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Abstract

Substantial progresses in protein structure prediction have been made by utilizing

deep-learning and residue-residue distance prediction since CASP13. Inspired by

the advances, we improve our CASP14 MULTICOM protein structure prediction

system by incorporating three new components: (a) a new deep learning-based pro-

tein inter-residue distance predictor to improve template-free (ab initio) tertiary

structure prediction, (b) an enhanced template-based tertiary structure prediction

method, and (c) distance-based model quality assessment methods empowered by

deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked

seventh out of 146 predictors in tertiary structure prediction and ranked third out

of 136 predictors in inter-domain structure prediction. The results demonstrate

that the template-free modeling based on deep learning and residue-residue dis-

tance prediction can predict the correct topology for almost all template-based

modeling targets and a majority of hard targets (template-free targets or targets

whose templates cannot be recognized), which is a significant improvement over

the CASP13 MULTICOM predictor. Moreover, the template-free modeling per-

forms better than the template-based modeling on not only hard targets but also

the targets that have homologous templates. The performance of the template-free

modeling largely depends on the accuracy of distance prediction closely related to

the quality of multiple sequence alignments. The structural model quality assess-

ment works well on targets for which enough good models can be predicted, but it

may perform poorly when only a few good models are predicted for a hard target

and the distribution of model quality scores is highly skewed. MULTICOM is

available at https://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/

CASP14_DeepRank3 and https://github.com/multicom-toolbox/multicom/tree/

multicom_v2.0.
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1 | INTRODUCTION

Protein structure prediction is to computationally predict the three-

dimensional (3D) structure of a protein from its one-dimensional

(1D) amino acid sequence, which is much more efficient and cost-

effective than the gold-standard experimental structure determination

methods such as X-ray crystallography, nuclear magnetic resonance

(NMR) spectroscopy, and cryo-electron microscopy (cryo-EM). Com-

putational structure prediction becomes more and more useful for

elucidating protein structures as its accuracy improves.1 Two kinds of

structure prediction methods have been developed: template-based

modeling and template-free (ab initio) modeling. Template-based-

modeling (TBM) methods first identify protein homologs with known

structures for a target protein and then use them as templates to pre-

dict the target's structure.2,3 A common approach of identifying

homologous templates is based on Hidden Markov Models.4 When no

significant known template structures are identified, template-free

modeling (FM) is the only viable approach to build structures from

protein sequences. Traditional FM methods, such as Rosetta,5 attempt

to build tertiary structure by assembling the mini-structures of small

sequence fragments into the conformation of the whole protein

according to the guidance of statistical energy functions. Other FM

tools such as CONFOLD6 use inter-residue contact predictions as dis-

tance restraints to guide protein folding. In the 13th Critical Assess-

ment of Protein Structure Prediction (CASP13), AlphaFold,7 a FM

method based on deep learning distance prediction achieved the

highest accuracy on both TBM targets and FM targets. Other top

CASP13 tertiary structure prediction methods such as Zhang Group,8

MULTICOM,9 and RaptorX10 were also driven by deep learning and

contact/distance predictions.

Inspired by the advances, our CASP14 MULTICOM system is

equipped with a new deep-learning based protein inter-residue dis-

tance predictor (DeepDist11,12) to generate accurate contact/distance

predictions, which is used by DFOLD (https://github.com/jianlin-

cheng/DFOLD) and trRosetta13 to construct template-free structural

models. Moreover, the template-based prediction in MULTICOM is

simplified and enhanced by removing redundant template-identification

tools and using deeper multiple sequence alignments (MSAs) in tem-

plate search, while the template libraries and sequence databases are

updated continuously. In addition, 11 new features calculated from

predicted inter-residue distance/contact maps are used to predict the

quality of protein models in conjunction with other features in

DeepRank9 to rank and select protein models. As a result of the

improvements, MULTICOM was ranked seventh in tertiary structure

prediction and third in inter-domain structure prediction in CASP14.

In CASP14, AlphaFold2, an end-to-end attention-based deep

learning predictor achieved the unparalleled accuracy in predicting

tertiary structures. Instead of predicting the residue-residue distance

from multiple sequence alignments first and then reconstructing ter-

tiary structures from the distances, it directly predicts 3D structures

from multiple sequence alignments, indicating a new direction of the

end-to-end prediction of tertiary structures needs to be pursued in

the future.

2 | MATERIALS AND METHODS

2.1 | Overview of the MULTICOM system

The pipeline of MULTICOM human and automated server predictors

can be roughly divided into six parts: template-based modeling,

template-free modeling, domain parsing, model preprocessing, model

ranking, and final model generation as depicted in Figure 1.

When a target protein sequence is received, the template-based

modeling (Figure 1, Part A) and template-free modeling (Figure 1, Part

B) start to run in parallel. In the template-based modeling pipeline,

MULTICOM first builds the multiple sequence alignments (MSA) for

the target by searching it against sequence databases, which are used

to generate sequence profiles. Then, the sequences profiles or the tar-

get sequence are searched against the template profile/sequence

library by various alignment tools (BLAST,14 HHSearch,15 HHblits,4

HMMER,16 RaptorX,17 I-TASSER/MUSTER,18,19 SAM,20 PRC,21 and

so on to identify templates and generate pairwise target-template

alignments. A combined target-template alignment file is generated by

combining the pairwise alignments. Structural models are built

by feeding the combined alignment file into Modeller.22 In CASP14,

the MULTICOM system was blindly tested as five automated servers.

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT servers used

the template-based prediction system described above, which was

rather slow because it needed to run multiple sequence alignment

tools. To speed up prediction, MULTICOM-DEEP and MULTICOM-

HYBRID servers only used HHSearch and HHblits in the HHsuite

package as well as PSI-BLAST23 and HMMER to build sequence pro-

files and search for homologous templates, which are much faster

than MULTICOM-CLUSTER and MULTICOM-CONSTRUCT. Consid-

ering that the distance-based template-free modeling can often

achieve high accuracy on template-based targets, we also tested

MULTICOM-DIST server predictor that completely skipped template-

based modeling and used only template-free modeling for all the

CASP14 targets.

