution and significant improve-
ments in the accuracy of the noise simulations.

A very important role to the success of our model
is played by the noise parameters utilized. These pa-
rameters represent various error rates and decoherence
and dephasing times that result from calibrations of the
actual quantum computer. We show that we can op-
timize a subset of the aforementioned parameters used
by our noise model. This leads up to 84% better ap-
proximation of the quantum computer’s evolution. An-
other outcome of this analysis is the comparison between
the hardware-calibrated parameters and the optimized
parameters, providing evidence on what the computer’s
error rates are in the model, thus allowing further con-
clusions on the infidelities of the quantum hardware.

Finally, our noise model is not limited to modelling
the IBMQ computers. Its architecture awareness and
low-level circuit approach allows for it to be easily at-
tached on any QASM-based implementation. For our
noise model’s implementation we make use of the IBM
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Qiskit development kit [22, 23] in order to simulate and
execute the quantum circuits.

Surprisingly, there are only a few works addressing the
topic of modeling noise in quantum computers [24–26].
Notably in [27], the authors also attempt to generate a
composite model for noisy quantum circuits by dividing
the quantum circuit to subcircuits, according to desired
characteristics. This decomposition allows for iterative
adjustment of the models through minimization of the
total variation distance between simulation and experi-
mental results, until sufficient accuracy is obtained.

This paper is organized as follows. In Section II we
discuss the theoretical foundations of the noise channels
by categorizing them into three error groups. Section III
shows how the error channels can be combined to a single,
unified model for simulating noise, as well as a discussion
about the noise parameters that are used by the models,
before moving on to simulating the noisy evolution of a
quantum system and comparing it to the real quantum
computer in Section IV. Section V showcases the opti-
mization procedure for the noise parameters. Additional
experiments with the optimized parameters are also car-
ried out in this section. Finally, we present our conclu-
sions and possible future work that could be undertaken
in this area.

II. QUANTUM NOISE CHANNELS

As mentioned in the introduction, we are concerned
with three sources of error: (i) hardware infidelities in the
form of depolarizing Pauli noise, (ii) state preparation
and measurement (SPAM) errors and (iii) decoherence
in the form of thermal relaxation and dephasing. In this
section we discuss the three quantum channels we use to
model each error.

A. Error Group 1: Depolarizing Channel

The first channel is also known as symmetric depolar-
izing channel, a term which we will interchangeably use
with gate infidelities, or simply, depolarizing channel. It
essentially simulates the bit-flip and phase-flip errors due
to gate infidelities within the circuit as a depolarizing
channel [28–31]. We assume that an error of this group
occurs with probability p1, and we define the bit-flip and
phase-flip errors through the Pauli X and Z operations.
When both a bit- and phase-flip happen, the operation is
defined through Pauli Y . All three types of Pauli errors
have the same probability to occur. The depolarizing

channel can be represented by the following operators

KD0
=
√

1− p1I,

KD1
=

√
p1

3
X,

KD2
=

√
p1

3
Z,

KD3
=

√
p1

3
Y.

(1)

The effect of the depolarizing channel on a quantum
system can be expressed via the operator-sum represen-
tation, as

ρ 7→ D(ρ) =

3∑
i=0

KDiρK
†
Di

where ρ is the density matrix for a qubit. It is noteworthy

that, as KDi
= K†Di

, we can do the relative replacement
in the above representation.

B. Error Group 2: State Preparation and
Measurement (SPAM) Channel

This channel is essentially a simple Pauli X error, but
we separate it from the above group as it refers to differ-
ent aspects of the hardware and the computation. Thus,
we can represent the SPAM quantum channel for the
measurement errors by the following Kraus operators

KM0 =
√

1− p2I,

KM1
=
√
p2X

(2)

where p2 is the probability that the measurement is in-
correct.

The effect of the SPAM channel for measurement errors
can be expressed through the density matrix, ρ, as

ρ 7→ S(ρ) = KM0ρKM0 +KM1ρKM1 .

In the case that state preparation takes place in the
computation, the error channel (i.e., ρ 7→ S ′(ρ)) is of
similar form to the measurement case, with the qubit
failing to be prepared at the desired state, resulting to
the inverted state by X with probability p′2.

It is important to clarify the main idea behind sepa-
rating the state preparation and measurement operations
from the rest of the quantum circuit. On IBMQ, a state
is prepared by injecting the standard initial state |0⊗n〉
to the register. Of course, quantum computations might
start with a different initial state, which would require
alternative operations for its preparation. Thus, we de-
cide that the preparation of the quantum registers should
not be part of the main execution of the quantum circuit
that executes the algorithm. The reason for choosing
measurement, on the other hand, as a separate quantum
operation is self-explanatory. Finally, grouping them to-
gether in the same channel comes naturally as we deem
both are modelled in the same way.
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C. Error Group 3: Thermal Decoherence and
Dephasing Channel

The third error group refers to the physical qubits and
their interaction with the environment. There are two
aspects of noise within this error group: (i) the thermal
decoherence (or relaxation) that occurs over time in the
form of excitation/de-excitation and (ii) the dephasing of
the qubits over time.

Thermal relaxation is a non-unital (i.e., irreversible)
process that describes the thermalization of the qubit
spins towards an equilibrium state at the temperature of
their environment. This process involves the exchange of
energy between the qubits and their environment, which
drives the qubits either towards the ground state, |0〉
(de-excitation or reset to |0〉) or the excited state, |1〉
(excitation or reset to |1〉). On the other hand, dephasing
refers to the ways in which coherence decays over time. It
is a mechanism that describes the transition of a quantum
system towards classical behaviour.

There already exists a function implementing this error
group as a quantum channel within Qiskit1 and details of
the implementation can also be found in [32]. The model
takes into account:

• the average execution time of each type of quantum
gates g implemented, denoted Tg;

• the time it takes for each qubit q to relax and de-
phase, commonly denoted T1(q) and T2(q) respec-
tively, where q ∈ [0, n − 1], where n represents the
number of qubits in the quantum computer.

In other words, T1(q) describes an evolution towards
equilibrium as a perturbation orthogonal to the quantiza-
tion axis (x, y-component of the Bloch vector) and T2(q)
describes a slow perturbation along the quantization axis
(z-component of the Bloch vector), or otherwise, the be-
haviour of the off diagonal elements over time for each
qubit. These two times are related as T2(q) ≤ 2T1(q).

