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a b s t r a c t 

Positron emission tomography (PET) is an essential technique in many clinical applications such 

as tumor detection and brain disorder diagnosis. In order to obtain high-quality PET im- 

ages, a standard-dose radioactive tracer is needed, which inevitably causes the risk of radiation 

exposure damage. For reducing the patient’s exposure to radiation and maintaining the high quality of 

PET images, in this paper, we propose a deep learning architecture to estimate the high-quality standard- 

dose PET (SPET) image from the combination of the low-quality low-dose PET (LPET) image and the ac- 

companying T1-weighted acquisition from magnetic resonance imaging (MRI). Specifically, we adapt the 

convolutional neural network (CNN) to account for the two channel inputs of LPET and T1, and directly 

learn the end-to-end mapping between the inputs and the SPET output. Then, we integrate multiple CNN 

modules following the auto-context strategy, such that the tentatively estimated SPET of an early CNN 

can be iteratively refined by subsequent CNNs. Validations on real human brain PET/MRI data show that 

our proposed method can provide competitive estimation quality of the PET images, compared to the 

state-of-the-art methods. Meanwhile, our method is highly efficient to test on a new subject, e.g., spend- 

ing ∼2 s for estimating an entire SPET image in contrast to ∼16 min by the state-of-the-art method. The 

results above demonstrate the potential of our method in real clinical applications. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Positron emission tomography (PET) is a functional imaging

technique, which produces 3D in-vivo observation of the metabolic

process in the body. It provides molecular information on the biol-

ogy of many diseases. Accordingly, PET has been increasingly rec-

ognized as an important tool for diagnosis [1,2] , determination of

prognosis [3,4] , and response monitoring in oncology [5,6] . There

are also other imaging technologies, such as computed tomogra-

phy (CT) and magnetic resonance imaging (MRI). Recently the in-

troduction of PET/CT and PET/MRI scanners enables the acquisi-

tion of both structural and functional information in a single scan

session. 

The high-quality PET images play a crucial role in diagnosing

brain diseases and disorders [7] , because they can provide de-

tailed functional information for assessment and diagnosis. In or-

der to obtain the high-quality PET images, a standard-dose tracer
∗ Corresponding author. 

E-mail address: xianglei_15@sjtu.edu.cn (L. Xiang). 

c  

v  

t  

i  

http://dx.doi.org/10.1016/j.neucom.2017.06.048 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 
njection to tissue or organ is needed, which inevitably raises the

isk of radioactive exposure. To address this problem, the well-

nown As Low As Reasonably Achievable (ALARA) [8] principle is

dopted to minimize the radiation exposure in clinical practice. Al-

hough the principle helps to decrease the risk of radiation expo-

ure, it also degrades the quality of PET images and potentially in-

olves unnecessary noises and artifacts. Two examples of the low-

ose PET (LPET) and their corresponding standard-dose PET (SPET)

mages are shown in Fig. 1 . It can be observed that the quality of

he LPET images is worse than that of the SPET images. 

In order to improve the quality of the acquired PET images,

umerous reconstruction and denoising methods have been de-

eloped. Mejia et al. [9] proposed a multi-resolution approach

or noise reduction of PET images by employing specific filters

o homogeneous and heterogeneous image regions. Pogam et al.

10] succeeded in addressing the issue of resolution loss with

tandard denoising by combining the complementary wavelet and

urvelet transforms. Bagci and Mollura [11] used the singular

alue thresholding concept and the Stein’s unbiased risk estima-

ion method to optimize the soft thresholding rule for denois-

ng. These techniques are mainly designed for SPET images only.

http://dx.doi.org/10.1016/j.neucom.2017.06.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.06.048&domain=pdf
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Fig. 1. Two examples of the LPET images and their corresponding SPET images. 
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owever, our objective here is to estimate the SPET image from the

orresponding LPET image, which is acquired with low-dose tracer

njection. Similar works can be found for the quality enhancement

f CT images. For example, Gervaise et al. [12] proposed an adap-

ive iterative dose reduction (AIDR) method to achieve the high-

uality images, while reducing the radiation dose in CT acquisition.

Multi-modality data has been proven to provide complemen-

ary and effective information for increasing the quality of each

ingle modality [13,14] . It is shown in the literature that the

natomical or the structural information (e.g., from CT or MRI

15,16] ) contributes to better SPET image quality. In our work, we

tilize both the LPET images and the corresponding structural T1

mages for the estimation of the high-quality SPET images. We

ill detail the way to combine T1 images and LPET images us-

ng convolutional neural network (CNN) to estimate SPET images

n Section 3.1 . 

