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A B S T R A C T

Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the
biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to
obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards.
On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts
the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining
the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial
networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative
adversarial networks (GANs) include a generator network and a discriminator network which are trained
simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition
the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically,
to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep
architecture which can combine hierarchical features by using skip connection is designed as the generator
network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real
one, we take into account of the estimation error loss in addition to the discriminator feedback to train the
generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also pro-
posed to further improve the quality of estimated images. Validation was done on a real human brain dataset
including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental
results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better
performance than the state-of-the-art methods in both qualitative and quantitative measures.
Introduction

Positron emission tomography (PET) has been widely applied in
hospitals and clinics for disease diagnosis and intervention (Daerr et al., ;
Mosconi et al., 2008; Huang et al., 2014; Cerami et al., 2015). Different
from other imaging techniques, such as computed tomography (CT) and
magnetic resonance imaging (MRI), PET is a functional imaging
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technique that produces three-dimensional in-vivo observation of meta-
bolism processes of human body (Karnabi, 2017). Specifically, the PET
system detects pairs of gamma rays emitted indirectly from a radioactive
tracer which is injected into the human body on a biologically active
molecule. Then, three-dimensional PET images of tracer concentration
within the human body are constructed using computer analysis (Bailey
et al., 2005).
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Toyobtain high quality PET images for diagnostic needs, a full dose
radioactive tracer is usually preferred. This inevitably raises concerns
about potential health hazards. According to the report “Biological Ef-
fects of Ionizing Radiation (BEIR VII)”,1 the increased risk of incidence of
cancer is 10.8% per Sv, so one brain PET scan increases lifetime cancer
risk by about 0.04%. Although this number is small, the risks are
multiplied for the patients who experience multiple PET scans during
their treatments. Moreover, these risks are more serious for pediatric
patients. Although it is desirable to reduce the dose during the PET
scanning, a major drawback of dose reduction is that more noise may be
involved in the reconstructed PET images, resulting in poor image
quality.

A range of methods have been proposed to improve the image quality
and reduce noise and artifacts in PET images, while preserving crucial
image details. In (Bagci and Mollura, 2013), for denoising PET images
and preserving structural information simultaneously, the authors used
the singular value thresholding concept and Stein's unbiased risk esti-
mate to optimize a soft thresholding rule. In order to address the issue of
resolution loss associated with denoising, Pogam et al. (2013) considered
a strategy that combines the complementary wavelet and curvelet
transforms. In (Mejia et al., 2014), a multi-resolution approach for noise
reduction of PET images was proposed in the transform domain by
modeling each sub-band as a group of different regions separated by
boundaries.

The aforementioned methods are mainly designed to improve the
image quality for the full-dose PET images. In contrast, the goal of this
study is to estimate the high-quality full-dose PET image from the low-
dose PET image, which is an innovative and promising research field.
To the best of our knowledge, there are only a few works along this
research direction. Specifically, Kang et al. (2015) proposed to train a
regression forest to estimate the full-dose PET image in a voxel-wise
strategy. In (Wang et al., 2016), a mapping based sparse representation
method was adopted for full-dose PET prediction, utilizing both low-dose
PET and multimodal MRI. To take advantage of a large number of
missing-modality training samples, the authors further developed a
semi-supervised tripled dictionary learning method for full-dose PET
image prediction (Wang et al., 2017). An et al. (2016) proposed a
multi-level canonical correlation analysis framework to map the
low-dose and full-dose PET into a common space and perform
patch-based sparse representation for estimation. Although the above
sparse learning based methods showed good estimation performance, a
major limitation of these methods is that they are based on small patches,
and adopt a voxel-wise estimate strategy which is very time-consuming
when testing on new samples. Also, the final estimation of each voxel
was obtained by averaging the overlapped patches, resulting in
over-smoothed images that lack the texture information within typical
full-dose PET images. This smoothing effect may limit the quantification
of small structures in estimated PET images.

