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Abstract The Mohr–Coulomb (M–C) fracture cri-
terion is revisited with an objective of describing
ductile fracture of isotropic crack-free solids. This
criterion has been extensively used in rock and soil
mechanics as it correctly accounts for the effects of
hydrostatic pressure as well as the Lode angle param-
eter. It turns out that these two parameters, which
are critical for characterizing fracture of geo-materi-
als, also control fracture of ductile metals (Bai and
Wierzbicki 2008; Xue 2007; Barsoum 2006; Wilkins
et al. 1980). The local form of the M–C criterion
is transformed/extended to the spherical coordinate
system, where the axes are the equivalent strain to
fracture ε̄ f , the stress triaxiality η, and the nor-
malized Lode angle parameter θ̄ . For a proportional
loading, the fracture surface is shown to be an asym-
metric function of θ̄ . A detailed parametric study is
performed to demonstrate the effect of model param-
eters on the fracture locus. It was found that the
M–C fracture locus predicts almost exactly the expo-
nential decay of the material ductility with stress tri-
axiality, which is in accord with theoretical analysis of
Rice and Tracey (1969) and the empirical equation of
Hancock and Mackenzie (1976), Johnson and Cook
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(1985). The M–C criterion also predicts a form of
Lode angle dependence which is close to parabolic.
Test results of two materials, 2024-T351 aluminum
alloy and TRIP RA-K40/70 (TRIP690) high strength
steel sheets, are used to calibrate and validate the pro-
posed M–C fracture model. Another advantage of the
M–C fracture model is that it predicts uniquely the
orientation of the fracture surface. It is shown that
the direction cosines of the unit normal vector to the
fracture surface are functions of the “friction” coeffi-
cient in the M–C criterion. The phenomenological and
physical sound M–C criterion has a great potential to
be used as an engineering tool for predicting ductile
fracture.
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1 Introduction

The Mohr–Coulomb (M–C) fracture criterion (Coulomb
1776; Mohr 1914) has been widely used in rock and
soil mechanics (e.g. Zhao (2000); Palchik (2006)) and
other relatively brittle materials (e.g. Lund and Schuh
(2004)). This is a physically sound and simple fracture
model. Fundamentals and applications of this model
can be found in many textbooks, monographs and
research papers. As a stress-based criterion, the Mohr–
Coulomb model has good resolution for materials
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that fail in the elastic range and/or under small strain
plasticity, such as rock, soil, concrete and so on.

There have recently been several successful applica-
tions of this model for predicting fracture of ceramics
under static and dynamic loading (Fossum and Brannon
2006). The M–C criterion is a special case of the San-
dia GeoModel (Fossum and Brannon 2005). A unique
feature of the M–C model is an explicit dependence on
the Lode angle parameter, which is missing in almost
all existing models of ductile fracture. The purpose of
the present paper is to demonstrate the applicability
of the M–C criterion to ductile fracture of uncracked
bodies.

Meanwhile, the ductile fracture community took a
different path. In search for a physically based fracture
model, the mechanism of nucleation, growth and coa-
lescence of void was identified and extensively stud-
ied. Due to fundamental work by McClintock (1968),
Rice and Tracey (1969), Gurson (1975), Tvergaard and
Needleman (1984), it was determined that ductile frac-
ture is mostly affected by the hydrostatic pressure.
Accordingly, the equivalent strain to fracture, which
is a measure of material ductility, was made dependent
on the first invariant of the stress tensor. The mixed
stress–strain formulation of a fracture criterion is jus-
tifiable because, well into the plastic range, the resolu-
tion of strains is much larger than stresses, as explained
in Fig. 1. Another feature of the Gurson-Tvergaard-
Needleman (GTN) model (Tvergaard and Needleman
1984) is that it describes well the predominate tensile
fracture, characterized by relatively high stress triax-
iality, but fails to predict shear fracture. Attempts are
currently underway to extend the void growth and coa-
lescence model to describe shear fracture (Xue 2007;
Nahshon and Hutchinson 2008). The M–C criterion is
an extension of the maximum shear stress fracture cri-
terion and therefore it is well poised to predict shear
fracture.

In parallel with the “physically based” models of
ductile fracture, a number of empirical fracture mod-
els have earned a permanent place in the literature
(Cockcroft and Latham 1968; Hancock and Macken-
zie 1976; Wilkins et al. 1980; Johnson and Cook 1985;
Bao and Wierzbicki 2004; Wierzbicki and Xue 2005;
Bai and Wierzbicki 2008). These models were based on
extensive test programs on bulk material and/or sheets.
One of the most comprehensive series of experiments
involving tensile tests on unnotched and notched round
bars, upsetting tests and shear tests was reported by
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Fig. 1 Different resolution quality of strain and stress param-
eters: the stress parameters have good resolutions in the elastic
region, and the strain parameters have good resolutions far in the
plastic region

Bao (2003), Bao and Wierzbicki (2004). Even more
recently Wierzbicki et al. (2005a), performed a series of
fracture tests on specially designed butterfly specimens
under combined tension/shear/compression loading.
Results of bi-axial fracture tests on tubular specimens
in the tension/torsion loading frame was published by
Barsoum and Faleskog (2007), while Korkolis and Kyr-
iakides (2008) studied fracture of 6260-T4 aluminum
tubes subjected to internal pressure and axial tension or
compression. All of these recent tests have proven that
the material ductility depends on both stress triaxiality
and the Lode angle parameter. These two effects are
actually captured by the M–C model, as will be shown
in the paper.

A particular case of Mohr–Coulomb criterion is the
maximum shear stress criterion. It has been shown by
Lee (2005) that the maximum shear stress criterion
predicts well plane stress fracture for 2024-T351 alu-
minum alloy, see Fig. 2. A comparison of maximum
shear stress criterion with other models was reported
by Wierzbicki et al. (2005b). One main shortcoming of
the maximal shear stress fracture criterion is the miss-
ing pressure dependence. The M–C criterion removes
this shortcoming. To increase resolution of the duc-
tile fracture prediction, the M–C criterion is trans-
formed/extended to a strain-based representation under
the assumption of monotonic loading. A parametric
study is performed to get a better insight into this frac-
ture model. The experimental results of two materi-
als, 2024-T351 aluminum alloy (Bao 2003; Bao and
Wierzbicki 2004; Wierzbicki et al. 2005b) and TRIP

123



Application of extended Mohr–Coulomb criterion to ductile fracture 3

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

full point used for calibration

_

_

0.8

0.4

Maximum shear stress τ
max

 = const.

experiment (plane stress)
experiment (axisymmetric)

Al2024-T351

σ
m
/σ

ε
f

Fig. 2 Application of maximum shear stress fracture criterion to
ductile fracture for plane stress condition (Lee 2005; Wierzbicki
et al. 2005b)

RA-K40/70 steel sheets, are used to validate the new
form of the Mohr–Coulomb criterion.