In this paper, we first use a basic four-layer CNN to build a

elatively simple model, which derives the SPET image from the

PET image and the T1 image. As an end-to-end architecture, the

eep network maps the LPET and the T1 inputs to the SPET out-

ut directly without using handcrafted features. Then, we treat

he tentatively estimated SPET image as the source of the con-

ext information [17] . In addition to the context information, both

riginal LPET and T1 images are also used as inputs to a new

our-layer CNN. In this way, we gradually concatenate multiple

NNs into a much deeper network. The entire network, which con-

ists of multiple four-layer CNNs, can be optimized altogether with

ack-propagation. The experimental results reveal that the pro-

osed method can effectively utilize the structural information in

1 image for the estimation of the high-quality SPET image. Mean-

hile, the auto-context [18] strategy allows us to gradually im-

rove the quality of the SPET estimation, given multiple four-layer

asic CNNs. In general, our method achieves competitive perfor-

ance regarding the quality of the estimated SPET images while

ts time cost is significantly reduced compared to the state-of-the-

rt methods. 

The rest of this paper is organized as follows. We will review

he related work in Section 2 , and then describe the details of our

roposed method in Section 3 . Section 4 quantitatively analyzes

ey components of the proposed method and conducts compar-

sons with the state-of-the-art methods. The conclusions are drawn

n Section 5 . 

. Related work 

Research effort s have been made in the literature to directly

stimate the SPET images from the LPET images. The estimation
ften requires the input of the tracer-free MRI scan and relies on

he sparse learning technique. For example, in [14] , the mapping-

ased sparse representation (m-SR) was adopted for SPET image

econstruction. To speed up the process, the patch-selection-based

ictionary construction method was used to build a relatively small

ut representative dictionary, which can heavily reduce the pro-

essing time. Subsequently, a semi-supervised tripled dictionary

earning method was used for SPET image reconstruction [19] . This

ethod can improve the prediction results by utilizing multiple

odalities (i.e., T1 image, fractional diffusivity and mean diffusivity

rom diffusion weighted data). It also allows a certain modality to

e missing, thus including huge clinical data for training. Recently,

n et al. [20] proposed the data-driven multi-level canonical cor-

elation analysis (MCCA) scheme to map the SPET and the LPET

mage data into a common space, where the patch-based sparse

epresentation was then utilized to generate the coupled LPET and

PET dictionaries. These sparse-learning-based methods consist of

everal steps generally, including patch extraction, encoding, and

econstruction. Most of these methods are time-consuming partic-

larly when testing new cases, which have to solve a large number

f optimization problems and thus might not be applicable in real

linical practice. 

CNN dates back to decades [21] , and deep CNNs have shown an

xplosive popularity partially due to its success in image classifi-

ation tasks [22,23] . This technique has been successfully applied

o many computer vision fields, such as face detection [24–26] ,

emantic segmentation [27,28] , and object tracking [29–31] . There

re also some successful applications in medical image fields, such

s cell detection [32,33] and prostate segmentation [34,35] . There

re several factors that lead to its success: (i) the efficient imple-

entation on modern powerful GPUs to train large networks with

uge number of parameters [23] , (ii) the proposal of useful tricks

ike Rectified Linear Unit (ReLU) [36] and dropout [37] that avoid

he problems of gradient vanish and overfitting, and (iii) an abun-

ance of labeled data (like ImageNet [38] ) for training deep archi-

ectures. Recently, the proposed mechanism called batch normal-

zation [39] also helps to speed up convergence in training very

eep neural networks, leading to better performance. Specifically,

i et al. [40] proposed a deep-learning-based imaging data com-

letion method to predict PET image from structural MRI image.

ur method differs from this method in two ways. First, we apply

eep neural network to estimate SPET by using multiple modali-

ies, i.e., LPET and T1 images. Second, compared to [40] , which has

nly three convolution layers, our network is much deeper and ef-

ectively leverage the auto-context information for the purpose of

PET estimation. 

Recently, Dong et al. [41] presented a method namely Super-

esolution Convolutional Neural Network (SRCNN) for single im-

ge super-resolution, which directly learns an end-to-end mapping

etween low-resolution and high-resolution images. This model,

hich takes the low-resolution image as input and outputs the

igh-resolution one, partly inspired our work for SPET image esti-

ation from the LPET image. However, different from Dong’s work,

e propose to incorporate the structural T1 image in the input

ayer of the CNN architecture, and refine the estimation of the

PET image iteratively in an auto-context way based on the in-

uts of multiple modalities, which makes our model much deeper

ompared to Dong’s model. 