Convolutional neural networks (CNN) have drawn a tremendous
amount of attention in machine learning and medical image analysis
areas (Kamnitsas et al., 2017; Kleesiek et al., 2016; Valverde et al., 2017;
Dolz et al., 2017; Kawahara et al., 2017). In PET estimation research
field, Xiang et al. (2017) proposed a deep auto-context CNN that esti-
mates full-dose PET image based on local patches in low-dose PET. This
regression method integrated multiple CNN modules following the
auto-context strategy, to iteratively improve the tentatively estimated
PET image. However, the authors just extracted the axial slices from the
3D images and treated them as separate 2D images independently for
training the deep architecture. This inevitably causes the loss of infor-
mation in sagittal and coronal directions and discontinuous estimation
results across slices.

Recently, generative adversarial networks (GANs) have attracted
1 http://www.nap.edu/catalog/11340/health-risks-from-exposure-to-
lowlevels-of-ionizing-radiation.
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widespread attention since their introduction (Goodfellow et al., 2014;
Denton et al., 2015; Chen et al., 2016; Ledig et al., 2016; Wu et al., 2016).
GANs are generative models which comprise two units namely generator
and discriminator. The generator learns to map the input
low-dimensional vectors to plausible counterfeits, according to some
pre-specified distribution. The discriminator learns to distinguish be-
tween the generated distribution and the real data distribution. Using
GANs, many researches have gained encouraging performance through
architectural improvements and modification to the training scheme
(Radford et al., 2015; Arjovsky and Bottou, 2017; Arjovsky et al., 2017;
Berthelot et al., 2017; Zhao et al., 2016; Bi et al., 2017). Previous works
have also explored GANs in the conditional settings, i.e., conditional
GANs (Mirza and Osindero, 2014; Reed et al., 2016; Isola et al., 2016).
Just like GANs learn a generative model data, the conditional GANs learn
a conditional model of data. In the real world, there are numerous 3D
image data such as 3D medical image, however, many applications using
GANs focus on 2D images. To tackle the problem of 3D medical images,
Wolterink et al. (2017) proposed a 3D conditional GANs model for noise
reduction in low-dose CT images. In this paper, inspired by the remark-
able success of GANs and to overcome the limitations of existing esti-
mation methods, we propose a novel end-to-end framework based on 3D
conditional GANs (3D c-GANs) to estimate the high-quality full-dose PET
image from the corresponding low-dose PET image. Like the original
GANs, the training procedure of our proposed 3D c-GANs is similar to a
two-player min-max game in which a generator network (G) and a
discriminator network (D) are trained alternatively to respectively
minimize and maximize an objective function. The novelties and con-
tributions of the paper are as follows.

i To ensure the same size of the input and output of the generator
network, we utilize both convolutional and up-convolutional layers in
our generator architecture instead of using the traditional CNN
network which just includes convolutional layers.

ii To render the same underlying information between low-dose and
full-dose PET images, we adopt a 3D U-net-like deep architecture as
the generator network and use the skip connections strategy to
combine hierarchical features for generating the estimated image.
The detailed U-net-like architecture will be fully described in Section
2.2.1. The trained U-net-like generator can be directly applied to test
images to synthesize the corresponding full-dose PET images, which
is very efficient compared with those voxel-wise estimation methods.

iii To take into account the differences between the estimated full-dose
PET image and the ground truth (i.e., the real full-dose PET image),
the estimation error loss is considered in the objective function to
enhance the robustness of the proposed approach. Different from
(Wolterink et al., 2017), we employ the L1 norm instead of L2 dis-
tance to encourage less blurring.

iv To further improve the estimated image quality, we propose a
concatenated 3D c-GANs based progressive refinement scheme.

The rest of this paper is organized as follows. Section 2 introduces our
proposed 3D c-GANs architecture and methodology. Experimental setup
is conducted in Section 3 and Section 4 gives the experimental results.
Finally, we discuss and conclude this paper in Section 5.