2 Characterization of the stress state

The three invariants of a stress tensor [σ ] are defined
respectively by

p = −σm = −1

3
tr([σ ]) = −1

3
(σ1 + σ2 + σ3) (1)

q = σ̄ =
√

3

2
[S] : [S]

=
√

1

2

[
(σ1 − σ2)2+(σ2 − σ3)2+(σ3 − σ1)2

]
(2)

r =
(

9

2
[S] · [S] : [S]

)1/3

=
[

27

2
det([S])

]1/3

=
[

27

2
(σ1 − σm)(σ2 − σm)(σ3 − σm)

]1/3

(3)

where [S] is the deviatoric stress tensor defined by,

[S] = [σ ] + p[I ], (4)

[I ] is the identity tensor and σ1, σ2 and σ3 denote prin-
cipal stresses. It is assumed that σ1 ≥ σ2 ≥ σ3. Note
that the parameter p is positive in compression, but σm

is positive in tension. It is convenient to work with the
dimensionless hydrostatic pressure η, defined by

η = −p

q
= σm

σ̄
. (5)

The parameter η, often referred to as the triaxiality
parameter, has been extensively used in the literature
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Fig. 3 Three types of coordinate system in the space of principal
stresses

on ductile fracture (McClintock 1968; Rice and Tracey
1969; Hancock and Mackenzie 1976; Mackenzie et al.
1977; Johnson and Cook 1985; Bao 2003). The sec-
ond important parameter is the Lode angle θ , which is
related to the normalized third invariant ξ through

ξ =
(

r

q

)3

= cos(3θ). (6)

One can see that that the normalized third devia-
toric stress invariant can be expressed in terms of the
Lode angle θ (see Malvern (1969), Xu and Liu (1995),
ABAQUS 2005; the derivation is also summarized in
Sect. 3.1). Since the range of the Lode angle is 0 ≤ θ ≤
π/3, the range of ξ is −1 ≤ ξ ≤ 1. The geometrical
representation of Lode angle is shown in Fig. 3.

As shown in Fig. 3, one can think of three types of
coordinate systems to describe the stress state. The first
is the Cartesian coordinate system (σ1, σ2, σ3), the sec-
ond is the cylindrical coordinate system (σm , σ̄ , θ), and
the third is the spherical coordinate system (σ̄ , η, θ).
The equivalent stress σ̄ is related to the equivalent strain
ε̄ through the strain hardening function of a material.
The coordinate ϕ is related to the stress triaxiality η by
the following equation,

η = σm

σ̄
=

√
2

3
cotanϕ. (7)

Furthermore, the Lode angle can be normalized,

θ̄ = 1 − 6θ

π
= 1 − 2

π
arccos ξ. (8)

So that the range of θ̄ is −1 ≤ θ̄ ≤ 1. The parameter
θ̄ will be called the Lode angle parameter hereinaf-
ter. Now, the direction of every stress vector (or load-
ing condition) in the space of principal stresses can be
characterized by the above defined set of parameters
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(η, θ̄). It is easy to show (Wierzbicki and Xue 2005;
Bai and Wierzbicki 2008) that θ̄ = 1 corresponds to the
axisymmetric tension, θ̄ = 0 corresponds to the gener-
alized shear (or plastic plane strain) loading condition,
and θ̄ = −1 corresponds to the axisymmetric compres-
sion or equi-biaxial tension. Special attention is given
to the plane stress state. It was shown by Wierzbicki
and Xue (2005), Bai and Wierzbicki (2008) that the
plane stress condition, σ3 = 0, uniquely relates the
parameters η and ξ or θ̄ through

ξ = cos(3θ) = cos
[π

2
(1 − θ̄ )

]
= −27

2
η

(
η2−1

3

)
.

(9)

In this paper, the Mohr–Coulomb model will be refor-
mulated in the spherical coordinate system.

3 Transformation of Mohr–Coulomb to the space
of (ε̄ f , η, θ̄)

Consider a material element subjected to three princi-
pal stresses σ1, σ2, and σ3. At an arbitrary cutting plane
defined by the unit normal vector (ν1, ν2, ν3), the shear
stress and the corresponding normal stress are given by

τ =
√

ν2
1ν2

2 (σ1−σ2)2 +ν2
2ν2

3 (σ2−σ3)2 +ν2
3ν2

1 (σ3−σ1)2,

(10)

σn = ν2
1σ1 + ν2

2σ2 + ν2
3σ3, (11)

where the three components ν1, ν2 and ν3 are con-
strained by ν2

1 + ν2
2 + ν2

3 = 1.
The Mohr–Coulomb fracture criterion says that frac-

ture occurs when the combination of normal stress and
shear stress reach a critical value, according to

(τ + c1σn) f = c2, (12)

where c1, c2 are material constants. The constant c1 is
often referred to as a “friction” coefficient, and c2 is
shear resistance. The ranges of c1 and c2 are c1 ≥ 0
and c2 > 0. In the limiting case of c1 = 0, the M–C
criterion reduces to the maximal shear stress criterion.

The applicability of the M–C criterion to capture
ductile fracture will be shown in Sect. 8. In order to
find on which cutting plane the M–C criterion will be
met first, one must solve the following maximum value
problem:⎧⎪⎪⎨
⎪⎪⎩

Max

{√
ν2

1ν2
2 (σ1−σ2)

2 +ν2
2ν2

3 (σ2−σ3)
2 +ν2

3ν2
1 (σ3−σ1)

2

+c1
(
ν2

1σ1+ν2
2σ2+ν2

3σ3
)}

Subject to ν2
1 + ν2

2 + ν2
3 = 1

.

(13)

Recalling that σ1 ≥ σ2 ≥ σ3, the solution of the
maximum value problem using the Lagrangian mul-
tiplier technique is
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν2
1 = 1

1+
(√

1+c2
1+c1

)2

ν2
2 = 0

ν2
3 = 1

1+
(√

1+c2
1−c1

)2

, (14)

where ν1, ν2, and ν3 are direction cosines of maxi-
mum, intermediate, and minimum principal stresses,
respectively. Substituting Eq. 14 into Eq. 12, the M–C
criterion can be expressed in terms of principal
stresses,
(√

1 + c2
1 + c1

)
σ1 −

(√
1 + c2

1 − c1

)
σ3 = 2c2,

(15)

provided that σ1 ≥ σ2 ≥ σ3. The plane stress represen-
tation of the above fracture criterion is shown in Fig.
20. In view of enormous literature on the M–C crite-
rion, the solution to the above maximum value problem
must have been published earlier. However, the pres-
ent authors were unable to find any reference on this
topic. Here, only the final results are given. It should be
noted that the orientation of the fracture plane depends
only on the friction coefficient c1, while the onset of
fracture is controlled by both c1 and c2. In order to
transform the Mohr–Coulomb criterion to the space
of (ε̄ f , η, θ̄ ), one needs to express principal stresses
in terms of σm , η and θ . Similar transformation equa-
tions can be found, for example, in Malvern (1969).
However, for the consistency of notation, the required
transformation is derived here from the geometrical
construction in Sect. 3.1.