. Method 

We present the details of our deep CNNs for SPET estimation in

his section. We first introduce the basic multi-modal CNN, which

aps the inputs of LPET and T1 to the output of SPET within four

onvolution layers only. Then, we concatenate multiple basic CNN

odules into a deeper network following the auto-context fashion,
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Fig. 2. The architecture of the basic four-layer CNN used to estimate SPET from LPET and T1 images. The inputs include two feature maps corresponding to LPET and T1 

image patches, respectively. The output is the corresponding SPET image patch. There are four convolution layers in this basic CNN model. 
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such that the tentative SPET estimation can be iteratively refined

with the help of the context information and the original LPET/T1

input images. 

3.1. The basic multi-modality CNN architecture 

In this work, we propose to use the CNN model for estimating

the SPET image from LPET and T1 images. Our work is motivated

by the fact that, in addition to the low-quality functional data,

structural T1 images can help the estimation of the high-quality

functional images. Although CNNs have been used for similar tasks

in the literature, it is still challenging to fuse multiple medical im-

age modalities. To this end, we treat multi-modality images as dif-

ferent feature maps, and input them to CNN after concatenation.

In this way, we present a straightforward solution for combining

multi-modality image data. Since T1 image contains complemen-

tary information other than the functional PET data, our CNN ar-

chitecture is capable of better estimating SPET from LPET and T1

images. 

Considering the limited number of training images, we switch

to solve the problem slice by slice here. That is, we extract all axial

slices and treat them as separate images independently in training.

For a new test subject, we estimate all slices and then stack them

into the 3D volume along the inferior-superior direction. Our ex-

periments confirm that the final results are observably satisfactory

along the inferior-superior direction, as shown in Fig. 9 . 

The multi-modality CNN, whose architecture is shown in Fig. 2 ,

aims to learn the end-to-end mapping between the input LPET

and T1 images and the output SPET image. Note that there are

two input feature maps of this CNN in the input layer, corre-

sponding to T1 image and LPET image, respectively. The network

consists of four convolution layers, without using any pooling.

The main reason is that pooling is commonly used in recognition

and classification for reducing the dimension of feature maps

and also making the network invariant to small translation of

the input. Therefore, pooling might not be suitable for pixel-wise

image quality enhancement in this work. On the other hand,

the convolution layers provide similar functions regarding sparse

coding, including patch extraction and representation, non-linear

mapping, and reconstruction [42] . 

In our basic multi-modality CNN model, we concatenate the

two patches of LPET and T1 in the input layer, followed by four

convolution layers. The first convolution layer contains n 1 filters of

the support m × f 1 × f 1 , where m is the number of the feature

maps (with m = 2 here), and f 1 × f 1 denotes the spatial size of the

filter. In general, the first layer can be expressed as 

max ( 0 , W 1 ∗[ Y, Z ] + B 1 ) , (1)

where ∗ represents the convolutional operator, Y and Z denote

the LPET and T1 image patches respectively, and [ ·, ·] means the
oncatenation operation that combines two patches. W 1 and B 1 de-

ote the filters and the biases, respectively. Intuitively, W 1 applies

 1 convolution filters on the input image patches, each of which

as a kernel size of m × f 1 × f 1 . The output thus consists of n 1 
eature maps. 

The second, third, and fourth convolution layers can be config-

red in the similar way. For example, we set the second convo-

ution layer to contain n 2 filters of the size n 1 × f 2 × f 2 . So the

arameters of the second layer can be represented as W 2 and B 2 .

fter the second convolution layer, we will get n 2 feature maps

s the output. Eventually, in the fourth convolution layer, there is

nly one filter ( n 4 = 1 ). The single output of the fourth layer cor-

esponds to the expected output of the SPET image patch, which

hares the same center location with the input LPET and T1 im-

ge patches. All other parameters of individual layers are shown

n Fig. 2 . In particular, we set m = 2 , n 1 = n 2 = n 3 = 64 , and f 1 =
f 2 = f 3 = 3 . We do not use any padding in each convolution layer,

o the sizes of the feature maps decrease when the layer becomes

eeper. For example, as shown in Fig. 2 , the original size of the in-

ut LPET in training is 27 × 27, and the size of the output is 19 ×
9. 