Considering the thermal relaxation and dephasing
times T1(q) and T2(q), as well as the (known) gate execu-
tion times Tg, we can define the probability for each qubit
q to relax and dephase after a gate of type g is applied to
it as pT1

(q) = e−Tg/T1(q) and pT2
(q) = e−Tg/T2(q) respec-

tively. We can then define the probability for a qubit to
reset to an equilibrium state as preset(q) = 1− pT1

(q).
Taking into account the thermal relaxation transi-

tion picture as described earlier (excitation and de-
excitation), we can calculate the weight that dictates to-
wards which of the two equilibrium states (|0〉 or |1〉) this
noise (or reset error) drives each qubit, q, as [32, 33]

we(q) =
1

1 + e2hfq/kBΘ
, (3)

1 Thermal relaxation and dephasing channel in Qiskit: https:

//qiskit.org/documentation/stubs/qiskit.providers.aer.

noise.thermal_relaxation_error.html

where Θ is the quantum processor’s temperature, h is
Planck’s constant, kB is Boltzmann’s constant and fq is
the frequency of the qubit.

This far we have taken into consideration the temper-
ature of the quantum processor, Θ. In general, accord-
ing to IBMQ, the mixing chamber at the lowest part of
the refrigerator brings the quantum processor and asso-
ciated components down to a temperature Θ ≈ 15mK.
As an example, considering the average frequency of the
qubits within the IBM 15-qubit Melbourne machine to be
fq ≈ 4.9801×109Hz, we can calculate the average weight

from equation (3) as we ≈ 1.44532×10−14. Thus, an ex-
citation occurring with probability preset1 = we(1− pT1

)
can be considered a rare event and can be omitted from
our model. We then can effectively assume that the reset
error takes the form of only reset to the ground state,
|0〉, or in other words, that the device temperature is
Θ = 0. Thus, we can now refer to the thermal relaxation
simply as relaxation or spontaneous emission. Important
here is that our model assumes that the relaxation and
dephasing noise occurs for each qubit in the system inde-
pendently. Thus, for better presentation of the equations
hence forth, we selectively omit the presence of the qubit
identifier, q (i.e., preset instead of preset(q)).

If T2(q) ≤ T1(q) for every qubit, then the relaxation
and dephasing noise can be expressed as a mixed re-
set and unital quantum channel [32]. Assuming a device
temperature Θ = 0, we can identify the following forms
of noise:

• Dephasing. A phase-flip which occurs with proba-
bility pZ = (1− preset)(1− pT2

p−1
T1

)/2.

• Identity. In this case, nothing happens to the qubit,
or otherwise, the identity, I, occurs with probabil-
ity pI = 1− pZ − preset.

• Reset to |0〉. This represents a qubit’s thermal de-
cay, or a jump to the ground state. We can define
the probability of a qubit to reset to the ground
state as preset = 1− pT1 .

Having omitted the thermal excitation, we can repre-
sent the relaxation and dephasing channel with the fol-
lowing operators

KI =
√
pII,

KZ =
√
pZZ,

Kreset =
√
preset |0〉 〈0| .

(4)

If we want to take the reset to |1〉 into account, the rep-
resentation is similar and can be seen in Appendix A.

Thus the effect of the relaxation channel when T2(q) ≤
T1(q) can be expressed as

ρ 7→ N (ρ) =
∑

k∈{I,Z,reset}

KkρK
†
k.

If 2T1(q) ≥ T2(q) > T1(q), the model implementation
uses a Choi-matrix representation [34, 35]. The Choi

https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.thermal_relaxation_error.html
https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.thermal_relaxation_error.html
https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.thermal_relaxation_error.html
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matrix can be written as [32]

C =

 1 0 0 pT2

0 0 0 0
0 0 preset 0
pT2

0 0 1− preset

 (5)

with the probabilities as defined above.
The evolution of the density matrix ρ with respect to

the Choi matrix C can be described as

ρ 7→ N (ρ) = tr1

[
C(ρT ⊗ I)

]
,

where tr1 is the trace over the main system in which
the density matrix ρ resides. The transition from Choi-
matrix to operator-sum representation can be realised
via the eigenvalues of the matrix, in the case they are
non-negative and the matrix is Hermitian, or otherwise
through singular value decomposition (see Appendix A).

Finally, it is noteworthy that the thermal decoherence
and dephasing model does not account for decoherence
and dephasing effects during idle times of the qubits,
as these effects are attributed mainly to the effects of
electromagnetic interference and cross-talk between the
qubits. What our model accounts for is decoherence and
dephasing on idle qubits over time. More specifically, as
the execution time of every quantum gate is known and
used as a parameter within the thermal decoherence and
dephasing model, the total execution time of the quan-
tum circuit after every operation takes place is computed.
Thus, when the probability of decoherence or dephasing
of a qubit is calculated by the channel, the time passed
from the start of the execution is taken into account.

III. UNIFIED MODEL FOR QUANTUM NOISE

Following the individual definition of the three quan-
tum noise channels, we now define the unified quantum
noise model.

A. Quantum Noise Parameters

These parameters are used by the individual quantum
noise channels and are usually given by calibration of the
quantum computer. For the IBM quantum computers,
the calibrated parameters are publicly available.

There are a few techniques used to calibrate the error
rates and decoherence times of quantum computers, like
cross-entropy benchmarking [36, 37], process tomography
[38–40] or randomised benchmarking [41–48]. Random-
ized benchmarking specifically is the most used and most
prominent technique, with a few recent alterations like
cycle benchmarking [49] or dihedral benchmarking [50].

For the first error group the noise parameters come
in the form of operation error rates: they represent the
probability p1 that a gate, when applied in the quantum

Error Group Type of Parameter Number of Parameters

Depolarizing Error Rates p1 r
SPAM Error Rates p2 m + s

Thermal Relax. Times T1 and T2 2n

TABLE I. Type and number of parameters for each of the
three error groups; n is the number of qubits in the system,
m is the number of qubits that are measured, s is the num-
ber of state preparations that occur and r is the number of
distinct types of gates implemented in the architecture, each
considered once per qubit or pair of qubits.

circuit, produces an erroneous outcome. Each individ-
ual type of gates implemented within the architecture
(Pauli gates, Clifford gates, CNOT etc) is associated with
a specific error rate. Additionally, each type of gate has
different error rates depending on the qubit(s) that they
are applied on.