3.1 Representation of the M–C criterion in terms of
σ̄ , η and θ

The principal stresses and principal deviatoric stesses
can be geometrically represented on the deviatoric
plane (π plane), as shown in Fig. 4. Note that all the
components are scaled because of the inclined angle
between the deviatoric plane and the principal axis (see
Fig. 3). From the geometrical construction, one can eas-
ily obtain the expressions of the deviatoric principal
stresses in terms of σ̄ and θ ,
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Fig. 4 Geometrical representation of principal stresses
(σ1, σ2, σ3), deviatoric stresses (s1, s2, s3), equivalent stress (σ̄ )
and Lode angle (θ ) on the deviatoric plane (π plane)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
3

2
s1 =

√
2

3
σ̄ cos θ√

3

2
s2 =

√
2

3
σ̄ cos

(
2

3
π − θ

)
√

3

2
s3 =

√
2

3
σ̄ cos

(
4

3
π − θ

)

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s1 = 2

3
σ̄ cos θ

s2 = 2

3
σ̄ cos

(
2

3
π − θ

)

s3 = 2

3
σ̄ cos

(
4

3
π − θ

) . (16)

It should be noted that the constraint of deviatoric
principal stresses,

s1 + s2 + s3 = 2

3
σ̄

[
cos θ + cos

(
2

3
π − θ

)

+ cos

(
4

3
π − θ

)]
= 0,

(17)

is satisfied automatically. Using Eq. 16, one can express
the three principal stresses in terms of σm , η and θ .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 = σm + s1 = σm + 2
3 σ̄ cos θ =

[
1 + 2 cos θ

3η

]
σm

σ2 = σm + s2 = σm + 2
3 σ̄ cos

( 2
3π − θ

)

=
[

1 + 2 cos
(

2
3 π−θ

)
3η

]
σm

σ3 = σm + s3 = σm + 2
3 σ̄ cos

( 4
3π − θ

)

=
[

1 + 2 cos
(

4
3 π−θ

)
3η

]
σm

(18)

Since the range of Lode angle is 0 ≤ θ ≤ π/3,
it can be proved that σ1 ≥ σ2 ≥ σ3 is satisfied for
the three principal stresses in Eq. 18. Using Eq. 18, one
can also prove the relationship of the normalized third
deviatoric invariant ξ and the Lode angle θ expressed
earlier in Eq. 6. Also, the condition of plane stress
(Eq. 9) can be easily proved by using the above trans-
formation formulas.

Substituting Eq. 18 into Eq. 15, one can express the
M–C criterion in terms of σ̄ , η and θ ,

σ̄ = c2

⎡
⎣
√

1 + c2
1

3
cos
(π

6
− θ
)

+ c1

(
η + 1

3
sin
(π

6
− θ
))]−1

. (19)

This fracture envelope forms a surface in the space of
normalized stress invariants, which is also the “spher-
ical” stress coordinate system.

3.2 Extended plasticity model

As explained in Fig. 1, the resolution of detecting the
onset of ductile fracture is much better if a strain repre-
sentation is used. Furthermore, fracture is a local phe-
nomenon with large stress gradients. There is no easy
way of measuring components of the stress tensor and
evaluate σ̄ directly from tests. This difficulty is over-
come if the equivalent stress is expressed in terms of
other measurable parameters.

The quadratic yield condition, on which the power
type relation between the equivalent stress and the
equivalent strain is based, σ̄ = Aε̄n , is not sufficient to
predict correctly material yield strength and directions
of plastic flow. Hosford (1972) proposed a non-qua-
dratic yield function with one more parameter k,

2σ̄ 2k
y = (σ1 − σ2)

2k + (σ2 − σ3)
2k + (σ3 − σ1)

2k .

(20)

Equation 20 reduces respectively to the von Mises yield
condition for k = 1 and to the Tresca yield locus for
k → ∞. The actual value of the exponent 2k can be
adjusted to test fit experimental data on biaxial testing.
For example 2k = 8 was quoted to fit the initial yield
surface of a class of aluminum alloys. Further extension
of the Hosford yield condition for isotropic and aniso-
tropic solids and sheets can be found in the papers by
Karafillis and Boyce (1993), Barlat et al. (2007).

123



6 Y. Bai, T. Wierzbicki

Recent experimental results (Bai and Wierzbicki
2008; Yang et al. 2009; Gao et al. 2009) have shown that
both the hydrostatic pressure and Lode angle param-
eter should be taken into account in metal plasticity.
Bai and Wierzbicki (2008) proposed a generalized
hardening rule with pressure and Lode angle depen-
dence in the form,

σ̄ = Aε̄n [1 − cη(η − η◦)
] [

cs
θ + (cax

θ − cs
θ )γ
]
, (21)

cax
θ =

{
1 for θ̄ ≥ 0
cc
θ for θ̄ < 0

. (22)

where A is a material constant, n is the strain hard-
ening exponent, and cη, η◦, cs

θ and cc
θ are parameters

to describe both the pressure dependence and Lode
angle dependence of the material plasticity. Altogether,
there are six parameters defining the plasticity model.
The parameter γ in Eq. 21 is related to the Lode angle
parameter by

γ =
√

3

2 − √
3

[
sec
(
θ − π

6

)
− 1
]

=
√

3

2 − √
3

[
sec

(
θ̄π

6

)
− 1

]
. (23)

Some limiting cases of the general yield function are
obtained by suitably choosing model parameters. It is
noted that by fixing the parameters cc

θ = 1 and cη =
0, there is a close analogy between the non-quadratic
Hosford yield function and the new representation of
yield function in terms of σ̄ and θ̄ , Eq. 21. For example,
cs
θ = 1 corresponds to the von-Mises yield condition;

while cs
θ = √

3/2 gives the Tresca yield condition.
Thus, there is a one-to-one correspondence between
the exponent k in Eq. 20 and parameter cs

θ in Eq. 21.
The presence of the parameter cc

θ gives additional flex-
ibility to the size and shape of the yield surface, as
illustrated in Fig. 5.

3.3 Representation of the M–C criterion in terms of
ε̄ f , η and θ̄

Consider the case of a monotonic loading, and denote
the equivalent stress and strain at the point of frac-
ture by σ̄ f and ε̄ f . Substituting Eq. 21 and Eq. 23 into
Eq. 19, the Mohr–Coulomb fracture criterion is trans-
formed from the stress-based form into the mixed space

Fig. 5 Examples of yield loci for plane stress condition. (Here,
the effect of hydrostatic pressure is deactivated, cη = 0)

of (ε̄ f , η, θ̄ ).