Let us denote the output image estimated by the basic four-

ayer CNN as F basic ( Y i , Z i ; θbasic ). Here, F indicates the end-to-end

apping, and θbasic = { W 1 , W 2 , W 3 , W 4 , B 1 , B 2 , B 3 , B 4 } records

he estimated network parameters. We term X i as the ground-truth

PET for the i th training subject image patch. The input LPET and

1 image patches are denoted as Y i and Z i , respectively. θbasic can

hus be solved by minimizing the error between the reconstructed

utput F basic ( Y i , Z i ; θbasic ) and the corresponding ground-truth X i 

f the same size with that of the output for training. We use the

ean Squared Error (MSE) as the loss function: 

 basic ( θbasic ) = 

1 

M 

M ∑ 

i =1 

‖ 

F ( Y i , Z i ; θbasic ) − X i ‖ 

2 
, (2)

here M is the number of the training image patches. We use

tochastic gradient descent with the standard back-propagation

43] to minimize the loss function. Using the L 2 loss function fa-

ors a high Peak Signal to Noise Ratio (PSNR). Note that PSNR is

 widely used metric for quantitatively evaluating image restora-

ion quality, as it is related to the perceptual quality. Our goal is to

ake the estimated SPET and the ground-truth SPET as similar as

ossible. 

Note that the input/output sizes shown in Fig. 2 apply to the

raining process only. In testing, we treat the trained CNN model

s fully convolutional network (FCN) [41] which can take the en-

ire LPET and T1 images as inputs. This operation avoids to apply

NN for each patch independently and can save large computa-

ional cost. Since there is no padding in each convolution layer, we

pply zero padding to the input test image to make sure that the

izes of the input image and the final output image are the same.
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Fig. 3. Illustration of the deep auto-context CNN architecture. ‘Concat’ represents concatenation operation that concatenates individual feature maps. ‘Conv’ represents the 

convolutional operation. ‘Crop’ represents the crop operation that keeps the sizes of different feature maps consistent. In Step 1, the inputs of the basic four-layer CNN are 

LPET and T1 images. In Step 2 and Step 3, the tentatively estimated SPET image from the last step is also included as an additional input. 
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or example, if the size of the input test image is 100 × 100 and

t intends to pass four convolution layers of many 3 × 3 filters, we

ad the input image and augment its size to 108 × 108 prior to

he first convolution layer. In this way, the final output image will

educe to the size of 100 × 100. 

Meanwhile, batch normalization was recently introduced by

offe and Szegedy [39] to ease the training of deep neural net-

orks. It reflects the fact that neural networks tend to learn more

fficiently when their inputs are normalized to zero mean with

nit variance. This strategy can be extended to the internal layer

f CNNs. To this end, we apply batch normalization for every con-

olution layer in our implementation. For each convolution layer in

ig. 2 , the output from the precedent layer can thus be processed

hrough batch normalization and then feed as the input to the sub-

equent convolution layer. 

.2. Deep auto-context CNNs for SPET estimation 

We propose to concatenate multiple CNNs to formulate a much

eeper structure, to improve the quality of the estimated SPET im-

ge gradually. The concatenated CNNs, which are shown in Fig. 3 ,

ead to a deep auto-context-like learning architecture [17,18,51–53] .

irst, we use the basic four-layer CNN (shown in Fig. 2 ) to estimate

he SPET image based on both LPET and T1 images. Then, the ten-

atively estimated SPET, along with the original LPET and T1 im-

ges, are all input to the subsequent new four-layer CNN. That is,

here are three input channels for the second and latter CNNs, i.e.,

he tentatively estimated SPET, LPET, and T1 images. 