In the newly developed distance-based template-free modeling

pipeline (Figure 1, Part B), DeepMSA24 and DeepAln11 are used to

generate two kinds of multiple sequence alignments, which are used

to calculate residue-residue coevolution features that are fed into dif-

ferent deep neural networks of DeepDist to predict the distance

map—a two-dimensional matrix representing the inter-residue dis-

tances for the target protein. For some hard targets, the MSAs gener-

ated by HHblits on the Big Fantastic Database (BFD)25,26 that

contains hidden Markov model profiles of many proteins collected

from metagenome sequence databases are also used to predict dis-

tance maps. The MSAs along with predicted distance maps are used

to generate ab initio models with two different ab initio modeling

tools (e.g., DFOLD and trRosetta13). In MULTICOM-DEEP and

MULTICOM-HYBRID, distance maps and alignments generated by

DeepMSA and DeepAln were also used to select templates for

template-based modeling. The detailed description of the distance-

guided template-free modeling and its illustration (Figure S1) can be

found in the Appendix S1.
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Domain information (Figure 1, Part C) can be extracted from the

target-template sequence alignments. If no significant templates are

found for a region of the sequence that is longer than 40 residues, the

region is treated as a template-free (FM) domain, otherwise a

template-based domain. The sequences of the domains are fed into

the same pipeline above to build models for individual domains.

For the human predictor (Figure 1, Part D), all the CASP server

models automatically downloaded from the CASP website and new

models generated by MULTICOM servers if any are combined into

one model pool as the initial input. Highly similar models from the

same groups are filtered out if their pairwise global distance test score

(GDT-TS) score is greater than 0.95. SCWRL27 is used to repack the

side chains for the models in the filtered model pool. If the target pro-

tein is predicted to have multiple domains, the full-length models are

split into domain models before model filtering.

Different quality assessment (QA) methods are used in MULTI-

COM to evaluate the models (Figure 1, Part E). In the server predictors,

the models were assessed by APOLLO28 in MULTICOM-CLUSTER and

MULTICOM-HYBRID, by DeepRank9 in MULTICOM-CONSTRUCT, by

SBROD29 in MULTICOM-DIST, and by the average ranking score of

APOLLO, SBROD and distance-based rankings derived from distance

map matching scores in MULTICOM-DEEP. For the human prediction,

two newly developed QAs (DeepRank3_Cluster and DeepRank_con)

along with DeepRank used in CASP13 were used for model selection.

DeepRank uses residue-residue contacts predicted by DNCON230 as

input features, but DeepRank3_Cluster uses residue-residue distances

predicted by DeepDist as input features. DeepRank_con shares the

same deep network with DeepRank but replaces contact predictions

from DNCON2 with those from DeepDist. The three QAs also use

other features including 1D structural features (e.g., predicted

F IGURE 1 The pipeline of MULTICOM human and server protein structure predictors
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secondary structure, solvent accessibility) and the 3D model quality

scores generated by different QA tools (e.g., RWplus,31 Voronota,32

Dope,33 and OPUS34).

Once the QAs generate the model rankings, final models are built

by model combination, domain combination or model refinement

(Figure 1, Part F) from top-ranked models. For full-length targets, top

five ranked models are combined with other similar top-ranked

models (maximum 20 models) to generate the consensus models. If a

target has multiple domains, top five models are generated by com-

bining domain models using Modeller22 or AIDA.35 For the human

prediction, if the combined models substantially deviate away from

the original models, refinement tools (e.g., i3DRefine36 and

ModRefiner37) will be used instead to refine the top-ranked models to

generate the final top five models for submission.

There are several additional differences between the human pre-

dictor and server predictors. First, the inputs for the human predictor

are the server models from CASP including MULTICOM server

models. Additional models generated by MULTICOM servers after the

server submission deadline may be added into the model pool for

some targets if any. Models filtering and side chain repacking are

applied in the human prediction before feeding the models into the

quality assessment methods. Second, in the human predictor,

predicted domain boundaries are adjusted based on the top-ranked

models. Third, in the human prediction, the refinement tools are

applied to improve the quality of top-ranked models.

2.2 | Protein model ranking

In the MULTICOM human predictor, three main quality assessment

(QA) methods (DeepRank, DeepRank_con, and DeepRank3_Cluster)

are applied to model selection. The methods share the similar fea-

tures, including 1D features from predicted secondary structures and

solvent accessibility and 3D QA scores from different QA tools

(i.e., SBROD, RWplus,31 Voronota,32 Dope,33 and OPUS34,

RF_CB_SRS_OD,38 DeepQA,39 ProQ2,40 ProQ3,41 APOLLO, Pcons42

and ModFOLDcluster243), and differ mostly in 2D features

derived from predicted contact or distance maps. DeepRank and

DeepRank_con share the same neural network and are only different

in the input contact map used to generate 2D features. In DeepRank,

the input contact map is generated from DNCON2, but

DeepRank_con takes an improved contact map from DeepDist as

input. In DeepRank3_Cluster, the predicted distance map by DeepDist

and the distance map calculated from a 3D model are used to calcu-

late several distance map matching scores (i.e., SSIM & PSNR,44

GIST,45 RMSE, Recall, Precision, PHASH,46 Pearson correlation, and

ORB47), which are combined with other 1D and 3D features as inputs.

All the quality assessment methods apply the same two-level network

architecture. The first level of the network includes 10 neural net-

works trained by tenfold cross-validation to predict the GDT-TS

scores of input models. Then the output scores are combined with ini-

tial input features to predict the final scores by the second level net-

work. DeepRank, DeepRank_con and DeepRank3_Cluser were trained

and tested on the models of the previous CASP experiments before

they were blindly applied to the models of the CASP14 experiment.

2.3 | Model refinement and combination

To improve the quality of selected top models, four different methods

(e.g., model combination, i3DRefine, ModRefiner, and TM-score based

combination) are applied under different circumstances in the MULTI-

COM human predictor. After predicting the quality scores of the input

server models, a standard protocol (Figure S2) is applied to generate

the final top five models. Each top-ranked model is combined with

other top-ranked models (maximum 20) that are similar to the start

model (i.e., GDT-TS > 0.6) to generate a consensus candidate model.