ε̄ f =
{

A

c2

[
1−cη(η−η◦)

]

×
[

cs
θ+

√
3

2−√
3
(cax

θ −cs
θ )

(
sec

(
θ̄π

6

)
−1

)]

⎡
⎣
√

1+c2
1

3
cos

(
θ̄π

6

)
+c1

(
η+1

3
sin

(
θ̄π

6

))⎤
⎦
⎫⎬
⎭

− 1
n

.

(24)

A total of eight parameters (A, n, cη, η◦, cs
θ , cc

θ , c1, c2)
need to be found, but only two have to be calibrated
from fracture tests. If a von Mises yielding function is
used (cη = 0, cs

θ = cc
θ = 1), then Eq. 24 reduces to

ε̄ f =
⎧⎨
⎩

A

c2

⎡
⎣
√

1 + c2
1

3
cos

(
θ̄π

6

)
+ c1

(
η + 1

3
sin

(
θ̄π

6

))⎤
⎦
⎫⎬
⎭

− 1
n

.

(25)

In the case of Tresca yield function (cη = 0, cc
θ = 1,

cs
θ = √

3/2 ), and Eq. 24 reduces to

ε̄ f =
⎧⎨
⎩

A

c2

⎡
⎣
√

1+c2
1

2
+c1

√
3

2
sec

(
θ̄π

6

)(
η+ 1

3
sin

(
θ̄π

6

))⎤
⎦
⎫⎬
⎭

− 1
n

.

(26)

In the above two limiting cases, the simplified plastic-
ity model depends on only two parameters, A and n,
which can be found from the same tests as the fracture
tests. From the application point of view, the ease and
practicality of the M–C criterion in terms of finding
model parameters from experiments are obvious.
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Fig. 6 3D geometry representation of maximum shear fracture
criterion (A = 740 MPa, n = 1/6, cη = 0, cs

θ = cc
θ = 1,

c1 = 0.0, and c2 = 330 MPa). The curve on the surface repre-
sents the plane stress curve

4 A limiting case: maximum shear stress criterion

In the limiting case of c1 = 0, the Mohr–Coulomb
fracture criterion reduces to the maximum shear stress
fracture criterion. For example, if the von Mises yield
function is used, then Eq. 25 reduces to

ε̄ f =
[√

3

3

A

c2
cos

(
θ̄π

6

)]− 1
n

, (27)

which is pressure independent. At the same time,
the direction cosines of the fracture plane, defined

by Eq. 14, are constant and equal to
(

1√
2
, 0, 1√

2

)
. A

geometric representation of this criterion is shown in
Fig. 6. The fracture locus depends only on the Lode
angle parameter and forms a half tube in the space of
(ε̄ f , η, θ̄ ). The corresponding fracture locus for plane
stress condition (Eq. 9) is a three-branch curve lying on
the half tube. The projection of the plane stress fracture
locus onto the plane of equivalent strain to fracture and
the stress triaxiality is shown in Fig. 2, on which only
two branches are plotted.

If the Tresca yielding condition is used, the maxi-
mum shear stress criterion, Eq. 26, reduces to the con-
stant fracture strain criterion.

ε̄ f =
(

A

2c2

)− 1
n

. (28)

Fig. 7 3D geometry representation of Mohr–Coulomb fracture
model (A = 740 MPa, n = 1/6, cη = 0, cs

θ = cc
θ = 1, c1 = 0.1,

and c2 = 330 MPa)

5 Representation of Mohr–Coulomb fracture
criterion in 3D space of invariants

The new form of Mohr–Coulomb fracture model, Eq.
24, can be geometrically represented in the 3D space
of (ε̄ f , η, θ̄ ), see Fig. 7. Here, an example group of
parameters is used: A = 740 MPa, n = 1/6, cη = 0,
cs
θ = cc

θ = 1, c1 = 0.1, and c2 = 330 MPa. The 3D
fracture locus is seen to be a monotonic function of
the stress triaxiality and an asymmetric function with
respect to the Lode angle parameter θ̄ .

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

η

ε
f

Mohr-Coulomb: A=740, n=1/6, c
1
=0.1, c

2
=330

Rice and Tracey: ε
f
=0.2143e-0.9796η

Fig. 8 Mohr–Coulomb criterion in the space of equivalent strain
to fracture and stress triaxiality (assuming θ̄ = 0)
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5.1 Pressure dependence

If a von-Mises yielding function is used (cη = 0, cs
θ =

cc
θ = 1), and the Lode angle parameter θ̄ in Eq. 24 is

fixed at a certain value, for example θ̄ = 0, then Eq. 24
reduces to

ε̄ f =
⎡
⎣ A

c2

⎛
⎝
√

1 + c2
1

3
+ c1η

⎞
⎠
⎤
⎦

− 1
n

. (29)

which is a nonlinear hyperbolic function of stress triax-
iality η. An example plot of Eq. 29 is shown in Fig. 8.
It is found that an exponential function D3e−D4η fits
Eq. 29 for a wide range of stress triaxiality. So, the
Mohr–Coulomb criterion provides an interesting phys-
ical interpretation of the effect of stress triaxiality on
ductile fracture, which is originally based on the the-
ory of void growth (McClintock 1968; Rice and Tracey

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

θ

ε
f

Mohr-Coulomb
Parabolic fitting

Fig. 9 Mohr–Coulomb criterion on the space of equivalent strain
to fracture and the Lode angle parameter (assuming η = 0)

1969). This is also in accord with the empirical results
of Hancock and Mackenzie (1976), Johnson and Cook
(1985).

5.2 Lode angle dependence

If the von-Mises yielding function is used again (cη =
0, cs

θ = cc
θ = 1), and the stress triaxiality η in Eq. 24 is

fixed at a certain value, for example η = 0, then Eq. 24
becomes

ε̄ f =
⎧⎨
⎩

A

c2

⎡
⎣
√

1 + c2
1

3
cos

(
θ̄π

6

)
+ c1

3
sin

(
θ̄π

6

)⎤
⎦
⎫⎬
⎭

− 1
n

.

(30)

An example plot of Eq. 30 is shown in Fig. 9. A par-
abolic function controlled by three points, ε̄ f (θ̄ = 1),
ε̄ f (θ̄ = 0) and ε̄ f (θ̄ = −1), is used to fit the curve.
It follows from Fig. 9 that a parabolic function pro-
vides a good functional dependence of the Lode angle
parameter on ductile fracture. It should be noted that
the minimum value of the function does not occur at
θ̄ = 0 but it is slightly shifted, which makes the 3D
fracture locus an asymmetric function.

6 Parametric study

There are eight parameters (A, n, c1, c2, cη, η◦, cs
θ

and cc
θ ) in the Mohr–Coulomb fracture criterion (see

Eq. 24). In this section, a parameter study is performed
to get a better understanding of new forms of Mohr–
Coulomb criterion. In particular, some qualitative fea-
tures of model parameters on the fracture locus are
demonstrated. As a starting point, a combination of
model parameters, A = 740 MPa, n = 1/6, cη = 0,

Fig. 10 Effect of c1 on the
new form of the
Mohr–Coulomb criteria
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Application of extended Mohr–Coulomb criterion to ductile fracture 9

η◦ = 0, cs
θ = cc

θ = 1, c1 = 0.1 and c2 = 330 MPa, is
considered.