In our implementation, we concatenate three four-layer CNNs to

ormulate the deep structure. The output of the 1st CNN (namely

fter “Step 1”) is combined with the original LPET and T1 images,

hich are cropped from the center to get the same size with the

utput of CNN 1. The 2nd (Step 2) and the 3rd (Step 3) CNNs share

he same architecture with Step 1, though the numbers of the in-

ut feature maps vary slightly as in Fig. 3 . The sizes of the out-

uts of the 2nd and the 3rd CNNs are 11 × 11 and 3 × 3 in training,

espectively. 
With three four-layer CNNs concatenated in our implementa-

ion, there are totally 12 convolution layers, which make our ar-

hitecture deep enough to estimate SPET from LPET and T1. Note

hat our deep architecture is significantly different from the con-

entional 12-layer convolutional neural network. Specifically, the

PET and T1 image inputs are forcefully directed to Step 2 and

tep 3 in our method. Concerning the high similarity between

PET and SPET, the estimation of SPET can easily be dominated

y LPET while ignoring T1 image. Meanwhile, the learning may

nd within a few convolution layers (e.g., only four layers in Step

) as the mapping from LPET to SPET is not complex. With con-

atenated CNNs, T1 images are directly used as the inputs of each

tep and thus can play a more important role in the estimation

f SPET even though its appearance is very different from SPET

compared with LPET especially). The influence of the structural in-

ormation from T1 now can arrive at the very deep layers in our

rchitecture through the concatenated CNNs. For fair comparison,

n Section 4.4 , we will conduct experiments with the conventional

2-layer CNN, where our method clearly shows better SPET esti-

ation capability than simply increasing the number of layers in

NN. 

The concatenation of CNNs also leads to auto-context-like

earning [18] . Specifically, the tentative estimation of each four-

ayer CNN (e.g., Step 1) can be further refined with the subsequent

NNs (e.g., Step 2). Moreover, the parameters of the concatenated

NNs can be optimized jointly with back-propagation. This differs

rom the conventional auto-context learning framework where the

oncatenated classifiers/regressors are often trained independently.

n the final, we formulate the entire architecture of the concate-

ated CNNs into an end-to-end mapping, which estimates SPET

rom the combination of LPET and T1 images directly. 

It is worth noting that direct training of the convolutional net-

ork with such a large depth may easily fall into local minima. In-

pired by previous studies on training neural networks with deep

upervision [44,45] , the weighted auxiliary loss is also adopted in

he network to further strengthen the training process. In particu-

ar, the auxiliary loss is computed from the end of each step. We
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Fig. 4. The performances of using different input image settings, measured by PSNR 

and NMSE. (a) and (b) give the PSNR and NMSE scores of each subject in the 

leave-one-out validation. (c) and (d) give the average PSNR and NMSE scores of 

all the subjects. ‘LPET’ indicates the PSNR/NMSE between the original LPET and the 

ground-truth SPET. ‘Estimation by LPET’ represents the scores of the results esti- 

mated using only LPET as the input. ‘Estimation by LPET + T1’ represents the scores 

of the results estimated using both LPET and T1 images. 

Fig. 5. Visual examples of using multi-modality inputs for SPET estimation. The two 

rows represent two different subjects. Original inputs of the LPET and the T1 im- 

ages are in the blue dashed box. The estimated SPET images using different input 

settings are in the green dashed box. The ground-truth SPET images are in the red 

dashed box. ‘T1’ represents the input T1 image. ‘LPET’ is for the input LPET im- 

age. ‘Estimation by LPET’ represents the estimated SPET image by using only LPET 

as the input. ‘Estimation by LPET + T1’ represents the estimated SPET by using both 

LPET and T1 images as the inputs. ‘Ground-Truth’ is for the SPET image acquired in 

our dataset. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

d  

l

L  

w  

m  

b  

t  

a  

s  

S  

t  

F  

1

4

 

c  

t  

a  

N  

u  

(  

o

4

 

a  

P  

T  

a

 

a  

(  

m  

i  

p  

s  

e  

i  

a  
erive from (2) the loss after Step i and denote it as L i . The total

oss L total for the entire deep auto-context CNN architecture is: 

 total ( θtotal ) = β( L 1 + L 2 ) + L 3 + ϕ ( θtotal ) (3)

here ϕ( θ total ) is the L 2 -norm regularization term upon the esti-

ated network parameters. In our experiments, β is adopted to

alance the auxiliary losses among individual steps. Note that the

erm X i in Eq. (2) varies for different steps when computing the

uxiliary loss. We compute the loss for each step as the mean

quared error between the estimated SPET and the ground-truth

PET. To this end, we need to crop the ground-truth SPET, such

hat it has the same size as the estimated SPET patch in each step.

or example, the ground-truth SPET is cropped to 19 × 19 in Step

, then 11 × 11 in Step 2, and 3 × 3 in Step 3. 

. Experimental results 

We first introduce the dataset used in the experiments and dis-

uss the parameter settings ( Sections 4.1 –4.2 ). After that, we inves-

igate the impact of using the structural information (i.e., T1 im-

ges) for the estimation of the functional SPET data ( Section 4.3 ).

ext, we explore how our proposed deep auto-context CNNs grad-

ally refine the SPET estimation by concatenating multiple CNNs

 Section 4.4 ). Finally, we compare the proposed method with state-

f-the-art method to demonstrate its effectiveness ( Section 4.5 ). 