If the GDT-TS score between the consensus model and the start

model is smaller than 0.9, the consensus model is discarded, and the

candidate model is generated by using i3Drefine to refine the start

model. ModRefiner is used alternatively if severe structural violations

(e.g., atom clashes) exist in the candidate model or its secondary struc-

tures need to be further improved.

For some top models, if some of their good regions needed to be

kept, but some bad regions needed to be replaced by the

corresponding region in another model, a TM-score based model com-

bination method is applied. A superposed model is generated by

aligning the two models using TMscore. A preliminary model is gener-

ated by replacing the bad region of the top model in the superimposed

model with the corresponding region from the other model. The

adjusted Ca atom trace of the top model is then extracted from

the preliminary model to generate a combined model. The coordinates

of other backbone atoms are added into the combined model using

Pulchra.48 The side chains of the combined model are repacked by

SCWRL according to the backbone structure. If needed, ModRefiner

is applied to refine the model. This method can also be used to per-

form domain replacement.

2.4 | Prediction of the structures of multidomain
proteins

In the MULTICOM system, a domain detection algorithm based on

the target-template multiple sequence alignment generated by

HHSearch or HHblits is applied to identify domains for multidomain

proteins. Template sequences in the alignment are filtered out by their

E-value (>1), sequence length (≤40), or alignment coverage (≤0.5) for

the target. If no template is left after filtering, the target is identified

as a single-domain template-free target. Otherwise, further analysis is

applied to the filtered alignment to identify domains. If a region of the

target is not aligned with a template and has more than 40 residues, it

is classified as a template-free domain. All the other regions are classi-

fied as template-based domains.

After splitting a multi-domain target into domains, the sequence

of each domain is fed to the prediction pipeline to generate structural

models and the top five models for each domain are selected.
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Modeller is used by default to combine the top domain models into

full-length models. AIDA is used alternatively to combine domain

models when the full-length model generated by Modeller has severe

clashes (i.e., the distance between any two Ca atoms is <1.9 Å) or bro-

ken chain (i.e., the distance between any two adjacent atoms is

>4.5 Å). The domain-based combination models may have good GDT-

TS scores for individual domains, but low scores when they are com-

pared with the full-length native structures because they do not have

inter-domain interaction information (e.g., relative position and orien-

tation of domains). To address this problem, if a multidomain target

does not have a significant template covering all its domains, domains

are treated as independent modeling units and domain-based combi-

nation models are used as top prediction. Otherwise, full-length

models generated without using domain information are selected

based on the domain-based model evaluation to maintain the

domain–domain interactions. In some cases, both kinds of models are

selected and added into the list of final top five predicted models.

3 | RESULTS

In CASP14, both MULTICOM human and server predictors partici-

pated in the protein tertiary structure prediction. Among 92 CASP14

“all groups” domains for tertiary structure prediction, 54 domains are

classified as template-based (TBM-easy or TBM-hard) domains that

have some structural templates in the Protein Data Bank (PDB) and

38 as FM or FM/TBM domains that have no templates or whose

templates cannot be recognized. MULTICOM human predictor was

ranked seventh among all the 146 predictors (see Table 1 for top

20 out 146 predictors and their total Z-scores, average TM-scores

and average GDT-TS scores) on 92 “all group” domains (https://

predictioncenter.org/casp14/zscores_final.cgi) and third among all the

136 predictors (see Table 2 for the top 20 predictors' average and

total Z-scores) on 10 multidomain targets (e.g., T1030, T1038, T1052,

T1053, T1058, T1061, T1085, T1086, T1094, and T1101) in the

inter-domain structure prediction category (https://predictioncenter.

org/casp14/zscores_interdomain.cgi). After combining multiple server

predictors from the same group as one entry, MULTICOM-DEEP was

ranked sixth after BAKER, RaptorX, Zhang, FEIG, and Seok groups on

58 (54 “all groups” +4 “server only”) TBM domains by the assessor's

formula (Table S1). MULTICOM-HYBRID server predictor was ranked

fifth after Zhang, tFold, BAKER, and Yang groups on 38 FM or

FM/TBM domains according to the assessor's formula (Table S2). The

performance of our human and server prediction methods is system-

atically analyzed in the following sections using the official evaluation

data downloaded from the CASP14's website.

3.1 | Performance of MULTICOM human predictor

Based on the official results on the CASP14 website, our MULTICOM

human predictor was ranked seventh on all 92 domains overall, fourth

on 54 TBM domains and 16th on 38 FM or FM/TBM domains in

terms of the sum of the positive Z-scores over the domains. The Z-

score of a model predicted for a target is the difference between the

GDT-TS score of the model and the average GDT-TS score of all

the models predicted for the target divided by the SD of the GDT-TS

scores of the models. A positive Z-score indicates that the quality of

the model is above the average model. The default CASP14 ranking

uses the sum of positive Z-scores over the domains to rank predictors

in order not to penalize the new experimental methods that may

predict bad models for some targets. Only seven human predictors

from six different groups (AlphaFold2, BAKER, FEIG-R2, Zhang,

tFold_human, and MULTICOM) achieved higher performance than the

best server predictor—QUARK (see Table 1). The average TM-score of

MULTICOM on the 92 “all-group” domains is 0.6989, substantially

higher than 0.5—a threshold for a correct fold prediction. If only the

top one model per domain is considered, MULTICOM predicts the

correct fold for 76 out of 92 (82.6%) domains (i.e., 98% TBM domains

and 60.5% FM or FM/TBM domains). If the best of the top five

models for each domain is considered, the success rate is increased to

84.8% (i.e., 98% TBM domains and 65.8% FM or FM/TBM domains).