6.1 Effect of c1

Keeping other parameters unchanged, the new form of
the Mohr–Coulomb criterion is plotted for three val-
ues of c1 (c1 = 0, 0.1, and 0.2) on the same planes as
those in Sects. 5.1 and 5.2, see Fig. 10. It is found that
as c1 increases, the fracture strain becomes more pres-
sure dependent (see Fig. 10a), and the fracture locus
becomes more asymmetric (see Fig. 10b). The limiting
case c1 = 0, which corresponds to the maximum shear
stress criterion, implies a symmetric fracture locus with
respect to Lode angle parameter θ̄ .

6.2 Effect of c2

Keeping other parameters unchanged, two values of c2

are used to plot the new form of the Mohr–Coulomb
criteria, see Fig. 11. It is found that the value of c2

affect only the “height” of the fracture locus while the
shape of the fracture locus is unchanged. A larger value
of c2 scales up the fracture locus.

6.3 Effect of A

Similarly, two values of A are used to plot the new
form of the Mohr–Coulomb criteria, see Fig. 12. It is
found that the parameter A has a similar effect as that
of parameter c2, but the effect of A on fracture locus
is in the opposite direction of that of c2. A larger value
of A scales down the fracture locus. In other words,
if a material gains more strength in the plastic range,
then it loses some of its ductility. This property has
been observed in many advanced high strength steels
(Pfestorf 2005).

6.4 Effect of strain hardening exponent n

Again, two values of the strain hardening exponent, n,
are used to plot the new form of the Mohr–Coulomb
criteria, see Fig. 13. One obvious effect of the strain
hardening exponent n is that it raises the fracture locus.

Three values of n ( 1
6 , 1

4 and 1
2 ) are chosen in Fig. 14

to further demonstrate the effect of n. In Fig. 14a, all
three curves are normalized with respect to ε̄ f (η = 0),

and in Fig. 14b, all curves are normalized with respect
to ε̄ f (θ̄ = 1). From Fig. 14a, one can see that a higher
value of n decreases the pressure dependence of frac-
ture locus. From Fig. 14b, one can see that a higher
value of n decreases the dependence of fracture locus
on the Lode angle parameter, which was first noted by
Xue (2007) using the Stören and Rice necking criterion
(Storen and Rice 1975).

6.5 Effect of cη

Taking into account the pressure effect on material plas-
ticity, for example, cη = 0.09 and η◦ = 0 with other
parameters kept unchanged, a comparison of fracture
locus is shown in Fig. 15. It is found that changing the
parameter cη has no effect on the Lode angle depen-
dence of the fracture locus (see Fig. 15b), but increasing
cη will decrease the pressure dependence of the frac-
ture locus (see Fig. 15a). In other words, if a material
has more pressure dependence on plasticity, then it will
have less pressure dependence on fracture. This result
should also be further investigated experimentally on
different materials.

6.6 Effect of cs
θ

Assuming cc
θ = 1, three values of cs

θ (1.0, 0.93 and√
3

2 = 0.866) are used to plot the fracture locus, see
Fig. 16. One can see that decreasing the parameter cs

θ

will raise the fracture locus (see Fig. 16a). On the other
hand, decreasing cs

θ will decrease the Lode dependence
of the fracture locus (see Fig. 16b). In other words, if
a material has stronger Lode dependence on plasticity,
then it will have weaker Lode dependence on fracture.
This point has been confirmed by comparing fracture
data of two steels (1045 steel and DH36 steel), see (Bai
et al. 2009). The 1045 steel has no Lode angle depen-
dence on plasticity but exhibits a Lode angle depen-
dence on fracture locus. On the other hand the DH36
exhibits a Lode angle dependence on plasticity but not
on fracture.

6.7 Effect of cc
θ

In Eq. 21, the parameter, cc
θ , controls the asymme-

try of a yield surface, so this parameter will affect
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10 Y. Bai, T. Wierzbicki

Fig. 11 Effect of c2 on the
new form of the
Mohr–Coulomb criteria

Fig. 12 Effect of A on the
new form of the
Mohr–Coulomb criteria

Fig. 13 Effect of n on the
new form of the
Mohr–Coulomb criteria
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Application of extended Mohr–Coulomb criterion to ductile fracture 11

Fig. 14 A normalized plot
to show the effect of n on
the new form of the
Mohr–Coulomb criteria

Fig. 15 Effect of cη on the
new form of the
Mohr–Coulomb criteria

Fig. 16 Effect of cs
θ on the

new form of the
Mohr–Coulomb criteria.
This parameter controls the
amount of Lode angle
dependence of the fracture
locus
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Fig. 17 Effect of cc
θ on the

new form of the
Mohr–Coulomb criteria.
This parameter controls the
asymmetry of fracture locus
with respect to the Lode
angle parameter

Fig. 18 A proposed shape
of cutoff region of fracture
one the plane of (η, θ̄) with
c1 = 0.57

the asymmetry of material’s fracture locus. Assuming
cs
θ = 1, fracture loci with three values of cc

θ (1.0, 0.95
and 1.05) are plot in Fig. 17. One can see that decreas-
ing the parameter cc

θ will raise the fracture strains at
θ̄ = −1 (see Fig. 17b), which changes the symmetry of
the fracture locus. For some materials, fracture strain
under equi-biaxial tension (θ̄ = −1) is much higher
than that of uni-axial tension (θ̄ = 1), which would be
controlled by the parameter cc

θ . On the other hand, the
parameter cc

θ does not change the pressure dependence
of fracture locus (see Fig. 16a). Referring to Sects. 6.4
and 6.6, it is found that the parameters, cs

θ , cc
θ and n,

are the key parameters controlling the Lode angle effect
on the fracture locus. This conclusion emphasizes the

importance of developing an accurate plasticity model
to predict fracture.

6.8 Existence of a cutoff region

The existence of a cutoff value in the low stress triaxi-
ality region has been revealed by Bao (2003), Bao and
Wierzbicki (2005) and Teng (2004). Based on anal-
ysis of upsetting tests and Bridgman’s tests (Bridg-
man 1952), Bao and Wierzbicki (2005) discovered that
the cutoff value for fracture occurs at ηcutoff = − 1

3 .
No fracture can occur below this critical value. Teng
(2004) confirmed the importance of a cutoff value in
high velocity impact simulation.
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Shear Force

Normal Force

Die-cone

nσ

τ

Total ForceF

Fig. 19 A physical interpretation of existence cutoff region
using the concept of die-cone in friction

Introducing the Lode angle parameter θ̄ into the duc-
tile model, the cutoff region in the plane of the stress
invariants (η, θ̄) of the 3D fracture locus appears auto-
matically as a consequence of the M–C model. From
Eq. 24, it is found that the fracture strain will go to
infinity when the following condition is satisfied,√

1 + c2
1

3
cos

(
θ̄π

6

)
+ c1

(
η + 1

3
sin

(
θ̄π

6

))
≤ 0.