.1. Dataset 

Our dataset contains 16 subjects, each of which has LPET, SPET,

nd T1 images. All data were acquired on a Siemens Biograph mRI

ET-MR system. Their demographic information is summarized in

able 1 . This study is approved by the University of North Carolina

t Chapel Hill Institutional Review Board. 

Before the PET scanning, each subject is administered an aver-

ge of 203 MBq (from 191 MBq to 229 MBq) of 18 F-2-deoxyglucose

 

18 FDG). During PET scanning, an SPET image is obtained in a 12-

in period within one hour of tracer injection, based on standard

maging protocols. The LPET scans are acquired in a 3-min short

eriod, with standard-dose tracer injection, to simulate the acqui-

ition at a reduced dose of radioactive trace. The simulation is

quivalent to a quarter of the standard dose. The SPET and LPET

mages are acquired separately, so the noises in SPET and LPET

re not correlated. All PET scans are reconstructed using standard
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Fig. 6. The performances of concatenating multiple basic CNNs, in terms of PSNR 

and NMSE. (a) and (b) give the PSNR and NMSE scores of each subject by using the 

leave-one-out validation. (c) and (d) give the average PSNR and NMSE scores of all 

the subjects. Note that our method concatenates three basic CNNs, which is also 

indicated by ‘After Step 3’ in this figure. The results of the conventional 12-layer 

CNN are also shown in the figure. 

Table 1 

Demographic information of the subjects in the 

experiments. 

Subject ID Age Gender Weight (kg) 

1 26 Female 50 .3 

2 30 Male 137 .9 

3 33 Female 103 .0 

4 25 Male 85 .7 

5 18 Male 59 .9 

6 19 Female 72 .6 

7 36 Female 102 .1 

8 28 Male 83 .9 

9 65 Female 68 .0 

10 86 Male 68 .9 

11 86 Female 74 .8 

12 66 Female 58 .9 

13 61 Male 83 .9 

14 81 Male 106 .5 

15 70 Female 61 .2 

16 72 Female 77 .1 
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ethods from the vendor. Attenuation correction, scatter and scan-

er uniformity are included using the vendor’s standard procedure.

ach PET image has a voxel size of 2.09 × 2.09 × 2.09 mm 

3 .

eanwhile, the T1-weighted MPRAGE image is acquired with

 × 1 × 1 mm 

3 resolution. For each subject, the T1 image is lin-

arly aligned onto the corresponding PET image via affine transfor-

ation [46] , followed by skull stripping [47] and intensity normal-

zation. All images are further aligned to the space of a selected

ubject using FLIRT [48] . At last, we crop each image to the size of

20 × 100 × 100 voxels to remove the redundant background. 

.2. Experimental configuration 

The leave-one-out cross-validation strategy is employed for

valuation. That is, each time one subject is used for testing and

he other images are for training. In this paper, CAFFE [49] is

sed to implement the CNN architecture. In the training phase,

e use the same strategy with [42] that randomly selects 30,0 0 0

atches from each training image. There are totally 4.5 × 10 5 train-

ng patches in every leave-one-out case. The size of each patch is

efined as 27 × 27. In Step 1, the filter sizes of the four convo-

ution layers are set to 3 × 3, and the size of the output patch

fter Step 1 is thus 19 × 19. The numbers of the filters of the ini-

ial three convolution layers are the same, n 1 = n 2 = n 3 = 64 , while

here is only one filter, n 4 = 1 , in the last layer of Step 1. Step 2

nd Step 3 share similar parameters with Step 1, though their fea-

ure map sizes vary as in Fig. 3 . The learning rates are 1 × 10 −4 for

tep 1 and Step 2, and 1 × 10 −5 for Step 3. A smaller learning rate

n the last four-layer CNN (i.e., Step 3) is helpful to the convergence

f the network in training [50] . We adopt “SGD” as the solver for

he simultaneous optimization of all steps in back-propagation. Al-

hough we use a fixed patch size in training, the deep networks

an be applied to images of arbitrary sizes during testing. 