Similarly, the SPAM channel noise parameters are a se-
lection of error rates that represent the probability that
the preparation of the initial quantum state or the out-
come of a measurement will be erroneous (p′2 and p2 re-
spectively). Each qubit in the system yields different
error rates when prepared or measured.

Table I shows the type of parameters with respect to
each quantum noise channel, as well as how many pa-
rameters are associated with each error channel.

B. Constructing the Unified Model

The main characteristic of our model is its architec-
ture awareness. The model takes into account the con-
nectivity of the qubits within the architectural graph of
the computer, as well as the specific properties of the
qubits (i.e., decoherence time) and the gates (i.e., execu-
tion time, error rates) that participate in the system.

a. Depolarizing Channel. A circuit executed di-
rectly on a quantum computer includes either single- or
two-qubit gates. We can construct the depolarizing quan-
tum channel according to the following rules:

1. Single-qubit errors occur after a single-qubit gate
in compliance with the single-qubit error rates.

2. Two-qubit errors occur after a two-qubit gate ac-
cording to the two-qubit error rates. Here, in the
context of an architecture-aware model, the knowl-
edge of the computer’s qubit connectivity is en-
coded within the model.

b. SPAM Channel. State preparation errors take
place after the state preparation, if that occurs, and mea-
surement errors occur before measurement according to
their respective error rates.

c. Thermal Relaxation and Dephasing Channel. Fi-
nally, we can apply the relaxation and dephasing channel
as a function on each individual qubit in the system. This
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FIG. 1. The unified quantum noise model on a single-qubit circuit. The SPAM model is applied at the start, after the state
preparation (if that occurs) and at the end before the measurement. The depolarizing channel (DC) is applied after every
gate during the evolution of the circuit. The relaxation and dephasing channel (TRC) is applied after every gate and after the
depolarizing channel.

function is implemented after each gate is applied and oc-
curs according to the relaxation and dephasing times of
each qubit in the system, as well as the duration of each
type of quantum gate within the system.

d. Unifying the Channels. We have implemented
our model in Qiskit, which can simulate the thermal de-
cay and dephasing quantum channel. Additionally, this
channel requires the average execution time of each type
of gate. These times are assumed to remain static for
each quantum computer.

Having a set of guidelines on the construction of the in-
dividual quantum channels, we can now easily create the
unified quantum noise model as the combination of the
three noise channels. The application of every quantum
channel is independent and their combination is simply
computed by composing the error operators with the cir-
cuit gates. Assuming an arbitrary number t of unitary,
single-qubit quantum gates Ut, and an initial quantum
state ρ0, we can express the effect of the unified noise
model on the evolution by the following operator

V = M · S ·
∏
t

(
N · D · Ut

)
· N · S ′ · P (ρ0) (6)

where Ut(ρ) = UtρU
†
t , D, S, S ′ and N are the depo-

larizing, measurement, state preparation, and relaxation
and dephasing channels respectively, M is a measure-
ment superoperator, P is a state preparation superoper-
ator. This definition can be readily expanded to account
for higher dimensional operators (e.g., for two-qubit op-
erations). Figure 1 visualizes the unified quantum noise
model for the single-qubit case.

Finally, it is noteworthy how the model treats single-
and two-qubit gates differently when the depolarizing and
relaxation and dephasing channels are applied. After
each gate in the circuit, the two channels occur inde-
pendently of each other and can be combined by compo-
sition. Figure 2 visualises the effect of the channels on
each type of gate. Specifically, in the two-qubit gate, we
observe that only the target qubit is affected by the de-
polarizing channel. This happens as, within our model,
the part of the operation that has a chance to go wrong
is the “state change”. In other words, the control qubit
acts just as a driver of the quantum gate, and the gate

FIG. 2. (a) Application of depolarizing (DC) and relaxation
and dephasing (TRC) channels on a single-qubit gate. (b)
Application of the two channels on a two-qubit gate; |ctrl〉 and
|tgt〉 are control and target qubits; the channels are applied
independently on each qubit and I is the identity, which is
considered a virtual gate with zero execution time.

has no effect on its state, either willingly or through the
effects of noise.

IV. SIMULATING NOISE IN QUANTUM
COMPUTERS

For our experiments, the unified quantum noise model
is implemented using Python and the circuits are ex-
ecuted using the IBMQ Qiskit simulators [22] and the
15-qubit Melbourne computer. Of course, this does not
induce any difficulties in applying the model in different
architectures that use QASM or QASM-type implemen-
tation for the low level quantum circuits. The code is
available on GitHub [51].
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A. Preliminary Methods

For our experiments we use discrete-time and space
quantum walks. The main reason for this choice is the
predictable behaviour and the susceptibility of this algo-
rithm to quantum noise. In addition, to test the per-
formance of our model we need a metric to compare the
results of the simulated noisy evolution and the execution
on the quantum computer. For this purpose we use the
Hellinger distance. Below we present a brief description
of these two subjects.

a. Discrete-time Quantum Walks. Quantum walks
are unitary processes that describe the quantum mechan-
ical analogue of a random walk on a graph or a lat-
tice [52–54]. They possess intrinsic properties that make
them highly susceptible to quantum noise. First of all,
discrete-time quantum walks exhibit modular behaviour
[53, 55]. This characteristic describes the modular rela-
tionship between the parity of the number of coin-flips of
the walk, the initial state and the current position of the
walker, a property that gets violated in a noisy environ-
ment [53]. For example, a walker initialized in an even
state (e.g., |2〉), after an odd number of steps (i.e., 1) will
be found on an odd state (e.g., |1〉 or |3〉). The second
property is that quantum walks propagate quadratically
further than classical random walks [52, 56].

For the implementation of quantum walks, we will
use a gate efficient approach that uses inverter gates, as
shown in [57]. In a previous work [53] we found that the
number of gates in the circuit increases with the size of
the state space, N , as O(log2N). More details on the
quantum walk circuit can be found in Appendix B.

b. Hellinger Distance (HD). To compare the prob-
ability distributions of the noise model against the dis-
tributions generated by the quantum computer, we use
the Hellinger distance [58].