TABLE 1 Top 20 predictors in CASP14 tertiary structure prediction ranked by Z-score calculated from GDT-TS

# Group name

Sum
Z-score
(>0.0)

Avg
TM-score

Avg
GDT-TS # Group name

Sum
Z-score
(>0.0)

Avg
TM-score

Avg
GDT-TS

1 AlphaFold2 244.0217 0.9052 0.8801 11 tFold-CaT_human 61.8464 0.6938 0.6229

2 BAKER 92.1241 0.7388 0.6695 12 FEIG-R3 58.5809 0.6576 0.5942

3 BAKER-experimental 91.4731 0.7334 0.6653 13 ropius0QA 57.8135 0.6891 0.6169

4 FEIG-R2 74.5627 0.7088 0.6464 14 MUFOLD_H 55.9608 0.6659 0.6004

5 Zhang 68.8922 0.7142 0.6386 15 Zhang-CEthreader 55.9467 0.6812 0.6064

6 tFold_human 65.2157 0.7021 0.6280 16 MESHI 55.9047 0.6861 0.6148

7 MULTICOM 64.0531 0.6989 0.6302 17 EMAP_CHAE 55.4235 0.6836 0.6129

8 QUARK 62.9711 0.6959 0.6234 18 BAKER-ROSETTASERVER 55.2993 0.6511 0.5876

9 Zhang-Server 62.9122 0.6978 0.6249 19 Wallner 55.1852 0.6760 0.6086

10 tFold-IDT_human 62.0795 0.6862 0.6179 20 VoroMQA-select 54.571 0.6814 0.6102
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MULTICOM performed relatively better on TBM targets, but rela-

tively worse on FM targets compared with some top predictors. The

difference in the performance can be largely explained by the perfor-

mance of the quality assessment (QA) methods. Figure 2(A) shows the

ranking loss of all quality assessment methods or individual features,

including three DeepRank method variants, three clustering-based

methods, six contact matching scores (long-range, medium-range, and

short-range matching scores), 11 distance scores, 17 single-model

methods used by MULTICOM on 61 “all groups” full-length targets

whose experimental structures have been released at CASP14

website. The loss of a method is the absolute difference between the

true GDT-TS scores of the best model for a target and

the no. 1 model selected by a quality assessment method/feature.

Figure 2(B,C) show the ranking loss on 30 TBM-easy/TBM-hard tar-

gets and 31 FM/TBM or FM targets. The difficulty of a multi-domain

target is classified as the most difficult category of its individual

domains. According to the results, multi-model QAs achieved the

average performance similar to or better than the single-model QAs

on “all-groups” targets, TBM targets and FM targets. Pcons and

SBROD are the best multimodel QA and single-model QA, respec-

tively, according to the average loss of 61 “all-groups” targets (Pcons:
0.084, SBROD: 0.109). Pcons had lower loss on 23 out of 30 TBM tar-

gets but higher loss on 16 out of 31 FM targets than SBROD, which

demonstrates that multimodel and single-model QA methods are

complementary and both are valuable components in DeepRank. The

average performance difference on 31 FM targets (Pcons: 0.104

vs. SBROD: 0.117) is smaller than on 30 TBM targets (Pcons: 0.062

vs. SBORD: 0.101). One reason is that multimodel QAs that depend

on the structural comparison between models in the model pool usu-

ally perform better when the structural similarity between models in

the pool is higher, which is the case for TBM targets, but single model

QA methods that use the features extracted from a single model do

not depend on pairwise model similarity and achieve more similar per-

formance on TBM and FM targets. When the structural similarity

between models is low, single-model QAs are more likely to perform

better than multimodel QAs than when the structural similarity

between models is high. Despite the difference, both kinds of QAs

have higher loss on hard (FM or FM/TBM) targets than on regular

(TBM) targets, even though the performance of the multimodel QA

method decreases more on hard targets, indicating that ranking

models for hard targets is harder than for regular targets regardless of

the type of QA methods. The reason is that the proportion of good

models in the model pool of hard targets is generally lower than regu-

lar targets, which increases the difficulty of selecting good models.

Among all the 40 QAs used, on average, DeepRank that combines

single-model and multimodel quality scores consistently outperformed

the best multimodel QA (i.e., Pcons) and the best single-model QA

(i.e., SBROD) on 61 “all groups” targets (DeepRank: 0.077), 30 FM tar-

gets (DeepRank: 0.095) and 31 TBM targets (DeepRank: 0.059),

respectively, proving the effectiveness of combining the complemen-

tary single-model and multimodel quality scores for ranking protein

models.

3.2 | Performance of MULTICOM-CLUSTER,
MULTICOM-CONSTRUCT, MULTICOM-HYBRID, and
MULTICOM-DEEP server predictors using both
template-based and template-free modeling

Figure 3 depicts the performance of the four server predictors on “all
group” domains and “server only” domains, TBM domains, and FM or

FM/TBM domains, respectively. For 92 “all group” and 4 “server only”
domains, the average TM-scores of the top-1 models for these domains

predicted by MULTICOM-DEEP, MULTICOM-HYBRID, MULTICOM-

CONSTRUCT, and MULTICOM-CLUSTER are 0.643, 0.639, 0.640, and

0.627, respectively. The average TM-scores of all the servers are sub-

stantially higher than 0.5, indicating the MULTICOM servers made

good structure prediction for most domains on average. Specifically, if

only the top-1 model per domain is considered, MULTICOM-DEEP

predicts the correct topology for 75 out of 96 (78.1%) domains (i.e., 55

out of 58 (94.8%) TBM domains and 20 out of 38 (52.6%) FM or

FM/TBM domains. Figure 4 illustrates the predicted structures and

TABLE 2 Top 20 predictors in the inter-domain structure prediction ranked by Z-score based on F1 score + Z-score based on Jaccard score
+ Z-score based on best of contact agreement score

# Group name

Sum

Z-score (>0.0)

Avg

Z-score (>0.0) # Group name

Sum

Z-score (>0.0)

Avg

Z-score (>0.0)