(31)

This cutoff region in the stress state plane (η, θ̄) is
shown in Fig. 18 with a shaded area. In Fig. 18, an
arbitrary value c1 = 0.57 is assumed.

The above property of the cutoff region can be justi-
fied by revoking the physical concept of die-cone in the
friction force, see Fig. 19. When the stress triaxiality η

is less than a certain value, the vector of total force will
be contained within the die-cone, under which con-
dition slips will not occur during the material defor-
mation. This gives an interesting physical interpreta-
tion of cutoff region using the Mohr–Coulomb criterion
together with the concept of die-cone. However, “unre-
alistically” large values of the parameter c1 would be
needed in Eq. 31. Challenging tests should be designed
and carried out in the future to explore this idea.

7 Crack directions in the plane stress and uni-axial
stress

An important feature of M–C criterion is that it not only
tells when a material point fails but also in which direc-
tion the material element cracks. In the general case,
the crack plane is defined by Eq. 14. For the plane stress
condition, it is convenient to consider a 2D represen-
tation of fracture planes, see Fig. 20. This picture was
constructed taking c1 = 0.1 as an example. The asym-

metric hexagon represents the locus of crack directions.
For example, in the first quadrant, there will be slant
fracture through thickness, but in the planar view, the
crack forms perpendicular to the maximum principal
stress. In the second and fourth quadrant, the through
thickness crack is normal to the middle surface of a
sheet, but follows an inclined planar direction. It is
interesting to note that the planar vector of the crack
direction is perpendicular to unit normal vector of the
M–C fracture surface.

To simulate the crack propagation, the currently used
technique in finite element simulation is based either on
element deletion or element split along element edges.
Neither of these two methods correctly simulates the
boundary condition after a crack initiates, which is criti-
cal to predict the crack propagation, especially the slant
fractures. It is suggested touseanextendedelement split
technique in the spirit of an enriched FE shell element
model suggested by Belytschko (for example, Areias
and Belytschko (2005)). The direction of local element
split surface will then follow from the M–C criterion.
This is a technique requiring the joint efforts of both
physical fracture modeling and finite element coding.

8 Experiment calibration and verification

8.1 A form of Mohr–Coulomb fracture locus
proposed for application

Parameter study in Sect. 6 provides an insight under-
standing of the parameters in the Mohr–Coulomb frac-
ture locus (Eq. 24). Since the effects of cη and c1 are
similar in term of stress triaxiality, the term of pressure
dependence on yield surface is neglected for simplicity.
The following form of fracture locus is suggested for
application.

ε̄ f =
{

A

c2

[
cs
θ +

√
3

2 − √
3

(
cax
θ − cs

θ

) (
sec

(
θ̄π

6

)
− 1

)]

⎡
⎣
√

1 + c2
1

3
cos

(
θ̄π

6

)
+ c1

(
η + 1

3
sin

(
θ̄π

6

))⎤
⎦
⎫⎬
⎭

− 1
n

,

(32)

where cax
θ is defined in Eq. 22. There are a total of six

parameters (A, n, c1, c2, cs
θ , cc

θ ) that need to be found.
The first two parameters, A and n, are parameters of
material strain hardening, which can be calibrated from
curve fitting of the stress–strain curve using power
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14 Y. Bai, T. Wierzbicki

Fig. 20 According to
Mohr–Coulomb fracture
criterion, a crack direction
locus is proposed for plane
stress conditions

Fig. 21 Specimens used by
Bao to calibrate the fracture
locus for the wide range of
stress triaxialtiy, see Table 1
for details

function. The two basic Mohr–Coulomb parameters,
c1 and c2, need to be determined from material tests
carried up to fracture. There are two additional param-
eters, cs

θ and cc
θ . The parameter cs

θ controls the amount
of Lode angle dependence, and the parameter cc

θ affects
the asymmetry of the fracture locus. Their default val-
ues are 1.0 if no additional test data are available. It
should be noted that these two parameters, cs

θ and cc
θ ,

could be determined from careful plasticity tests and
determination of the shape of the yield surface. Alterna-
tively, one can leave those parameters undetermined in

the plasticity model and determine all four parameters
(c1, c2, cs

θ , cc
θ ) from best fit of the fracture data points.

In the following two subsections, test data of two
example materials are used to calibrate and verify
the proposed Mohr–Coulomb fracture locus. One set
of material data is taken from Bao and Wierzbick-
i’s tests on aluminum alloy 2024-T351 (Bao 2003;
Bao and Wierzbicki 2004; Wierzbicki et al. 2005b).
The second set of material data on a TRIP steel sheet
(RA-K40/70) from ThyssenKrupp was obtained by the
present authors.
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Application of extended Mohr–Coulomb criterion to ductile fracture 15

8.2 Example 1, Aluminum alloy 2024-T351

Bao and Wierzbicki (Bao 2003; Bao and Wierzbicki
2004; Wierzbicki et al. 2005b) performed a series of
tests to calibrate the fracture locus of 2024-T351 alu-
minum alloy in a wide range of stress triaxiality, see
Fig. 21. All the data from the 15 types of tests done
by Bao and Wierzbicki are re-processed to calculate
the Lode angle parameter θ̄ , which was not introduced
by Bao and Wierzbicki. Since in general the two stress
state parameters are variable during the loading pro-
cess, average values are used, according to the defini-
tions given in Sect. 9. A list of the stress state param-
eters, η and θ̄ , and the equivalent strain to fracture ε̄ f

is shown in Table 1. The corresponding specimens of
all the data points are labeled in Fig. 21. These tests,
except test No.9 (where there were no obvious observed
cracks), will be revisited using the new form of the
Mohr–Coulomb criterion.

8.2.1 Plasticity

The parameters of the basic hardening curve, A = 740
MPa, n = 0.15, were found from the best fit of the
stress–strain curve corresponding to the upsetting test
(No. 6). In order to quantify the effect of Lode angle
on plasticity (parameter cs

θ and cc
θ ), axial-symmetric

tension (test No. 1), axial-symmetric compression (test
No. 6) and plane strain (test No. 4) experiments should
be compared with each other, as described by Bai and
Wierzbicki (2008). Such a comparison was performed
by Bao (2003) showing that there is a very little Lode
angle effect on plasticity. Therefore, for the purpose
of the present analysis, the two parameters are set to
unity (cs

θ = cc
θ = 1). This completes determination of

plasticity constants.