To evaluate the performance of the proposed method quanti-

atively, we use the normalized mean squared error (NMSE) in

4) and the peak signal-to-noise ratio (PSNR) in (5) : 

MSE = 

∥∥X − ˆ X 

∥∥2 

2 

X 

2 
, (4) 

 SNR = 10 ln 

( 

N D 

2 ∥∥X − ˆ X 

∥∥2 

2 

) 

, (5) 

here X is the ground-truth SPET image, ˆ X is the estimated SPET

mage, D is the intensity range of image X , and N represents the



412 L. Xiang et al. / Neurocomputing 267 (2017) 406–416 

Fig. 7. Training loss with respect to the number of iterations for the 12-layer CNN and our proposed deep CNN architecture, with and without batch normalization. 
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total number of voxels in the image. Lower NMSE and higher PSNR

indicate better quality of the estimated SPET. 

4.3. Contribution of T1 in estimating SPET, using basic 4-layer CNN 

To demonstrate the effectiveness of integrating multi-modality

data for the estimation of SPET, we compare the performances

achieved by using LPET input only and by using the combination of

LPET and T1 images. When dealing with the single LPET input, we

employ the same setting as in Fig. 2 , but the input layer only con-

siders the LPET image. The performances achieved by using differ-

ent input settings are shown in Fig. 4 . As we use the leave-one-out

strategy, each subject is chosen for testing in turn. ‘LPET’ indicates

the PSNR/NMSE scores by comparing the input LPET image with

the ground-truth SPET image directly. ‘Estimation by LPET’ repre-

sents the estimation SPET results when using LPET as the input

for our basic four-layer CNN only. ‘Estimation by LPET + T1’ repre-

sents the estimation SPET results when using the combined inputs

of LPET and T1 as in Fig. 2 . 

We can observe that the results of ‘Estimation by LPET’ are

worse than ‘Estimation by LPET + T1’. In particular, the average

PSNR scores of ‘Estimation by LPET’ and ‘Estimation by LPET + T1’

are 23.11 and 23.85, respectively. And the average NMSE scores of

‘Estimation by LPET’ and ‘Estimation by LPET + T1’ are 0.0299 and

0.0254, respectively. The PSNR scores and the NMSE scores are sig-

nificantly different between ‘Estimation by LPET’ and ‘Estimation

by LPET + T1’ ( p -value < 0.01 in paired t -test). The results above im-

ply that the structural information from T1 yields important cues

for estimating the high-quality functional SPET, even though struc-

tural T1 differs from PET significantly regarding their appearances.

We also provide two examples (corresponding to two rows) in

Fig. 5 for visual observation, where our method yields more sat-

isfactory estimation results regarding the ground-truth. 

4.4. Concatenation of basic CNNs 

Different from simply increasing the number of the lay-

ers in conventional CNN, we follow the auto-context strategy
nd concatenate three 4-layer basic CNNs in this work. Both

PET and T1 image patches, as well as the tentatively esti-

ated SPET (if available), are used as the inputs to each of the

hree CNNs. In order to evaluate the effectiveness of concate-

ating multiple CNNs for auto-context-like estimation of SPET,

e show the performances (measured by PSNR/NMSE) after

ndividual steps of CNNs in Fig. 6 . The average PSNR scores af-

er Steps 1, 2, and 3 are 23.85, 24.55 and 24.76, respectively. The

verage NMSE scores after Steps 1, 2, and 3 are 0.0254, 0.0215

nd 0.0205, respectively. The t -tests also yield p -values that are

ower than 0.01 when comparing the resulted PSNRs and NMSEs

etween Step 2 and Step 1, and between Step 3 and Step 2. These

esults reveal that the estimation quality improves greatly after

efining the output of Step 1 in Step 2. The improvement of the

verall PSNR/NMSE score becomes relatively limited when Step 3

s applied. To this end, we argue that the concatenation of mul-

iple CNNs is effective to improve the quality of the estimated

PET. However, too many steps would increase the complexity of

he entire network significantly, which could come with higher

ifficulty and more time cost for training. We have concatenated

ore CNNs but this fails to yield better performance. In general,

e choose to concatenate three four-layer CNNs, considering both

he performance and the computational efficiency. 

In order to further reveal the power of our proposed method,

ere we compare our deep auto-context architecture (12 layers in

otal) with the 12-layer conventional CNN model. The results are

lso shown in Fig. 6 . We can see that our model outperforms the

2-layer CNN. The average PSNR scores of our proposed method

nd the 12-layer CNN are 24.76 and 23.98, respectively. The

verage NMSE scores of our proposed method and the 12-layer

NN are 0.0206 and 0.0247, respectively. The differences between

ur method and the 12-layer CNN are statistically significant. These

esults show that, by concatenating multiple CNNs and forcefully

irecting information flows, the auto-context-like network is more

ffective than sim ply increasing the number of layers in the con-

entional CNN. 