1 AlphaFold2 35.3062 3.5306 11 UOSHAN 7.2491 0.7249

2 BAKER-experimental 15.717 1.4288 12 Ornate-select 7.1811 0.6528

3 MULTICOM 8.986 0.8986 13 Bhattacharya 7.1549 0.7155

4 BAKER 8.759 0.8759 14 ProQ2 7.147 0.7147

5 ProQ3D 8.5411 0.8541 15 FEIG-R1 6.8338 0.6834

6 FEIG-R3 8.178 0.8178 16 NOVA 6.3867 0.6387

7 BAKER-ROSETTASERVER 7.8402 0.784 17 Bilbul2020 6.3768 0.6377

8 EMAP_CHAE 7.8057 0.7806 18 RaptorX 6.3226 0.6323

9 VoroCNN-select 7.5861 0.6896 19 DATE 6.3098 0.631

10 tFold-CaT_human 7.532 0.7532 20 VoroMQA-select 6.1055 0.6106
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distance maps for the 20 FM or FM/TBM domains. If the best of five

models for each domain is considered, the success rate is increased to

82.3% for all domains, 98.3% for TBM domains, and 57.9% for FM or

FM/TBM domains. Overall, the performance of MULTICOM-DEEP is

significantly better than MULTICOM-CONSTRUCT and MULTICOM-

CLUSTER (P-values of one-sided Wilcoxon signed rank test = .04724

and .00146, respectively), while MULTICOM-HYBRID has the similar

performance with MULTICOM-DEEP (P-value = .3042) and

MULTICOM-CONSTRUCT (P-value = .1931) and the significantly

better performance than MULTICOM-CLUSTER (P-value = .00437).

On the 58 TBM domains, MULTICOM-DEEP has the similar perfor-

mance with MULTICOM-HYBRID and MULTICOM-CONSTRUCT

F IGURE 2 The average loss of
40 QA methods and features in
MULTICOM. (A) the loss on 61 “all
groups” full-length targets. (B) the
loss on 30 TBM-easy or TBM-hard
full-length targets. (C) the loss on
31 FM/TBM or FM full-length
targets. Red: three DeepRank
methods including DeepRank,

DeepRank_con, DeepRank3_Cluster;
Green: three Multi-model methods
including APOLLO,28 Pcons,42 and
ModFOLDcluster243; Blue: 17 single-
model methods including
(i.e., SBROD,29 RWplus,31

Voronota,32 Dope,33 OPUS_PSP,34

RF_CB_SRS_OD,38 DeepQA,39

ProQ2,40 ProQ341); Pink: six contact
matching scores including DeepDist/
DNCON2 short-range, medium-range
and long-range contact matching
scores; Yellow: 11 distance scores
including SSIM and PSNR,44 GIST,45

RMSE, Recall, Precision, PHASH,46

Pearson correlation, and ORB47
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(P-values = .07044 and .1514, respectively). Their performances are

significantly better than MULTICOM-CLUSTER (P-values = .00575,

.03758, and .01492, respectively). Because the only difference

between MULTICOM-CLUSTER and MULTICOM-CONSTRUCT lies in

model quality assessment, the results show that DeepRank used

by MULITCOM-CONSTRUCT works better than APOLLO used by

MULTICOM-CLUSTER for ranking models of the TBM domains. The

similar performance of MULTICOM-DEEP, MULTICOM-HYBRID, and

MULTICOM-CONSTRUCT on the TBM domains indicate that using

HHSearch and HHblits to search for homologous templates in

MULTICOM-DEEP and MULTICOM-HYBRID works at least as well as

using many multiple alignment and threading tools in MULTICOM-

CONSTRUCT and MULTICOM-CLUSTER while substantially reducing

the search time. One reason is that HHSearch/HHblits is the most sen-

sitive single tool for recognizing homologous templates as shown in the

CASP13 experiment.9 Another reason is that the template-free model-

ing can predict better models for many TBM domains than the

template-based modeling, which reduces the importance of

the homologous template recognition for the final prediction.

Moreover, on the 38 FM or FM/TBM domains, MULTICOM-

HYBRID performed significantly better than MULTICOM-CLUSTER

(P-value for one-sided Wilcoxon signed rank test = .02499), while

there is no significant difference between other servers (P-values of

one-sided Wilcoxon signed rank test 0.05). Because MULTICOM-

HYBRID and MULTICOM-CLUSTER used the same quality assess-

ment method—APOLLO to select models, the results indicate that the

quality of the model pool of MULTICOM-HYBRID is better than

MULTICOM-CLUSTER. Indeed, replacing the distance maps predicted

by trRosetta with the ones predicted by DeepDist can improve the

performance of template-free modeling. Furthermore, the average

TM-scores of all the four predictors on the FM or FM/TBM domains

are ≥0.5, substantially better than the average 0.32 TM-score of our

CASP13 MULTICOM server predictors on the hard domains,9 indicat-

ing a substantial improvement on template-free modeling has been

made by our new template-free structure prediction method.

3.3 | Performance of the pure template-free
modeling server predictor MULTICOM-DIST

The average TM-score of top-1 models predicted by MULTICOM-

DIST for the 38 CASP14 FM or FM/TBM domains is 0.513, which is

F IGURE 3 Evaluation of four MULTICOM server predictors in terms of the TM-scores for the first submitted models. (A) On 92 “all group”
+4 “server only” domains (left: TM-scores of MULTICOM-DEEP, MULTICOM-HYBRID, MULTICOM-CONSTRUCT models versus TM-scores of
MULTICOM-CLUSTER models; right plot: mean and variation of the TM-scores of the models of the four methods). (B) On 58 template-based
(TBM-easy, TBM-hard) domains. (C) On 38 FM or TBM/FM domains
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similar to 0.514 of MULTICOM-HYBRID or 0.512 of MULTICOM-