Definition 1 (Hellinger distance). For probability dis-
tributions P = {pi}i∈[s], Q = {qi}i∈[s] supported on [s],
the Hellinger distance between them is defined as

h(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)

2
. (7)

The Hellinger distance is a metric satisfying the tri-
angle inequality. It takes values between 0 and 1 (i.e.
h(P,Q) ∈ [0, 1]) with 0 meaning that the two distribu-
tions are equal. Additionally, it is easy to compute, easy
to read and it does not depend on the probability distri-
butions having the same support. The last property is
particularly useful since in many ideal output distribu-
tion of quantum circuits the probability mass is concen-
trated on a few states.

c. Model Parameters. As described in Section III A,
there are several parameters corresponding to each of the
error groups we simulate. The architecture awareness of
the model takes into account the individual error rates
and decoherence times for each quibit separately, as well

1qb Errors 2qb Errors Meas. Errors T1 (µs) T2 (µs)

11.68× 10−4 3.17× 10−2 7.61× 10−2 56.15 56.01

TABLE II. Average noise parameters for all the qubits of the
IBMQ 15-qubit Melbourne machine used on the date of the
experiments. 1qb Errors are the single-qubit gate errors, 2qb
Errors the two-qubit gate errors, Meas. Errors the readout
errors and T1 and T2 the average relaxation and dephasing
times of all 15 qubits.

as for each pair of qubits through the connectivity of
the architecture. Table II showcases an example of the
average for each category of error rates used in our model,
calculated on the date of the experiments.

B. Experiments and Results with the Calibrated
Parameters

For our experiments we will run one step of the quan-
tum walk (i.e., one coin-flip), as previous work shows that
this duration is satisfactory for errors to take place and
the behaviour of the quantum walk to evolve in a pre-
dictable manner [53]. In general, we use as initial state
for our quantum walks the state |0〉, which means we do
not need to deal with state preparation errors.

Alongside our unified quantum noise model (UNM),
we evaluate four additional noise models:

• QiskitCM: a combination of a readout error, a de-
polarizing error and a relaxation and dephasing er-
ror implemented within Qiskit2,

• DSPAM: a simpler version of the UNM that in-
cludes the depolarizing model for the gate infideli-
ties and the SPAM model for the measurement er-
rors,

• TRM: a standalone relaxation and dephasing
model implemented in Qiskit that follows the main
principles of Error Group 3 (Section II C) and

• SDM: a simple depolarizing model that is not
architecture-aware.

This allows for a clearer comparison of the model per-
formance on approximating the noisy behaviour of the
computer. The QiskitCM model is clearly the more com-
plex of the IBMQ noise simulators and, shares similar-
ities with the UNM on the way it computes the error.
On the other hand, QiskitCM does not take into account
the noise parameters for each qubit separately, but cal-
culates and utilizes their averages, a fact that is reflected
through a larger deviation from the quantum computer

2 More concrete description in Qiskit documentation: https://

qiskit.org/documentation/apidoc/aer_noise.html

https://qiskit.org/documentation/apidoc/aer_noise.html
https://qiskit.org/documentation/apidoc/aer_noise.html
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distribution than the UNM (see Table VI). The DSPAM
and TRM models are, essentially, a separate and sim-
ple implementation of Error Groups 1 and 2, respec-
tively. Finally, the SDM model is just a simple depolar-
izing model that is completely architecture-aware, i.e., it
does not take into account the connectivity of the qubits
within the QPU, but instead, computes the noise through
a simple probabilistic application of Pauli errors during
the computation.

Our experimental methodology consists of 100,000
runs of the quantum walk, with the configurations de-
scribed above, on the quantum computer and as a sim-
ulation with each of the noise models introduced above.
We are interested in quantifying how close each model’s
evolution is to the quantum computer. Thus, we compute
the Hellinger distance (HD) between the distribution of
each simulated noise model and the computer. Figure
3(a) shows that on a two-qubit system, the unified quan-
tum noise model provides a better approximation of the
quantum computer’s distribution than the other noise
models. A numerical comparison of this result is shown
in Table III (line N = 4).

The next experiment repeats the above methodology
for a quantum walk on three qubits. The respective re-
sults are shown in Figure 3(b). Again, the results show-
case the superiority of the unified quantum noise model
to the rest, with the smallest HD of 0.12749 from the
computer. This value, and indeed the distances of all the
models from the computer, are much higher than the cor-
responding figures for smaller, two qubits quantum walk.
This tells us that the models perform worse in approxi-
mating the noisy evolution of bigger quantum circuits.

Additional results from further experiments are shown
in Table III. In general, we can see that the distance from
the quantum computer’s distribution is increasing with
the number of qubits in the system. This is true for all
the models. It is easy to realise that our UNM performs
best, followed closely by QiskitCM.

As a final remark, it becomes apparent by the experi-
mental results that the quantum computer, for quantum
walks of size bigger than N = 8, produces probability
distributions that are closer to the uniform distribution
due to excessive noise. Nevertheless, these results are
driven by the effects and intensity of the noise within the
QPU, and thus, are included in this analysis.

C. Unified Noise Model vs Gate Set Tomography

One of the prominent protocols for characterizing
quantum operations is gate set tomography (GST) [59].
GST has been used in a large number of experiments
[60–66] and implemented in open-source software [67, 68].
The basic aim of GST is to characterize quantum oper-
ations performed by hardware. GST allows one to esti-
mate the performance for a system with a small number
of qubits. Additionally, it reconstructs or estimates not a
single logic operation, but an entire set of logic operations

(hence, gate set).
The characteristics of GST give rise to a meaningful

comparison to our UNM. The unified model aims to re-
construct (simulate) the entire quantum evolution of a
circuit. It follows the quantum circuit execution at run-
time and simulates the effects of noise on three levels,
gate infidelities, state preparation and measurement and
decoherence and dephasing of the qubits. On the other
hand, the GST is aimed to predictive characterization of
the quantum gates of the circuit within the QPU, i.e.,
how the logic operations affect the qubits they act upon.
The quantum gates need to be specified before the GST
reconstructs the gate-driven evolution.

Furthermore, the GST protocol works well with small
quantum systems [68, 69] whereas our UNM aims to ap-
proximate the noisy evolution within a QPU irrespective
of the size of the quantum system. Thus, whereas GST
works well for two- or three-qubit systems, the UNM is
designed to scale with the size of the quantum circuit
and the number of qubits. Of course, there is an up-
per bound on the scaling capabilities of the UNM tied to
the increasing difficulty of classical machines to simulate
increasing number of qubits.