We concatenate multiple CNNs and build a deep structure, the

raining of which may become challenging. Therefore, we adopt
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Fig. 8. Comparisons of our proposed deep auto-context CNNs with the MCCA method. (a) and (b) show the evaluation results of PNSR and NMSE scores for all 16 subjects 

in the leave-one-out testing. (c) and (d) give the average results of PSNR and NMSE of all the subjects. 
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he batch normalization strategy in modeling the network. In

ig. 7 , we plot the changes of the training losses with respect

o the number of iterations during training. The comparisons are

onducted between the proposed method and the conventional

2-layer CNN, with and without batch normalization. Clearly, the

trategy of batch normalization greatly contributes to the conver-

ence of training. For example, without batch normalization, the

onventional 12-layer CNN can hardly be trained. Meanwhile, we

ote that, with directed data flow in our concatenated CNNs, the

raining process can converge faster than the conventional CNN
 p  
i.e., by comparing the red and the green curves). The observation

onfirms that our method can effectively model the estimation of

PET from LPET and T1. 

.5. Comparison with sparse-learning-based MCCA method 

We also compare our method with state-of-the-art MCCA

ethod [20] , which has achieved the best performance in the

iterature. The MCCA method, which belongs to the category of

atch-based sparse learning, adopts the data-driven scheme and
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Fig. 9. Visual comparisons of our method and the MCCA method. Each row of (a) shows a subject from the axial view. (b) shows another subject from the axial, coronal 

and sagittal views, respectively. ‘T1’ represents the input T1 image, and ‘LPET’ represents the input LPET image. ‘MCCA’ represents the SPET image estimated by the MCCA 

method. The last column represents the ground-truth SPET images. 

Table 2 

Training time and testing time of two different 

methods. 

Method Training time Testing time 

MCCA 2 .9 h 1008 s 

Proposed 4 .2 h 2 .03 s 
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can iteratively refine the estimation results of the SPET images.

All the PSNR/NMSE results of our method and MCCA are shown

in Fig. 8 . Our method performs comparatively, which yields the av-

erage PSNR of 24.76 and NMSE of 0.0206, compared to 24.67 and

0.021 by MCCA. Visual results are also provided in Fig. 9 (a), where

we can observe competitive results between the two methods. 

Importantly, our method behaves significantly better in terms

of its processing time especially in testing. Table 2 compares the

time costs of our method and MCCA for both training and test-

ing. Although our method spends more time on training, the test-

ing procedure is much faster. Concretely, it only takes 2.03 s to

test a subject by our method, while 1008 s by MCCA. The main

reason is that MCCA optimizes sparse coding problems in testing,
hereas our method is a completely feed-forward convolution op-

ration without any pre-/post-processing. All the experiments are

arried out on an ordinary computer with Intel Core i7 4.00 GHz

rocessor, 16 GB RAM, and an NVIDIA Geforce GTX Titan X

PU. 

Though our method carries out the computation from the axial

lane slice by slice, the estimated results are still satisfactory in 3D

iew. In particular, after we complete the estimation upon all the

lices, we stack them back to get the 3D image volume. A subject

s shown in Fig. 9 (b), where the axial, sagittal and coronal views

re all available. We conclude that our estimation still appears to

e isotropic, even though the CNN-based learning happens on the

xial plane. 

. Conclusion 

In this paper, we propose a novel deep auto-context CNN archi-

ecture for SPET image estimation using multi-modality data, in-

luding both LPET and T1 images. Different from previous sparse-

earning-based techniques that contain time-consuming steps such

s patch representation, non-linear mapping and reconstruction,

ur proposed method uses a deep neural network to map the
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nputs to the output directly, without any pre/post-processing

eyond the optimization in the training stage. When testing a sub-

ect, our method performs a single feed-forward to get the es-

imation result. In this way, our method can conduct the esti-

ation of SPET very fast. Experimental results on a real human

rain image dataset demonstrate that, compared to state-of-the-art

ethod, our method has achieved competitive estimation quality,

ut it is up to 500 × faster. 

We have also shown that our auto-context strategy is capable

f building a very deep CNN architecture to further promote the

stimate quality. Meanwhile, the entire network is still trained in

n end-to-end way with back-propagation. Our model can be ap-

lied to other similar applications such as mapping one modality

o the other. In the future, we will investigate the acceleration of

he training process to make this method more efficient. 
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