Methodology

Fig. 1 illustrates the proposed 3D c-GANs training procedure, which
constitutes two networks: the generator network G and the discriminator
network D. The generator network takes a low-dose PET image and
generates an estimated PET image that approximates its corresponding
real full-dose PET image. The discriminator network takes a pair of im-
ages as input including both the low-dose PET and the corresponding
real/estimated full-dose PET images, and it aims to differentiate between
the real and estimated pairs. If the discriminator can easily distinguish
between them, which means the estimated PET image does not resemble

http://www.nap.edu/catalog/11340/health-risks-from-exposure-to-lowlevels-of-ionizing-radiation
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Fig. 1. Framework of training a 3D c-GANs to estimate the full-dose PET image from low-dose counterpart.
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the real full-dose image, the generator should improve its performance
and provide more realistic estimations. Otherwise, the discriminator
should be enhanced. Hence, the two networks have competing tasks: one
tries to synthesize full-dose PET image while the other one tries to
differentiate the estimated image from the real full-dose image. To train
the generator network G, we also consider the estimation error loss in
addition to the discriminator feedback. The objective and details of the
architecture are discussed in the following Sections 2.1 and 2.2.
Objective

The original GANs model was first introduced by Goodfellow et al., in
2014 (Goodfellow et al., 2014). It is a framework for training deep
generative model using a two-player min-max game. The goal of GANs is
to learn a generator distribution PG that matches the real data distribu-
tion Pdata. In light of this, GANs learn a generator network G that gen-
erates samples by transforming a random input drawn from a probability
distribution (such as Gaussian) z � PnoiseðzÞ into a sample GðzÞ. This
generator is trained by playing against a discriminator network D whose
task is to differentiate between samples from the true data distribution
Pdata and the generated distribution PG. The objective function of the
original GANs can be expressed as:

argminGmaxDVðG;DÞ ¼ Ex�Pdata ½log DðxÞ� þ Ez�PnoiseðzÞ½logð1� DðGðzÞÞÞ�
(1)

In our proposed 3D c-GANs, instead of using the random noise vector
as the input, we condition the model on an input low-dose PET image.
Specifically, given a low-dose PET image x � PlowðxÞ, and the corre-
sponding real full-dose PET image y � PfullðyÞ, the objective of the con-
ditional adversarial network can be defined as:

argminGmaxDVc�GANs ðG;DÞ ¼ Ex�PlowðxÞ;y�PfullðyÞ½log Dðx; yÞ� þ Ex�PlowðxÞ½logð1
� Dðx;GðxÞÞÞ�

(2)

In order to ensure the generated PET image close to the real full-dose
PET image and also inspired by the latest empirical data reported in (van
den Oord et al., 2016), we consider the estimation error loss in addition
to the discriminator feedback for training the generator network. In this
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manner, the task of the discriminator remains unchanged, while the
generator's task is extended to not only fool the discriminator but also to
keep similar to the real full-dose image. In this paper, L1 norm estimation
error is employed to encourage less blurring, as shown below.

VL1ðGÞ ¼ Ex�PlowðxÞ;y�PfullðyÞ
�
y� GðxÞ1

�
(3)

In summary, our final objective function of 3D c-GANs is defined as:

argminGmaxDðVc�GANsðG;DÞ þ λVL1ðGÞÞ
¼ Ex�PlowðxÞ;y�PfullðyÞ½log Dðx; yÞ� þ Ex�PlowðxÞ½logð1� Dðx;GðxÞÞÞ�
þ λEx�PlowðxÞ;y�PfullðyÞ

�
y� GðxÞ1

�
(4)

where λ > 0 is a tunable parameter used to control the balance between
two terms, Vc�GANsðG;DÞ and VL1ðGÞ.
3D c-GANs architecture

We present the details of our proposed 3D c-GANs architecture in this
section. We first introduce the 3D U-net-like generator which maps the
input of low-dose PET images to the output of full-dose ones. Then, the
details of the discriminator which tries to distinguish between the real
full-dose and the estimated PET images are presented. The training
procedure is also discussed in Section 2.2.3.