Finally, one characteristic of the GST protocol is that
it is calibration-free [69]. When GST reconstructs a
model of a quantum system, it does not depend on any
prior description of the measurements used or the states
that can be prepared. The UNM, as is evident from
the analysis above, depends on a set of quantum noise
parameters, which reflect the levels of noise within the
QPU during the execution of the quantum circuit. Thus,
calibration of these noise parameters (or error rates) is
essential for the success of the unified noise model, a rea-
son that leads to the development of the noise parameter
optimization technique showcased in the following sec-
tion.

D. Noise Modelling in Quantum Error Correction

One of the most prominent fields in the development of
quantum computing is quantum error correction (QEC).
Within QEC there is a large amount of literature and
research along the lines of error analysis with NISQ sys-
tems. Similarly to our research, noise within a quantum
computer is categorized in coherent systematic gate er-
rors, environmental decoherence and models of loss, leak-
age, measurement and initialization errors [70, 71].

Systematic noise contains any errors caused by faults
of the quantum gates themselves, much like the gate in-
fidelities within the UNM. Environmental decoherence
tries to highlight how QEC relates to environmental ef-
fects. An elegant model for characterizing decoherence
on open quantum systems is the Lindblad formalism
[28, 72, 73], accompanied with several assumptions that
may not hold in some cases [74–77]. Particularly in su-
perconducting systems where cross-talk and fluctuating
charges can cause decoherence, the need arises for more
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No. States (N) No. Qubits (logN) UNM QiskitCM DSPAM TRM SDM Ideal Uniform

4 2 0.033 0.040 0.049 0.229 0.126 0.264 0.218

8 3 0.127 0.152 0.224 0.438 0.280 0.771 0.186

16 4 0.224 0.262 0.369 0.476 0.329 0.834 0.150

32 5 0.393 0.421 0.482 0.505 0.467 0.862 0.434

64 6 0.457 0.509 0.525 0.587 0.576 0.891 0.579

TABLE III. Hellinger distance between the probability distributions of the quantum computer and the various noise models, as
well as the ideal and uniform distributions. For ease of presentation, the acronyms are ascribed as UNM: unified noise model,
QiskitCM: the Qiskit composite model, DSPAM: depolarizing and SPAM, TRM: relaxation and dephasing model, SDM: simple
depolarizing model, Ideal: the theoretical distribution from an ideal (noise-free) quantum walk, Uniform: uniform distribution,
for the maximum-entropy guess.

FIG. 3. (Color online) Comparison between the probability distributions of a quantum walk on (a) a two-qubit system and
(b) a three-qubit system, simulated with the UNM (light-coloured vertically lined bar), QiskitCM (dark-coloured crossed bar),
TRM (tiled bar), DSPAM (dark-coloured vertically lined bar), SDM (solid bar) and run on the actual quantum computer
(light-coloured crossed bar). The quantum walk propagates for one coin-flip; error bars with 95% confidence intervals are
shown for the three-qubit system; for the two-qubit system they are smaller than 10−3, hence are not displayed.

specific decoherence models. One way to construct such
models is via more general mappings [71], or alterna-
tively, a combination of models like the UNM presented
in this work.

A recent paper [78] discusses a structure for QEC
which relies, amongst others, on evaluating noise mod-
eling techniques or combinations of them. Our UNM is a
perfect fit for such an approach by combining the major
sources of error that play a significant role in quantum
error mitigation.

Finally, it is evident that more complex or expanded
quantum channels have the ability to better recreate the
quantum noise before any type of QEC is applied [79].
Hence, incorporation of further types of systematic noise,
like Clifford errors, or environmental decoherence, like
electromagnetic noise, to the UNM, can lead to an even
more accurate model for quantum noise.

V. OPTIMIZING THE QUANTUM NOISE
PARAMETERS

Up to this point, the noise parameters used in our
model are the ones calibrated from the computer it-
self. As evident by the experiments in Section IV, that
provides us with approximations that deviate from the
quantum computer’s evolution. In this section we imple-
ment a classical methodology that allows us to optimize
the aforementioned noise parameters for the UNM and
mimic the evolution of the quantum computer much more
closely. Notably, such a procedure is possible for our uni-
fied noise model as it is easy to alter and feed the noise
parameters to the model before a simulation. This is not
possible, for example, when using the QiskitCM model as
it automatically draws the hardware-calibrated parame-
ters from the IBM computer itself and then constructs
the model, a procedure we have no control over. This is
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indeed a limitation of the software implementation and
not of the mathematical model itself.

As shown in Section III A there is a large number of
parameters associated with each error group and their
number grows with the size of the state space of the walk.
Within the scope of this research we are working with the
parameters associated with the depolarizing Pauli and
SPAM models, i.e., error groups 1 and 2. The size of this
set of parameters can be calculated as r+m+s, where m
is the number of qubits in the system that are measured,
s the number of qubits that undergo state preparation
and r is the number of different types of gates that are
included in the circuit relative to the architecture of the
quantum computer.

The decision to exclude the relaxation and dephasing
parameters, T1(q) and T2(q), is taken for two main rea-
sons. First of all, these parameters have to be taken
into account per qubit, (hence the (q)). This means that
with larger workspaces, the number of parameters for
optimization grows very fast, rendering parameter opti-
mization exceedingly taxing. This also means that, since
there are more parameters to optimize, for the same
number of generations, a smaller space of the possible
optimal parameters will be explored, lowering the per-
formance of the genetic algorithm. Secondly, the run-
time of the parameter optimization becomes increasingly
larger. (A further analysis regarding parameter opti-
mization including the decoherence rates is given in Ap-
pendix C. The results show that the increase in efficiency
of noise simulations is not enough to justify the associ-
ated increase in computational resources.) Throughout
our work we find that the relaxation and dephasing of
the qubits are parameters tied closely with the physi-
cal implementation of the qubits themselves within each
quantum computer. Thus, we believe that an optimiza-
tion of those parameters would prove more valuable when
implemented on a qubit engineering modelling level.