8.2.2 Fracture

The M–C fracture criterion involves two basic mate-
rial constants, so two tests are needed to calibrate this
criterion. For that purpose, fracture test No. 6 and 10
of Table 1 are used. Substituting the experimental data
(ηav, θ̄av and ε̄ f ) into Eq. 32, a set of two nonlinear alge-
braic equations for c1 and c2 are obtained. The solu-
tion of this system yields c1 = 0.0345 and c2 = 338.6
MPa. Now all six parameters in Eq. 32 have been deter-
mined. The plot of the resulting fracture locus is shown

Fig. 22 3D geometric representation of Mohr–Coulomb fracture
locus for 2024-T351 aluminum alloy. (A = 740 MPa, n = 0.15,
c1 = 0.0345, c2 = 338.6 MPa, cs

θ = cc
θ = 1.0)

in Fig. 22. Tests No. 6 and 10, used for fracture calibra-
tion, are displayed as diamonds. The “half tube” surface
passes exactly through those two points. Points corre-
sponding to the remaining twelve tests are denoted by
circles. They appear to be very close to the 3D surface,
except for three points corresponding to unnotched and
notched round bars. It has been shown by many investi-
gators that the fracture in round bars in tension involves
a mechanism of void growth and linkage. Clearly this
is not well captured by the M–C fracture criterion. In
other words, the M–C model describes shear type of
fracture well but not fracture produced by void growth
and linkage. It can be concluded that the M–C model
is able to capture, with an engineering accuracy, shear
fracture of 2024-T351 aluminum in a wide range of
stress triaxiality and Lode angle parameter.

Most of the tests done by Bao and Wierzbicki were
in plane stress condition, except for three round bars
tensile tests (No. 1, 2 and 3). It follows from Eq. 9 that
the plane stress data points lie on the “s”-shaped curve
of plane stress condition. By substituting Eq. 9 into
Mohr–Coulomb criterion, Eq. 32, the fracture locus of
plane stress condition can be plotted on the plane of
equivalent strain to fracture and the stress triaxiality
(refer to Fig. 23). One can see that the fracture locus
of plane stress consists of three half-cycles. This phe-
nomenon was first revealed by Wierzbicki and Xue
(Wierzbicki and Xue 2005) from a symmetric 3D frac-
ture locus. The experimental data points used for cali-
bration are marked in Fig. 23 by full circles. It is found
that the calibrated Mohr–Coulomb criterion predicts
the trends of experimental results very well. At the same
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16 Y. Bai, T. Wierzbicki

Table 1 A summary of Bao
and Wierzbicki’s test results
on 2024-T351 aluminum,
[experimental data after Bao
(2003), Wierzbicki et al.
(2005b)]

No. Specimen description ηav θ̄av ε̄ f

1 Smooth round bar, tension 0.4014 0.9992 0.4687

2 Round large notched bar, tension 0.6264 0.9992 0.2830

3 Round small notched bar, tension 0.9274 0.9984 0.1665

4 Flat grooved, tension 0.6030 0.0754 0.2100

5 Cylinder(d◦/h◦ = 0.5), compression −0.2780 −0.8215 0.4505

6 Cylinder(d◦/h◦ = 0.8), compression −0.2339 −0.6809 0.3800

7 Cylinder(d◦/h◦ = 1.0), compression −0.2326 −0.6794 0.3563

8 Cylinder(d◦/h◦ = 1.5), compression −0.2235 −0.6521 0.3410

9 Round notched, compression −0.2476 −0.7141 0.6217

10 Simple shear 0.0124 0.0355 0.2107

11 Combination of shear and tension 0.1173 0.3381 0.2613

12 Plate with a circular hole 0.3431 0.9661 0.3099

13 Dog-bone specimen, tension 0.3570 0.9182 0.4798

14 Pipe, tension 0.3557 0.9286 0.3255

15 Solid square bar, tension 0.3687 0.9992 0.3551

-2/3 -1/3 0 1/3 2/3 1
0

0.2

0.4

0.6

0.8

1

η

ε
f

Plastic plane strain or shear

Best fit of Rice-Tracey

Plane stress

Fig. 23 Mohr–Coulomb fracture locus for 2024-T351 on the
plane of equivalent strain to fracture and stress triaxiality. Only
the test data under plane stress condition are plotted

time the Rice–Tracey fracture model (Rice and Tracey
1969) can not predict the trend of plane stress fracture.

8.3 Example 2: TRIP RA-K40/70 steel sheet

The second example material is a TRIP steel sheet
(RA-K40/70, or called TRIP690) provided by Thys-
senKrupp Steel. The material comes in sheets, so all
tests correspond to the plane stress condition. The
material shows small amount of anisotropy in both
plasticity and fracture properties. Dog-bone speci-
mens were cut from three directions (0, 45 and 90
degrees) and tested under simple tension. The initial
yield stresses are σ0 = 446.4 MPa, σ45 = 457.7 MPa,
and σ90 = 455.5 Mpa. Like the small difference in
initial yielding, the subsequence material strain hard-
ening in three directions are also very similar. The
measured r-ratios in three directions are r0 = 0.79,
r45 = 0.97, and r90 = 1.02, which shows some mate-
rial anisotropy in the plastic flow. These tension tests
were carried all way to fracture, the measurement of
area reductions at fracture cross-sections gave esti-
mations of the equivalent fracture strains, which are

Table 2 A summary of test
results on a TRIP steel

No. Specimen description ηav θ̄av ε̄ f

1 Dog-bone, tension 0.379 1.0 0.751

2 Flat specimen with cutouts, tension 0.472 0.4960 0.394

3 Disk specimen, equi-biaxial tension 0.667 −0.921 0.950

4 Butterfly specimen1, tension 0.577 0.0 0.460

5 Butterfly specimen2, simple shear 0.0 0.0 0.645

123



Application of extended Mohr–Coulomb criterion to ductile fracture 17

Fig. 24 Mohr–Coulomb fracture locus for a TRIP steel sheet
on the plane of equivalent strain to fracture and stress triaxial-
ity. (A = 1275.9 MPa, n = 0.2655, c1 = 0.12, c2 = 720 MPa,
cs
θ = 1.095, cc

θ = 1.0)

ε̄ f,0 = 0.703, ε̄ f,45 = 0.754, and ε̄ f,90 = 0.744.
One can see that the difference of fracture properties
in three directions is also small. In this paper, mate-
rials are assumed to be isotropic. For simplicity, the
plasticity of the TRIP steel sheet are described by an
power hardening curve, σ̄ = Aεn = 1275.9ε̄0.2655

MPa.
In total, five types of specimens are used for fracture

calibration: dog-bone specimen, flat specimen with cut-
outs, punch test, butterfly specimen in tension and but-
terfly specimen in simple shear. Similarly, the average
value of two stress state parameters (η, θ̄ ) are calculated
from the numerical simulation using shell elements. A
detail experimental and simulation results of those tests
are described in the reference (Bai et al. 2008). A sum-
mary of the stress state parameters, η and θ̄ , and the
equivalent strain to fracture ε̄ f is shown in Table 2.
The corresponding specimens of the data points are
labeled in Fig. 24.