DEEP (P-values of one-sided Wilcoxon signed rank test = .5485 and

.3976, respectively). The result is expected because they used a simi-

lar distance-based template-free modeling method. On the 38 CASP14

FM or FM/TBM domains, we investigate how different factors affect

the model quality for the distance-based template-free modeling

method. One is the number of effective sequences (Neff) in MSAs,

measured as the number of the non-redundant sequences at 62%

sequence identity threshold. Figure 5(A) shows a weak correlation

between the model quality and the logarithm of Neff (Pearson's corre-

lation coefficient = 0.42) over all 38 domains. But when the logarithm

of Neff is less than 6 (i.e., Neff <400), there is a strong correlation

between the model quality and the logarithm of Neff (Pearson's corre-

lation coefficient is 0.81). The results show the strong positive correla-

tion between the model quality and Neff exists until Neff reaches

about 400. Another factor investigated is the precision of distance

prediction. Figure 5(B) shows a strong correlation between the preci-

sion of top L/2 contact prediction (L: sequence length) and the model

F IGURE 4 Predicted structures and distance maps compared with native structures and true distance maps for 20 FM or FM/TBM domains
for which the first model predicted by MULTICOM-DEEP has the correct topology (TM-score > 0.5). For each domain, on the left is the
comparison of the distance maps (lower triangle: true distance map; upper triangle: predicted distance map); and on the right is the comparison of
predicted and true structures (light yellow: native structure, light blue: the first predicted structure). The TM-score of the predicted structure and
the precision of top L/2 long-range contact predictions for each domain is listed on top of each sub-figure
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quality (Pearson's correlation coefficient = 0.71), indicating that the

model quality increases as the distance prediction gets more accurate.

On the 58 TBM domains, the average TM-score of MULTICOM-

DIST based on template-free modeling is 0.702, slightly less than

0.720 of MULTICOM-HYBRID (P-value = .2754 according to one-

sided Wilcoxon signed rank test) and significantly less than 0.730 of

MULTICOM-DEEP (P-value = .03763) based on both template-based

and template-free modeling. The results show that, even though inte-

grating template-based modeling and template-free modeling may

perform better than the pure template-free modeling on some

template-based domains, the high TM-score of MULTICOM-DIST on

the template-based domains, which is close to that of MULTICOM-

HYBRID, demonstrates that the distance-based template-free model-

ing can work well on template-based targets, which is consistent with

the finding of AlphaFold in the CASP13 experiment. In fact, if only the

top-1 model is considered for each domain, MULTICOM-DIST pre-

dicts the correct fold for 53 out of 58 (91.4%) TBM domains. If the

best of five models is considered for each domain, the success rate is

increased to 96.6%. The results confirm that the distance-based pro-

tein structure prediction can universally address the protein structure

prediction problem. Therefore, the traditional division of protein

structure prediction into template-based and template-free modeling

may not be necessary anymore, even though template-based struc-

tural information can still be used in the modeling process.

The slightly worse average TM-score of MULTICOM-DIST on the

template-based domains was largely due to the lack of good treat-

ment of large multi-domain targets in the early stage of CASP14

experiment. For large proteins with sequence length >500, it was

often hard to find enough well-aligned homologous sequences cover-

ing the entire sequence for accurate full-length residue–residue dis-

tance prediction. The global multiple sequence alignment could be

dominated by one or two regions with a lot of homologous sequences,

leaving the remaining regions not well aligned (i.e., many gaps). For

one large TBM-easy target T1036s1 of 818 residues long,

MULTICOM-DIST failed to construct the full-length model for this

target and its model had a very low TM-score—0.19 for the domain

T1036s1-D1 (sequence region: 1–621). The number of effective

sequences of the multiple sequence alignment for the target was

45 and the number of sequences in the multiple sequence alignment

was 265, which were relatively small for the distance prediction for

the entire target. For each residue position in the multiple sequence

alignment of the target, we calculate the number of non-gap amino

acids in the position shown in Figure 6(A). There are few homologous

sequences that can cover the entire sequence length. Most homolo-

gous sequences in the alignment only cover some regions of the tar-

get. There are many gaps in the region ranging from residue 300 to

400. Figure 6(B) compares the true distance map (lower triangle) and

the predicted distance map (upper triangle). Even though the

predicted distance map contains good intra-domain distance predic-

tions that are similar to the true distances, it does not have good

long-range inter-domain distance predictions. The region inside the

red circle in the predicted distance map denotes the place where

long-range inter-residue contacts were not well predicted in compari-

son with the true distance map. The true contacts in the region

correspond to the interactions between residues 1–78 and residues

57–551 (Figure 6(C)). Different from MULTICOM-DIST, the other

four MULTICOM server predictors found strong full-length templates

and constructed high-quality models from the templates. For instance,

MULTICOM-CONSTRUCT found a significant template 3NWA with

the sequence identity of 0.488, sequence coverage of 0.966, and

E-value of 5.7E-226 and built a good model with TM-score of 0.92.

This example shows that more care needs to be taken for large

multidomain proteins in template-free modeling and it is useful to

incorporate some template-based distance information into the

distance-based free modeling.

3.4 | Improved performance enabled by model
combination

For the top-ranked model (called the reference model or the original

model) of some targets, the human predictor—MULTICOM—collected

other models ranked within top 60 and having GDT-TS larger than 0.7

or root mean square distance (RMSD) smaller than 3 Å with respect to

the reference model. The reference model and the other selected models

were used as templates for Modeller to build a combined model as the

final prediction. During CASP14, this model combination approach was

applied to 23 targets (Table S3). In Figure 7, the GDT-TS scores of the

original top-1 models are plotted against the scores of the final, com-

bined top-1 model submitted to CASP14 (i.e., MULTICOM_TS1). Out of

23 targets, the quality of the combined models is better than the original

models on 17 targets (73.9%), while on the rest of the targets their qual-

ity is only marginally worse (GDT-TS difference <0.007). The P-value of

the one-sided Wilcoxon signed rank test is .00125, showing that the

model combination significantly improves model quality.

The performance of the model combination depends on the

reference model as well as the number of the models combined. The

Pearson correlation between the number of models combined and the

GDT-TS score difference (improvement) is 0.476, which indicates that

F IGURE 5 (A) Logarithm of Neff of MSAs versus the quality of
MULTICOM-DIST top-1 models on the 38 CASP14 FM or FM/TBM
domains. (B) The precision of top L/2 long-range contact predictions
versus the quality of MULTICOM-DIST top-1 models on the 38 FM
or FM/TBM domains
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including more templates tends to improve the performance. Figure 8

illustrates some good examples (i.e., T1034, T1046s1, and T1065s2).