In our quantum walks experiments, we are concerned
with an implementation that includes Hadamard, in-
verter and CNOT gates. Important here is that every gate
will be considered for the parameter count only once per
qubit or pair of qubits, no matter how many times it is
used in the circuit. Thus, the number of parameters that
need optimizing is (1 + rc + rt) +m+ s, where m is the
number of qubits measured, s the number of state prepa-
rations, rc is the number of inverter gates, rt the number
of CNOT gates and +1 for the Hadamard gate. It is note-
worthy that, due to tiny differences in the error rates
of single-qubit gates, we can omit the differentiation be-
tween Hadamard and inverter gates without needing to
optimize both types. Thus, the number of parameters
can be calculated as rs + rt + m + s, with rs being the
single-qubit gates.

A. Parameter Optimization

In order to obtain a set of better parameters we use
a method based on genetic algorithms (GA) [80]. This
method relies on iterative generations of new parameters,
simulations using said new parameters and comparison
of the simulated results with the quantum computer’s
distribution. In each iteration, the parameters that bring
the simulated evolution closer to the quantum computer
are kept.

In order to keep the execution time small and the re-
sults presentable, we will again use a quantum walk with
a small state space of N = 4 and a three-qubit system for
its execution. Here we need three qubits as one is neces-
sary for the quantum coin. The coin is never measured,
meaning the results of its error rate’s optimization will
not be directly visible, but through the overall effects on
the computation.

A comparison between pre and postoptimization for
the two-qubit quantum walk after a single optimization
routine is shown in Figure 4. For this task, we allow
for 50 generations of the genetic algorithm. The number
of parameters that undergo optimization for the exper-
iment on the IBMQ 15-qubit Melbourne machine is 9:
rs = 4 single-qubit gate error rates, one for each of the
four qubits in the system, rt = 3 two-qubit gates ac-
cording to the architecture of the computer, one for each
pair of connected qubits, and m = 2 measurements at
the end of the computation. As the computation is ini-

tialized at state |0〉⊗(logN)
, we do not account for state

preparation of the qubits (s = 0). The HD between the
postoptimization simulation of the quantum circuit and
the quantum computer has decreased from ∼ 0.033 to
∼ 0.005, an approximately 84.85% improvement.

We can use the same methodology for a quantum walk
on the Melbourne quantum computer with a state space
of N = 8. In this case, due to the nature of the imple-
mentation of the circuit, we will require an ancilla register
[53], which takes the number of qubits in the system to
six. The number of parameters that require optimization
is 14: rs = 6 single-qubit rates, rt = 5 two-qubit rates,
m = 3 qubits measured – the state space of the quantum
walk – and s = 0 as we initialize on |0〉. For consistency,
the GA is evolved for 50 generations. Additionally, we
calculate the runtime of the optimization routine on the
classical computer. The results after a single optimiza-
tion routine are shown in Figure 5. The HD between the
postoptimization simulation of the quantum circuit and
the quantum computer has decreased from ∼ 0.127 to
∼ 0.054, an approximately 57% improvement.

Similar results are given for larger state spaces of the
quantum walk. Table IV(a) presents the averaged results
from three optimization routines, i.e., three runs of the
genetic algorithm routine for 50 generations each. Due
to the need of ancillary qubits in the computation, the
number of parameters that need optimization becomes
large quickly. This means that the GA routine becomes
slower with every qubit added in the state-space register.
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No. States (N) Size of Workspace HD (Pre) HD (Post) ± s.d. % Distance CPU Runtime (×103 sec)

4 4 0.033 0.005± 0.001 84.85 ↓ 6.5

8 6 0.127 0.054± 0.003 57.48 ↓ 9.5

16 8 0.224 0.152± 0.006 32.14 ↓ 12.1

32 10 0.393 0.301± 0.025 23.41 ↓ 46.7

64 12 0.457 0.377± 0.016 17.51 ↓ 93.5

(a) Optimization with 50 generations.

No. States (N) Size of Workspace HD (Pre) HD (Post) % Distance CPU Runtime (×103 sec)

4 4 0.033 0.003± 0.001 88.26 ↓ 8.2

8 6 0.127 0.035± 0.004 72.44 ↓ 11.3

16 8 0.224 0.121± 0.013 45.98 ↓ 26.4

32 10 0.393 0.246± 0.014 37.40 ↓ 87.9

64 12 0.457 0.336± 0.029 26.48 ↓ 178.9

(b) Optimization with 100 generations.

TABLE IV. Results averaged from three optimization routines of quantum noise parameters with our UNM model. Each routine
is run for (a) 50 and (b) 100 generations of the genetic algorithm. HD (Pre) and HD (Post) are the HD between the probability
distributions of the quantum computer and the simulator preoptimization and postoptimization (along with standard deviation,
s.d., rounded up to three decimal points) respectively; ↑ or ↓ mean increase or decrease in the distance between the distributions.
The size of workspace is the number of qubits necessary for the computation (i.e. ancilla included). The runtime showcased is
the average of the three optimization routines. Note: since the HD (Pre) is the distance preoptimization, there are no multiple
runs and hence, no need for standard deviation.

FIG. 4. (Color online) Probability distribution of pre and
postoptimization (crossed and vertically lined bars respec-
tively) after a single optimization routine compared with the
quantum computer distribution (tiled bar). The optimized set
produces a distribution that is 84.85% closer to the quantum
computer’s.

In addition, we note that the efficiency of the param-
eters postoptimization declines with the size of the state
space. The main reason for that is the fact that we kept
the number of generations of the algorithm stable to 50
iterations. We find that more generations of the GA dur-
ing the experiments provide further improvement on the

FIG. 5. (Color online) Probability distribution of pre and
postoptimization (crossed and vertically lined bars respec-
tively) after a single optimization routine compared with the
quantum computer distribution (tiled bar). The optimized set
produces a distribution that is 57.48% closer to the quantum
computer’s.

approximation of the quantum computer’s distribution,
even on quantum walks with larger state spaces (see Ta-
ble IV(b)).

As a final remark we reiterate our decision not to in-
clude the relaxation and dephasing parameters in the op-
timization. From Table VI we see that the two-qubit
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quantum walk postoptimization offers a similar increase
in efficiency for half the generations as when also optimiz-
ing the decoherence parameters (i.e., 84.85% vs 85.48%
respectively). Similarly, for the three-qubit quantum
walk and the same number of generations the optimiza-
tion without the decoherence parameters approximates
the quantum computer better than when the decoherence
rates are optimized (i.e., 72.44% vs 64.57% respectively).
See Appendix C for more details.