3D U-net-like generator
The skip connection used in U-net architecture combines the

appearance feature representation from shallow encoding layers with the
high-level feature representation from the deep decoding layers (Ron-
neberger et al., 2015). With the idea of skip connection, the U-net ar-
chitecture can achieve very good performance and has been applied in
many applications such as image translation (Isola et al., 2016). Since the
low-dose and full-dose PET images belong to the same modality, there is
a great deal of low-level information shared between them, which makes
the U-net architecture particularly suitable for the PET estimation task.
As a result, we propose a U-net-like architecture as the generator network
in this paper. While the original U-net is an entirely 2D architecture, the
generator network proposed in this paper takes 3D volumes as input and
processes them with corresponding 3D operations, such as 3D
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down-convolutions and 3D up-convolutions. Fig. 2 illustrates the archi-
tecture of the 3D U-net-like generator network, which consists of a
contracting encoder part to analyze the input low-dose image and an
expansive decoder part to produce an output of estimated full-dose
image.

Current U-net architectures are usually trained on whole images or
large image patches. In this paper, considering the limited number of
training images, we extract large image patches of size 64� 64� 64 as
the input, from the entire image whose size is 128� 128� 128. The
entire network consists of 12 convolutional layers including 6 down-
convolutional layers and 6 up-convolutional layers. The pooling layer
is not used in this paper. Themain reason is that pooling is usually used in
classification or recognition tasks to reduce the dimension of feature
maps and also to make the network invariant to small translation of the
input (Xiang et al., 2017). Thus, it is not suitable to use pooling layers for
the task of voxel-wise image quality enhancement. In the contracting
encoder path, all convolutions are 4� 4� 4 spatial filters applied with
stride 2 in each direction, and followed by a leaky ReLu with 0.2 negative
slope. The number of feature maps increases from 1 to 512. In addition,
we apply zero padding with 1� 1� 1 in each down-convolutional layer.
In this manner, the output patch size of each convolutional layer would
be Ioutput ¼ ðIinput � Fþ 2PÞ=Sþ 1, where Iinput and Ioutput are the patch
sizes of the input and output of the convolutional layer, F is the filter size,
P represents the padding size, and S is the stride size. According to the
above equation, the output of each down-convolutional layer would
halve the patch size, so the size of feature maps decreases from
64� 64� 64 to 1� 1� 1. In the expansive decoder path, each layer
consists of an up-convolution of 2� 2� 2 by stride of 2 in each dimen-
sion, followed by a ReLu. The feature maps from the contracting path are
copied and cropped to concatenate with the up-convolutional feature
Fig. 2. Architecture of the 3D U-net-like generator. Blue boxes represent feature map
denoted above/below (contracting part/expansive part) each feature map. (∙)3 aro
different operations.
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maps. Using skip connections to combine hierarchical features can be
beneficial for better estimation of PET image. Finally, the output of the
network is an image patch of size 64� 64� 64, the same size as the
input.

Meanwhile, we also introduce batch normalization in each convolu-
tional layer. Batch normalization was first introduced by Ioffe and
Szegedy to ease the training of neural networks (Ioffe and Szegedy,
2015). Specifically, each batch is normalized during the training pro-
cedure using its mean and standard deviation, and global statistics are
then updated using these values. Using the batch normalization, the deep
networks tend to learn more efficiently. Therefore, for each layer in
Fig. 2, the output from the precedent layer is processed by batch
normalization and then fed to the subsequent layer. In addition, for the
second up-convolutional layer, we also use the dropout with a rate of
50% before ReLu.

Discriminator architecture
The discriminator takes either a real full-dose PET image or a syn-

thesized one as input, and determines whether the input is real or not.
The input to the discriminator is a 3D volume of size 64� 64� 64, which
is the same size of the generator's output. The architecture consists of four
convolutional layers, and each convolution layer uses 4� 4� 4 filters
with stride 2, similar to the encoder structure of the generator network.
The first convolution layer produces 64 feature maps, and then this
number is doubled at each following convolution step. After the last
layer, a convolution is then applied to map to a one-dimensional output,
followed by a sigmoid activation to determine whether the input is a real
full-dose PET image or the estimated image. In addition, we use Leaky
ReLu activation in the discriminator for all layers, with slope 0.2.
s while the pink boxes represent copied feature maps. The number of channels is
und the feature maps denotes the size of the 3D volumes. The arrows denote



Fig. 3. Progressive refinement based on the concatenated 3D c-GANs.