The combined model has smaller deviations from the true structure

compared with the original models, whereas some poorly modeled

region in the original model is fixed in the combined model for some

targets (e.g., T1046s1).

There are some limitations in the model combination. For some

FM targets (e.g., T1026, T1037, T1040, T1043, T1074, and T1086),

few similar models can be found to combine with the original model,

leading to very little or no improvement. Although the model

combination method could improve the quality of the original model,

the quality of the combined model may be still worse than the best

model in the model pool if the quality of the original model is much

worse than the best model.

3.5 | Good and bad prediction examples

Among all 92 “all group” domains, MULTICOM human predictions

were ranked in the top five for three domains in terms of the top-1

model: T1034-D1, T1092-D1, and T1093-D2. For T1034-D1

(Figure S3), MULTICOM's model quality assessment selected

RaptorX_TS1 as a start model, whose GDT-TS is 0.8237. MULTICOM

combined it with 19 other top-ranked server models that were similar

to the start model (i.e., GDT-TS >0.6) to generate a final model. The

GDT-TS of the final top1 model (MULTICOM_TS1) is 0.8702, which is

higher than the start model and is ranked only after the AlphaFold2

model. For T1092-D1 and T1093-D2, the full-length protein

sequences were divided into domains whose boundaries were close

to the true domain definition. Based on the domain splitting, MULTI-

COM was able to select the best domain model in the server model

pool as start models to generate high-quality final models.

MULTICOM performed relatively poorly on some FM/TBM or

FM domains, including single-domain targets: T1031-D1, T1039-D1,

T1043-D1, T1061-D1. For T1031-D1, T1039-D1, and T1043-D1.

MULTICOM's quality assessment failed to select good start models

from the model pool. One reason causing the failure is the number of

good-quality models in the model pool is low and the distribution

of TM-scores of the models for these targets is highly skewed. In

Figure 9(A), the percentage of good-quality models (TM-score >0.5) is

plotted against the GDT-TS loss of the best quality assessment

F IGURE 6 (A) The plot of the
number of non-gap residues of
multiple sequence alignment of
T1036s1 against residue
positions, where x-axis stands for
each residue position and y-axis
stands for the number of non-gap
amino acids. (B) The true distance
map of T1036s1-D1 (lower

triangle) versus the predicted
distance map from MULTICOM-
DIST (upper triangle). (C) The true
structure of target T1036s1-D1 in
rainbow, starting from the N-
terminal in blue to C-terminal
in red

F IGURE 7 The GDT-TS scores of original models versus the
GDT-TS scores of combined models (MULTICOM_TS1)
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F IGURE 8 Good examples for
model combination on targets T1034,
T1046s1, and T1065s2 (light yellow:
native structure, light blue:
MULTICOM_TS1 [final combined
model], pink: original model)

F IGURE 9 (A) The percentage of good-quality models (TM-score > 0.5) versus GDT-TS loss of DeepRank. (B) The distribution of TM-scores
of the models of T1031-D1 (green), T1039-D1 (red), and T1043-D1 (blue); dots on the curves denote the top model selected for the targets.
(C) The skewness of TM-scores of the models versus GDT-TS losses of DeepRank for all 61 targets
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method—DeepRank. It is shown that TBM targets have a larger pro-

portion of good-quality models than FM or FM/TBM targets. Among

five hard targets that have greater than 0% but less than 10% of good

models, three of them (T1031-D1, T1039-D1, and T1043-D1) have

the highest loss among all the targets (>0.25). All the other targets

have the loss less than 0.15, even for the targets that have no good

models predicted at all (i.e., 0% good models). Figure 9(B) is the plot of

the distribution of TM-scores of the models for these three targets.

DeepRank selected a model with the score close to the mode (the

high-density area) of the distribution instead of a good model in the

extremely low-density area. To further investigate how the distribu-

tion of the quality scores of the models in the model pool affects the

performance of DeepRank, the skewness of the distribution is calcu-

lated for the targets and plotted against the loss on them (Figure 9(C)).

The three targets with the highest loss have the highest skewness

(i.e., 1.85 for T1031-D1, 1.6 for T1039-D1, and 3.05 for T1043-D1),

where the positive (negative) value of skewness indicates that the

mean TM-score is larger (less) than the median TM-score. On 31 FM

or FM/TBM targets, the correlation between the skewness and the

loss of DeepRank is 0.56, lower than 0.71 of Pcons, indicating that

both methods are affected by the skewness, but DeepRank integrat-

ing both multimodel and single model features is more robust against

the skewness than a clustering-based multimodel method. Another

reason for the ranking failure is the incorrect domain prediction. For

T1061, a long 949-residue long target, MULTICOM failed to detect

the correct domain boundaries, which led to the bad prediction for its

first domain (T1061-D1). The example demonstrates that the accuracy

of domain prediction has a significant impact on the tertiary structure

prediction for some multidomain targets.

4 | DISCUSSION

It has been known that the template-free (ab initio) modeling gener-

ally works much better than the template-based modeling on FM tar-

gets that have no templates. To confirm this, we compared the quality

of top-1 template-based models predicted by MULTICOM-HYBRID

and top-1 template-free models predicted by MULTICOM-DIST for

33 FM or FM/TBM domains (Table S4). Five FM or FM/TBM

domains—T1052-D3, T1061-D1, T1061-D2, T1080-D1, and

T1085-D2—were excluded from this analysis due to lack of true struc-

tures or predicted full-length template-based or template-free models.

Indeed, the template-free modeling of MULTICOM-DIST performs

better than the template-based modeling of MULTICOM-HYBRID on

32 of 33 domains (i.e., 97%), and the average TM-score of the

template-free models is more than double that of the template-based

models (i.e., 0.513 of the template-free modeling versus 0.211 of the

template-based modeling).