For the parameter optimization we used a MacBook
Pro 2017 computer with a 2.3 GHz Intel Core i5 processor
and 16 GB of memory.

B. Noise Parameters Analysis

Here, we compare the model parameters pre and
postoptimization for the N = 4 states case. We chose
the smallest system as it has the smallest number of pa-
rameters optimized, but the same analysis can be carried
out for a system of any size.

Table V shows the relevant noise parameters for the
N = 4 state space quantum walk pre and postoptimiza-
tion, after a single optimization routine. Overall we can
say that our noise models operate closer to the com-
puter for different error rates than the ones provided by
the computer’s calibrations. More specifically, compar-
ing the parameters pre and postoptimization from Table
V, single-qubit operations and measurements on qubits 0
and 1 of the IBM quantum computer are noisier than the
calibrations claim, with the opposite being true for qubits
2 and 3 and two-qubit operations on all qubit pairs.

The same analysis applied to the larger systems shows
that our model performs closer to the computer when
single-qubit operations and measurements are, in their
majority, noisier than calibrated, whereas two-qubit op-
erations tend to be less noisy. There are different factors
that cause this. First of all, the length of the experi-
ment. For larger experiments, where the computation is
much longer than the times T1 and T2, it is very difficult
to get a concrete conclusion through such an analysis.
As shown above, for smaller computations (and not nec-
essarily quantum walks), the above methodology could
provide a very good picture of whether the quantum com-
puter calibrations overestimate or underestimate each of
the error rates. Secondly, the above findings are the aver-
aged results of three optimization routines. This means
that the claim of this analysis could still be an artefact
of the randomness embedded within our parameter op-
timization technique. Further optimization runs for the
same experiment could revoke this ambiguity. Unfortu-
nately this endeavour could prove increasingly time con-
suming, especially for longer computations with a much
larger number of noise parameters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to mod-
elling the noise in quantum computers that combines
three sources of error, each modeled through quantum
channels whose basic principles are well-known within
the field. The model takes into account the architectural
characteristics of the quantum computer (i.e., qubit con-
nectivity) as well as various hardware-calibrated noise
parameters in order to simulate the noisy quantum evo-
lution within the computer. We have tested our unified
noise model by evaluating its performance when execut-
ing quantum walks over different state spaces. Compar-
isons with the probability distributions from other sim-
ulated noise models, as well as the IBMQ 15-qubit Mel-
bourne machine, have shown that our unified model offers
a better approximation of the quantum computer’s noisy
evolution. To further improve the efficiency of our noise
model, we have implemented parameter optimization via
a genetic algorithm. Experiments have shown that our
optimized parameters offer a better approximation of the
quantum computer behaviour that can be more than 84%
closer to the actual one.

A recent study [81] simulates the relaxation of station-
ary states in order to obtain spectroscopic fingerprints of
their noisy. The results show that noise follows largely
non-Markovian behaviour. They also suggest that quan-
tum computers can be modelled as non-Markovian noise
baths and analysed through simulations, thus providing
interesting potential applications on error mitigation.

Within our work, the unified noise model employs a
highly Markovian approach to simulate the noise and de-
coherence for all three quantum channels. As is evident
by the results, this approach produces a satisfactory per-
formance, especially on small quantum systems. It would
be interesting to include non-Markovian noise into our
framework and investigate its pros and cons.

Future additions to our unified model could include
the consideration of further sources of error. Examples
include, but are not limited to, errors from the Clifford
group [21], or additional forms of decoherence, i.e., elec-
tromagnetic. Furthermore, within the context of this
work, we consider SPAM errors to be purely errors of the
hardware with the most common error to be a Pauli-X.
It is possible that state preparation or measurement de-
vices could cause other types of error, i.e., Pauli-Z or -Y ,
or thermal decoherence or dephasing due to the duration
of such operations. Our limitation of SPAM errors to
exclusively Pauli-X seems to work well-enough in terms
of precision, especially postoptimization, but further im-
provements could be found considering such additional
types of noise.

On the optimization side, the novelty of our work is
twofold: first, the idea and framework for such a tech-
nique, has not been carried out before, to the best of our
knowledge, and secondly, the unified noise model allows
for such an optimization (unlike other models, i.e., the
IBMQ models we compare with the UNM). Further im-
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Optimization Sq(0) Sq(1) Sq(2) Sq(3) CNOT(0, 1) CNOT(1, 2) CNOT(2, 3) M(0) M(1) M(2)

Pre 0.000631 0.000550 0.000550 0.000496 0.015850 0.011410 0.021430 0.036700 0.080900 0.032400

Post 0.000685 0.000725 0.000406 0.000479 0.010435 0.010074 0.013219 0.038924 0.090734 0.039960

TABLE V. Pre and postoptimization noise parameters for N = 4 state space system; Sq(q) are the single-qubit gate error
rates, including Hadamard and NOT gates, CNOT(q, q′) are the two-qubit gate error rates and M(q) are the measurement
error rates for each qubit q or pair of qubits (q, q′), according to the architecture of the quantum computer.

provements in the accuracy of our optimized parameters
could be obtained by adjusting the characteristics of the
genetic algorithm, like implementing a larger number of
iterations during the optimization, or even experimenting
with other optimization techniques.

Noise is one of the main challenges preventing univer-
sal and scalable quantum computation. Our work has
shown that unifying noise sources on a single model re-
sults in a better approximation of the noisy evolution of
a quantum computer. Additionally, hardware-calibrated
noise parameters often produce simulations that deviate
from the actual noise within the quantum computer. Our
model is able to showcase this weakness, to present an
insight on what the noise parameters look like within
our unified model and to assist on limiting the gap be-
tween calibrated and simulated noise parameters. Fi-
nally, our approach to noise modelling can assist with
the understanding of noise within quantum computers
and consequently be utilized during the design or test-
ing of error correcting methods or calibration techniques
and attempts to minimize the noise in near-term quan-
tum computers.
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Appendix A: Thermal Relaxation and Dephasing
Model

This section supplements the Section II C description
of the thermal decoherence and dephasing channel on
the general case, i.e., when we also take thermal exci-
tation into account. Here we consider the temperature
of the quantum processor to be Θ ≥ 0. Having defined
in Section II C the time parameters T1, T2, Tg and the
probabilities pT1

and pT2
, as well as equation (3) and the

probability of reset as preset = 1 − pT1
, we can identify

the following forms of noise for the case where T2 ≤ T1:

• Dephasing. A phase-flip which occurs with proba-
bility pZ = (1− preset)(1− pT2

p−1
T1

)/2.