Table 1
Demographic information of the subjects.

Normal subjects MCI subjects

Total 8 8
Gender (Female/Male) 4/4 5/3
Age (Mean� SD) 26.87� 6.29 73.37� 9.77
Weight/kg (Mean�SD) 86.92� 27.70 74.96� 15.18
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Training 3D c-GANs
The generator network G and discriminator network D are trained in

an alternating manner, which is the same as the standard approach of
(Goodfellow et al., 2014). Specifically, we first fix G and train D for one
step using gradients computed from the loss function, and then fix D and
train G. As shown in Equation (4), the training of G and D is just like
playing a min-max game: G tries to minimize the loss function while D
tries to maximize it. With the training continuing, both the generator and
discriminator become more and more powerful. Finally, the generator
will be able to generate the estimated full-dose PET image that is
extremely close to the real one. In the testing stage, the generator
network is performed exactly the same manner as in the training stage.
The only difference from the usual protocol is that we apply batch
normalization using the statistics of the testing batch instead of aggre-
gated statistics of the training batch. The Gaussian distribution is utilized
to initialize the learning parameters in our network model. All networks
are trained with mini-batch stochastic gradient descent (SGD) using a
mini-batch size of 128. Adam solver with batch size 4 is used for training
all networks. The learning rate for the first 100 epochs is fixed to 0.0002,
and then linearly decays from 0.0002 to 0 in the second 100 epochs. In
addition, we find leaving the weight of the estimation error term λ at the
value of 300 resulting the best estimation performance.

Concatenated 3D c-GANs based progressive refinement

Even if the 3D c-GANs can learn the mapping between the low-dose
and full-dose PET images, there may be still some discrepancies due to
the large differences of feature distributions. To further mitigate the
inconsistency between them, we propose a progressive refinement
scheme in a concatenated manner, where a sequence of intermediate
generators and discriminators can be constructed to gradually improve
the estimation performance. Specifically, the estimation results from the
previous 3D c-GANs are fed into a new 3D c-GANs architecture to
generate a new set of estimations. The procedure can be summarized in
Algorithm 1. For more intuitive understanding, the illustration of the
progressive refinement procedure is shown in Fig. 3.

Algorithm 1

1 Input: A set of training low-dose PET images IL ¼ fIL1 ; IL2 ;…; ILNg, a set of training
full-dose PET images IF ¼ fIF1 ; IF2 ;…; IFNg. N is the total number of training subjects.

Parameters: concatenated number H.

2 Initialize: h ¼ 1. IL is used as the initial estimation ~I
Fð0Þ

of the set of full-dose
images IF .

3 While h < H

4 Perform the 3D c-GANs between ~I
Fðh�1Þ

and IF to obtain the generator network Gh

and discriminator network Dh according to Eq. (4).
5 For each training subject i (i¼1,2,…,N), use the above trained generator network Gh

to generate the estimated full-dose PET image ~I
FðhÞ
i . Finally, get the estimations for

all training subjects ~I
FðhÞ

.
6 h ¼ hþ 1.
7 End while
8 Output: The trained generator networks {G1;G2;…;GH} and discriminator networks

{D1;D2;…;DH}.

For a testing subject which just has the low-dose PET image, we can
use the already trained generator networks {G1;G2;…;GH} to obtain the
final estimation. In this manner, the estimated full-dose PET image can be
progressively refined.