The first two parameters in the fracture locus (Eq. 32)
are determined from the material plasticity, A =
1275.9 MPa and n = 0.2655. The remaining four
parameters (c1, c2, cs

θ , cc
θ ) are found from the best fit of

equivalent strain to fracture for all five fracture tests.
An approach of parameter optimization using Matlab
code was described in reference (Bai and Wierzbicki
2008). Utilizing the same approach, the remaining four
parameters are found as: c1 = 0.12, c2 = 720 MPa,
cs
θ = 1.095, cc

θ = 1.0. A comparison of test results with
the calibrated M–C criterion is shown in Fig. 24. Again,
the M–C criterion was able to capture all features of the
fracture locus of metal sheets.

9 Damage evolution rule

Besides the fracture locus, discussed extensively in the
preceding section, the rule of damage evolution is an
integral part of the fracture predictive technique. The
fracture locus is defined under monotonic loading con-
ditions, so a linear incremental relationship is assumed
here between the damage indicator, D, and the equiv-
alent plastic strain ε̄p,

D
(
ε̄p
) =

ε̄p∫

0

d ε̄p

f
(
η, θ̄
) , (33)

where the stress direction parameters,η(ε̄p), and θ̄ (ε̄p),
are unique functions of the equivalent plastic strain. A
material element is considered to fail when the limit of
ductility is reached, ε̄p = ε̄ f , so that D(ε̄ f ) = Dc = 1.
In the limiting case (for example proportional loading),
when the parameters (η, θ̄) are constant over the load-
ing cycle, Eq. 33 can be integrated to give

ε̄ f = f
(
η, θ̄
) = ε̂ f

(
η, θ̄
)
, (34)

which reduces to the 3D fracture locus ε̂ f
(
η, θ̄
)
. The

best tests for calibration are the ones in which the stress
parameters η and θ̄ are held constant. This is the case
with the equi-biaxial punch test (No. 3 in Fig. 24), the
shear test (No. 5), and to a certain extent with the flat
notched specimens (No. 2) (Beese et al. 2009). In the
general case of variable stress parameters, the integral
representation of the fracture criterion must be used.

The functions, η(ε̄p) and θ̄ (ε̄p), are known from
the numerical simulation of the tests, and the equiv-
alent strain to fracture ε̄ f is determined from inverse
method of mapping the measured displacement to frac-
ture into the calculated strain to fracture. Alternatively,
fracture strains can be measured directly by an opti-
cal measurement system and the stress invariants can
be calculated from a suitable plasticity model (Dunand
and Mohr 2009). Then the unknown fracture parame-
ters c1, c2, cs

θ , and cc
θ can be determined by minimizing

the residue R defined by Eq. 35,

R =
ε̄ f∫

0

d ε̄p

f
(
η, θ̄
) − 1. (35)

Yet, the first method in which the equivalent strain to
fracture is found directly from measurements and the
values of stress triaxiality and Lode angle parameter
are constant and known beforehand is by far superior.
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In these cases, fracture calibration bypasses the need
for a plasticity model which may introduce additional
errors.

A linear incremental dependence of the damage
function D

(
ε̄p
)

on the equivalent plastic strain (Eq. 33)
was shown to work well for monotonic loading. In the
case of reverse straining or more complicated loading
paths, a nonlinear incremental rule must be considered,
as proposed by Bai (2008).

10 Discussion and conclusion

In this paper, the transformation formulas between the
principal stresses and the stress state parameters (the
stress triaxiality η and the Lode angle parameter θ̄ ) are
derived. For monotonic loading conditions, the Mohr–
Coulomb criterion is transformed from a local repre-
sentation in terms of a shear stress and a normal stress,
to the mixed strain-stress representation of (ε̄ f , η, θ̄ ).
The corresponding fracture locus of the Mohr–Cou-
lomb criterion is shown to be described by a mono-
tonically decreasing function of the stress triaxiality
coupled with an asymmetric function of Lode angle
parameter. A parametric study on the new form of
the Mohr–Coulomb criterion was performed and the
results are summarized as follows.

• Increasing the friction parameter c1 increases both
the dependence of fracture locus on pressure and
the asymmetry of the fracture locus.

• Increasing the shear resistance parameter c2 shifts
the fracture locus upward without changing its
shape.

• Increasing the amplitude of the power hardening
law, parameter A, shifts the fracture locus down, but
its shape remains the same. In other words, increas-
ing the material’s strength will decrease its ductility.

• Increasing the power exponent n shifts the frac-
ture locus upward, but decreases both the pressure
dependence and the Lode angle dependence of the
fracture locus. In other words, less strain hardening
materials will have more pressure and Lode angle
dependence on fracture.

• Increasing the parameter cη will decrease the pres-
sure dependence of the fracture locus, but leave no
effect on the shape of the fracture locus.

• Decreasing the parameter cs
θ will increase the whole

height of the fracture locus, and decrease the effect
of Lode angle on the fracture locus. In other words,

if a material exhibits more Lode dependence on
plasticity, then it has less Lode dependence on frac-
ture, and vice versa.

• Decreasing the parameter cc
θ will increase the frac-

ture strains under axial symmetric compression
conditions (θ̄ = −1), which controls the asymme-
try of the fracture locus.

• There exists a cutoff region on the stress state plane
(η, θ̄), see Eq. 31, where fracture will not occur.

Bao and Wierzbicki’s experimental results on 2024-
T351 aluminum alloy are revisited using the new form
of the Mohr–Coulomb criterion. Using two types of
test to calibrate the basic Mohr–Coulomb parameters,
the model predicts the remaining nine tests with good
accuracy, especially for plane stress fracture. While the
Mohr–Coulomb criterion predicts most of the shearing
dominated fracture well, there are still some limitations
of this fracture criterion. For example, it does not pro-
vide a good prediction of the fracture of round bars in
tension, which satisfy the axial symmetry condition. At
the same time, fracture in upsetting tests occurs at the
equatorial region of the outer surface. This is a plane
stress fracture, and it is predicted well by the M–C
criterion.

As a second example, the test results on one type of
advanced high strength steel, TRIP RA-K40/70 steel
sheet, are provided to demonstrate the applicability
of the proposed M–C criterion to metal sheets. The
TRIP steel sheet shows small amount of anisotropy. It
should be noted that the current M–C criterion assumes
material isotropy, and it should be further extended to
describe the fracture anisotropy, which is the on-going
research.

The M–C criterion predicts not only crack initia-
tion sites but also crack directions. Providing a given
material element crack direction in conjunction with
the arbitrary element splitting technique can predict
crack path with greater accuracy. With the M–C cri-
terion’s clear and simple physical meaning, this ductile
fracture model has great potential for many engineering
applications.
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