• Reset to |0〉. This represents a quantum decay, or

a jump to the ground state, and occurs with prob-
ability preset0 = (1− we)preset.

• Reset to |1〉. This represents a spontaneous exci-
tation, or a jump to the excited state, and occurs
with probability preset1 = wepreset.

• Identity. In this case, nothing happens to the state,
or otherwise, the identity, I, occurs with probabil-
ity pI = 1− pZ − preset0 − preset1 .

where we is given as in equation (3).
The operators for this case follow simply from the

forms of noise described above as

KI =
√
pII,

KZ =
√
pZZ,

Kreset0 =
√
preset0 |0〉 〈0| ,

Kreset1 =
√
preset1 |1〉 〈1| .

(A1)

and the operator-sum representation describing the
quantum channel will be

ρ 7→ N (ρ) =
∑

k∈{I,Z,reset0,reset1}

KkρK
†
k.

If 2T1 ≥ T2 > T1 then a Choi-matrix representation
of the form of equation (5) is used, as in Section II C. In
general, a Choi matrix is defined as

C =
∑
i,j

|i〉 〈j| ⊗ E (|i〉 〈j|) ,

with E(·) an arbitrary quantum channel. For a single-
qubit case, we have i, j = {0, 1}.

The transition from Choi-matrix representation to
operator-sum representation can be done via the spec-
tral theorem as

C =

r∑
j=1

vjv
†
j

for vectors v1, . . . , vr and r = rank(C). We can then de-
duce the Kraus operators to be the operators K1, . . . ,Kr

such that vec(Kj) = vj , for j ∈ {1, . . . , r}.
If the Choi matrix is Hermitian, then, given an iso-

morphism from Cn2

to Cn×n, the Kraus operators can
be expressed as

Kλ =
√
λΦ(vλ),
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FIG. 6. Generalised CNOT gate with n control qubits (q0
to qn), n − 1 ancilla qubits (anc0 to ancn−1) and one target
qubit (tgt).

where λ are the eigenvalues and vλ the eigenvectors of C.
If the Choi matrix is not Hermitian, or if its eigenvalues

are negative, then singular value decomposition (SVD) is
applied. Let the SVD of the Choi matrix be

C = UΣV †,

where Σ = diag(σ1, . . . , σn), σi ≥ 0, U = (u1| . . . |un) the
left singular vectors and V = (v1| . . . |vn) the right sin-
gular vectors. This leads to two sets of Kraus operators,
one for the left and one for the right map, which can be
expressed as

Kl
i =
√
σiΦ(ui)

Kr
i =
√
σiΦ(vi).

If the left and right Kraus operators are not equal, i.e.
ui 6= vi for some i ∈ [1, . . . , n], then they do not represent
a completely positive trace preserving map, triggering an
error in the thermal relaxation model.

Appendix B: Circuit for Discrete-time Quantum
Walk

The approach used to implement the discrete-time
quantum walk within this circuit was first introduced in
[57]. It uses what is called a generalized control quan-
tum gate, i.e., a quantum gate controlled by two or more
qubits. In [53] we showcased a general strategy to imple-
ment a generalized CNOT gate using the expansion of
the form presented in Figure 6.

The quantum walk circuit can be constructed as a se-
quence of two functions, an increment, which essentially

FIG. 7. (a) Implementation of one step for the quantum walk
of a particle. (b) Quantum circuits for increment and decre-
ment operations. A filled control circle means that the control
qubits have to be in state |1〉 in order for the operation to oc-
cur. An empty control circle means they have to be in state
|0〉.

increases the state of the quantum register, and a decre-
ment, which decreases it. These two functions are im-
plemented for an arbitrary number of qubits as shown
Figure 7.

Appendix C: Genetic Algorithm Optimization
Including the Decoherence Parameters

Here we present the results of parameter optimization
when the relaxation and dephasing rates T1(q) and T2(q)
are included. These parameters need to be considered
per qubit in the system, including the ancilla and coin
qubits. Considering the two optimization routines an-
alyzed in Section V A, for a state space of N = 4 the
number of parameters that need optimizing are 17: 9
parameters that represent the hardware infidelities and
SPAM errors, as shown in Section V A, plus 8 relaxation
times T1(q) and T2(q), one for each of the four qubits in
the workspace. For N = 8 the number of parameters is
26: 14 for the hardware and SPAM errors plus 12 relax-
ation and dephasing times, one for each of the six qubits
in the workspace. Table VI shows the results of a GA
parameter optimization routine with 100 generations.

When comparing the results of this table to those
showcased in Table IV(b) we can draw some very in-
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No. States (N) Size of Workspace HD (Pre) HD (Post) % Distance CPU Runtime (×10−3 sec)

4 4 0.033 0.0048 85.48 ↓ 8.1

8 6 0.127 0.045 64.57 ↓ 11.9

TABLE VI. Simple table following the trend of Table IV.

teresting conclusions. As is evident from the percentage
of decrease in the distance between the distributions of
the simulated quantum walk and the evolution of the
quantum computer, the optimization performs better in
both cases when the decoherence parameters T1(q) and
T2(q) are excluded from the optimization. There are a
couple of reasons for this, the most important of which
is the fact that with more parameters to optimize, less
space of the potential optimal parameters is searched.
Secondly, the thermal relaxation and dephasing model
requires T2(q) ≤ 2T1(q), which means that we have to en-
force this condition within the parameter optimization,

something that will, again, limit the space within which
the GA can look for the optimal parameters.

Furthermore, we observe an increase in the compu-
tational resources necessary for the optimization when
these parameters are included. This derives from the
aforementioned decrease in the performance of the op-
timization routine due to the increased number in pa-
rameters. In other words, to get the same increase in
efficiency of our simulations we would need to run more
generations of the genetic algorithm. This cripples the
performance of the optimization routine, especially for
the experiments with a very large workspace.
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