Experimental setup

Data acquisition

We evaluate our 3D c-GANs based method on a real human brain
dataset, including two categories: 8 normal subjects and 8 subjects
diagnosed as mild cognitive impairment (MCI). The detailed
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demographic information of these subjects is summarized in Table 1.
The PET scans were acquired on the Siemens Biograph mMR PET-MR

scanner. The full-dose PET scans in our cohort was administered an
average of 203MBq (from 191 MBq to 229 MBq) of 18F-2-deoxyglucose
(18FDG). This corresponds to an effective dose of 3.86mSvwhich is in the
low part of the range suggested by the Society of Nuclear Medicine and
Molecular Imaging for FDG PET scans. The average time post-injection
was 36min (from 32 to 41min). Full-dose and low-dose PET images
were acquired consecutively: first 12-min full-dose PET immediately
followed by 3-min low-dose PET scans. This order was necessarily fixed
because we need to acquire clinical PET scans first and then the experi-
mental scans. The order, however, creates some implications. One thing
is that the standard uptake value (SUV) increases slightly for the low-dose
PET scans since the uptake in the brain continues to increase measurably
during the acquisition time. On the other hand, due to the radioactive
decay occurs in acquisition, the effective noise level for the low-dose PET
scans is slightly higher. Strictly speaking, these two effects may be not
cancel out exactly, but they tend to work against each other to create low-
dose PET data that are the equivalent of approximately one-quarter of the
full dose. During the PET scanning, no head holders were used and the
subjects were simply asked to keep still. Although the existing motion
correction methods canmitigate the motion effect to some extent (Woods
et al., 1992), the interpolation or resampling of voxels may distort the
data, thus interfering or even invalidating the trainingmodels. Therefore,
we checked the resulting images visually for apparent motion by exam-
ining the alignment between the early full-dose PET and late low-dose
PET images with the attenuation map, and the subjects with unquali-
fied PET images would be required to be rescanned to obtain new PET
images. The reconstruction was performed using manufacturer-provided
software with all physical corrections, including attenuation, scatter and
randoms. Specifically, the reconstruction was carried out iteratively with
the ordered subsets expectation maximization (OSEM) method (Hudson
and Larkin, 1994), with 3 iterations, 21 subsets, and post-reconstruction
filtered with a 3D Gaussian with FWHM of 2mm. The full-dose and
low-dose PET for the same subject used the same attenuation map, which
was obtained prior to the full-dose PET scan. And the attenuation maps
were computed by the Dixon fat-water method provided by the scanner

Ahoe
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manufacturer. Reconstructing the full-dose and low-dose images with the
same reconstruction parameters and post-reconstruction filters ensures
that both images have comparable spatial resolution. Each PET image has
a voxel size of 2.09� 2.09� 2.03mm3, and image size of
128� 128� 128. Non-brain tissues were removed from the entire image
using skull stripping algorithm (Shi et al., 2012). In experiments, to make
full use of available samples and reduce the possible bias to measure the
performance, we follow the widely used “Leave-One-Subject-Out
cross-validation” strategy, i.e., each time one subject is used in turn for
testing and the other 15 subjects are for training. In addition, the normal
and MCI data are trained together to maximally utilize the available
samples. Since a great deal of parameters need to be trained in the
c-GANs model, it requires that the training data should be adequate. If we
directly use the entire 3D PET images to train the c-GANs model, the
overfitting problem would inevitably appear. Therefore, considering the
limited number of training images, we extracted large 3D image patches
instead of using the entire 3D images to train the deep model. Specially,
large image patches of size 64� 64� 64 are extracted from each PET
image of size 128� 128� 128, with the stride of 16. In this case, 125
image patches are generated for each training image. Generally, the pair
of the low-dose and full-dose PET image patches is regarded as one
training sample. Therefore, there are a total of 125� 15¼ 1875 training
samples in every leave-one-out case, which is sufficient to train the deep
model. For the testing image, we also extract 125 testing image patches in
the same manner. Then, each testing image patch is fed into the already
trained generator and the corresponding estimated full-dose PET patch is
obtained. Finally, all the estimated patches are merged together by
averaging the overlapped estimation values to generate the whole esti-
mated PET image of size 128� 128� 128. The method is implemented
by PyTorch, and all the experiments are carried out on a NVIDIA GeForce
GTX 1080 Ti with 11 GB memory. The code will be released through
Github soon.
Evaluations measures

To evaluate the estimation performance, we use three measures in the
experiments. Specifically, peak signal-to-noise (PSNR) and normalized
mean squared error (NMSE) are employed to evaluate the estimated
image quality. PSNR is defined as

PSNR ¼ 10log10

 
UR2��IF � ~I

F��2
2

!
; (5)

where R is the maximum intensity range of the real full-dose image IF and

the estimated full-dose image ~I
F
, and U represents the total number of

voxels in the image. This metric is used to evaluate the estimation ac-
curacy in terms of the logarithmic decibel scale.