However, it is less clear if template-free modeling can beat

template-based modeling on TBM targets for which some homolo-

gous templates can be found. CASP13 experiment showed that

template-free modeling7,8,49 worked better than template-based

modeling on quite some TBM targets. To further investigate this, we

compared the quality of template-based models predicted by

MULTICOM-HYBRID and template-free models predicted by

MULTICOM-DIST on 47 out of 58 CASP14 TBM domains (see

Table S5), while the other 11 domains (T1052-D1, T1052-D2,

T1061-D3, T1091-D1, T1091-D2, T1091-D3, T1091-D4, T1085-D1,

T1085-D3, T1086-D1, and T1086-D2) were excluded from this analy-

sis due to lack of native structures or predicted full-length template-

based or template-free models. The average TM-score of the models

generated by the template-based modeling of MULTICOM-HYBRID

for the TBM domains is 0.636, which is significantly lower than 0.703

(P-value = .01724 according to one-sided Wilcoxon signed rank test)

of the template-free modeling of MULTIOM-DIST. The template-free

modeling performs better than the template-based modeling on

59.6% of TBM domains (28 out of 47).

An interesting observation is that the performance of the

template-free modeling on the 33 FM or FM/TBM domains

(MULTICOM-DIST's average TM-score on them = 0.513) is signifi-

cantly worse than on the 47 TBM domains (MULTICOM-DIST's aver-

age TM-score on them = 0.703) (P-value for one-sided Wilcoxon rank

sum test <.00005). The Pearson correlation between the TM-scores

of the top-1 models and the precision of long-range top L/2 contact

predictions on the 80 (47 TBM + 33 FM or FM/TBM) domains is

0.72, showing that the precision of the contact/distance predictions

made by DeepDist largely determines the quality of the structural

models built by the distance-based template-free modeling. The aver-

age precision of top L/2 contact predictions for the TBM domains is

69.16%, which is significantly higher than 41.45% for the FM or

FM/TBM domains (P-value <.0001 according to one-sided Wilcoxon

rank test). Therefore, the better tertiary structure prediction perfor-

mance of the template-free modeling on the TBM domains is largely

due to the higher accuracy of contact/distance prediction on them.

We conduct further analyses to investigate the two possible rea-

sons that may cause the higher accuracy of contact/distance predic-

tion and tertiary structure prediction for the TBM domains: (a) the

better quality of MSAs of the TBM domains and (b) the existence of

homologs in the training data of DeepDist for the TBM domains.

Firstly, we calculate the Neff of the MSAs to approximately measure

their quality. The average Neff of MSAs for the TBM domains is

2557, which is significantly larger than 286 for the FM and FM/TBM

domains (P-value <.00001 according to Wilcoxon rank sum test). The

Pearson's correlation between the logarithm of Neff and the precision

of top L/2 long-range contact predictions is 0.616 and between the

logarithm of Neff and the TM-score of top-1 models is 0.623, indicat-

ing the higher quality of MSAs is one important reason causing the

higher accuracy of tertiary structure prediction and contact/distance

prediction for the TBM domains. The result is expected because bet-

ter MSAs leads to more reliable co-evolutionary input features for

DeepDist to make better distance predictions and more accurate dis-

tance predictions lead to better tertiary structural models

reconstructed from them.

Secondly, to investigate if the existence of homologs in the train-

ing dataset of DeepDist for the TBM domains may also contribute to

the higher accuracy of contact/distance predictions and tertiary
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structure prediction, we collect all 10 pairs of TBM and FM

(or FM/TBM) domains whose MSAs have the same or very similar

Neff (i.e., the difference of Neff ≤5%) to compare. The 10 TBM

domains form one set (TBM_Set) and their FM (or FM/TBM) counter-

parts form another set (FM_Set). Because the domains from the two

sets have very similar alignment quality in terms of Neff, the main dif-

ference between them is that the domains in TBM_Set tend to have

homologs in the training dataset of DeepDist, but the domains in

FM_Set do not. The average precision of the long-range contact pre-

dictions for TBM_Set is 50.40%, which is higher than 48.02% for

FM_Set, but the difference is not significant (P-value = .4192

according to the Wilcoxon signed rank test). Similarly, the average

TM-score of the top-1 models for TBM_Set is 0.607, which is higher

than 0.5514 for FM_Set, but the difference is not significant (P-

value = .1795 according to the Wilcoxon signed rank test). The com-

parison on these two relatively small datasets (i.e., the sample size of

each set = 10) seems to suggest that the existence of homologs for

the TBM domains in the DeepDist's training dataset may make some

insignificant contribution to the increase in the prediction accuracy.

The two analyses above together indicate that the accuracy of

the template-free structure prediction and contact/distance predic-

tion for a target is largely influenced by the quality of its multiple

sequence alignment, and to a less extent, may also be affected by

whether it has some homology with the proteins used to train the dis-

tance predictor.

Although it was not clear to us that our template-free modeling

would work better than the template-based modeling on both TBM

and FM targets prior to the CASP14 experiment, it is interesting to

see MULTICOM-HYBRID selected a template-free model as top-1

model for most CASP14 (TBM, FM, and FM/TBM) targets. It some-

times selected template-based models as top-1 model only when a

very significant template was found for a target (e.g., the e-value of

the best template hit < E-20). Generally, MULTICOM-HYBRID pre-

fers FM models over TBM models regardless of the type of the

targets.

5 | CONCLUSION

We developed the MULTICOM protein structure prediction system

for the CASP14 experiment and evaluated and analyzed its perfor-

mance on the CASP14 targets. We demonstrate that the distance-

based template-free prediction empowered by deep learning signifi-

cantly improves the accuracy of protein tertiary structure prediction.

The approach can work well on both template-free and template-

based targets and therefore can be applied to elucidate the structures

of many proteins without known structures in a genome. However,

the quality of template-free modeling critically depends on the quality

of deep learning-based residue–residue distance prediction, which in

turns depends on the quality of multiple sequence alignment. In con-

trast to the substantial improvement in template-free structure pre-

diction, there is little improvement in protein model quality

assessment in our CAS14 system over the CASP13 methods. The

quality assessment methods using more accurate residue–residue dis-

tance prediction features did not perform better than the quality

assessment method using only residue–residue contact prediction

features, suggesting that better methods of using distance predictions

in quality assessment are needed. Moreover, domain prediction plays

an important role in both model generation and evaluation. Accurate

domain prediction can help generate better tertiary structure models

and select better predicted models for some multidomain targets.
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