The NMSE is defined as

NMSE ¼
��IF � ~I

F��2
2

kIFk22
(6)

This metric is used to measure the voxel-wise intensity differences
between the real and estimated images. Theoretically, image with higher
PSNR and lower NMSE represents higher quality.

In addition to image quality measure, whether the region of interests
(ROIs) in an estimated full-dose PET image can be well preserved in
terms of clinical quantification is also important. In light of this, we
leverage another clinical measure (i.e., SUV) for specific lesion regions as
the ROIs. Specifically, SUV is commonly used in clinical FDG-PET/CT
oncology imaging, and has a specific role in therapy planning. As indi-
cated by Paul E. Kinahan (Kinahan and Fletcher, 2010), the use of SUV as
a measure of relative tissue uptake facilitates comparisons between pa-
tients, and has been suggested as the basis of diagnosis. We use the
definition of SUV in (Kinahan and Fletcher, 2010), as
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SUV ¼ r�
a
w

� (7)
where r is the radioactivity concentration measured by the PET scanner
(in kBq/ml), a is the decay-corrected amount of injected FDG dose (in
kBq), and w is the weight of the subject (in g). Smaller differences in SUV
are highly desirable, indicating that the estimation does not substantially
change the quantitative makers of the PET images (Bagci and Mollura,
2013). Therefore, we calculate the SUV differences for specific ROIs in
both low-dose and the estimated full-dose PET images, in order to
investigate how the SUV in our estimated full-dose PET images deviates
from the SUV in the real full-dose PET images.

Experimental results

To study the effectiveness of the proposed 3D c-GANs method, our
experiment explores the following questions:

� Compared with 2D model, does the 3D c-GANs model gain better
performance?

� Compared with the model just use the generator network (i.e., 3D U-
net-like network), does the adversarial training in the 3D c-GANs
model increase the estimation performance?

� Does the model adopting the concatenated 3D c-GANs based pro-
gressive refinement scheme improve the estimation quality?

� For the lesion regions of human brain, is the proposed method
effective for specific ROIs using clinical measure?

� Can the 3D c-GANs method achieve comparable results with the
existing PET estimation methods?

� Is our proposed c-GANs model superior to the state-of-the-art c-GANs
models?

� Does this method have the potential of domain adaption? That is,
whether the c-GANs model trained by one dataset could be used on
another dataset.

To answer the first two questions, we first run our method without the
progressive refinement scheme, as presented in Section 4.1 and 4.2.
Then, the effectiveness of concatenated 3D c-GANs is evaluated in Sec-
tion 4.3. In Section 4.4, we evaluate the clinical measure on specific ROIs
(hippocampus) for both the normal subjects and the MCI patients. The
proposed method is respectively compared to the existing PET estimation
methods and the state-of-the-art c-GANs models (Wolterink et al., 2017)
in Section 4.5 and 4.6. Finally, the potential of domain adaption of our
method is investigated in Section 4.7.

Comparison with 2D based c-GANs architectures

In this section, to study the effectiveness of the 3Dmodel, we compare
it with a variant of our model using 2D c-GANs architectures. Three 2D c-
GANs corresponding to the sagittal, coronal, and axial views are sepa-
rately trained with the same settings used in the 3D c-GANs architecture.
It is worth noting that the 2D models use the whole 2D slides as input
while 3D model uses large image patches as input. For qualitative com-
parison, samples of the estimated full-dose PET images by 2D c-GANs and
3D c-GANs are shown in Fig. 4. The corresponding low-dose PET images
(the left-most column) and the real full-dose PET images (the right-most
column) are also provided. As observed, there are obvious distinctions
between the low-dose and real full-dose PET images. The estimated im-
ages by all c-GANs show better image quality than low-dose images,
indicating that the proposed c-GANs can reduce the noise in low-dose
PET images and enhance the image quality towards the real full-dose
PET images. Compared to 2D c-GANs, the proposed 3D c-GANs pro-
duce better visual quality that is close to the real full-dose image in all
three views (blue block in Fig. 4). In contrast, the results obtained by 2D
c-GANs only show good performance in the corresponding trained view
(red circles in Fig. 4), but deteriorate in the other two views. For example,
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Fig. 4. Qualitative comparison between estimated results by 2D c-GANs and 3D c-GANs. In the axial and coronal images, the left side of the image is the right side of
the brain, and the right side of the image is the left side of the brain.
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2D axial c-GANs generate faithful axial view, but very blurry sagittal and
coronal views (as indicated by red arrows in Fig. 4). This is because the
2D axial c-GANs consider the image appearance slice by slice along the
axial direction, thus potentially causing discontinuous estimation across
slices and thus losing 3D structural information. The similar phenomenon
can be observed in the estimation results provided by 2D sagittal c-GANs
and 2D coronal c-GANs, respectively.

For quantitative comparison, the averaged estimation results ach-
ieved by 2D c-GANs and 3D c-GANs across both the normal and the MCI
subjects are presented in Fig. 5, in terms of PSNR and NMSE. Fig. 5 (a)
shows that the PSNR values of all c-GANs’ estimations are improved
compared with that of the low-dose images. Moreover, the proposed 3D
c-GANs outperform all 2D c-GANs for both the normal subjects and the
MCI subjects, indicating the 3D information learned in 3D c-GANs can
boost the estimation. The NMSE results are reported in Fig. 5 (b), where
we can see the same conclusion. Both qualitative and quantitative results
demonstrate the benefits of employing the proposed 3D c-GANs over the
commonly used 2D c-GANs.

Comparison with 3D U-net-like model

To evaluate the effectiveness of the adversarial training in 3D c-GANs
model, we compare our method with the model that removes the
Fig. 5. Quantitative comparison between 2D c-GANs and 3D c-GANs, in t
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discriminator network from our 3D c-GANs model, i.e., 3D U-net-like
network. The averaged quantitative comparison for the normal subjects
and the MCI subjects are given in Fig. 6.

We can see that adversarial training brings higher PSNR and lower
NMSE for both the normal and the MCI subjects. Specifically, compared
with 3D U-net-like network, the averaged PSNR of our method increases
approximately 0.28 for the normal subjects and 0.43 for MCI subjects.
The averaged NMSE for the normal subjects decreases from 0.02417 to
0.0231, and this measurement drops by 0.0017 for MCI group. The
experimental results imply that the adversarial training in the 3D c-GANs
is essential for improving the estimation quality.

Effectiveness of concatenated 3D c-GANs

In this section, we study the performance of the concatenated 3D c-
GANs based progressive refinement procedure as discussed in Section
2.3. Here, we use a concatenated architecture with two 3D c-GANs, as we
observe that the use of more c-GANs does not bring significant
improvement but instead increasing the computational time. As before,
the averaged PSNR and NMSE for the two groups are given in Fig. 7.

From Fig. 7 (a), it can be seen that the concatenated 3D c-GANs
achieve higher PSNR than single 3D c-GANs for both the normal subjects
and the MCI patients. The reason triggering this improvement is that the
erms of PSNR and NMSE. Error bar indicates the standard deviation.



Fig. 6. Quantitative comparison between 3D U-net-like network and 3D c-GANs, in terms of PSNR and NMSE. Error bar indicates the standard deviation.

Y. Wang et al. NeuroImage 174 (2018) 550–562
concatenated 3D c-GANs utilize the concatenation of two GANs instead of
a single GANs architecture. The reason for this improvement is that the
concatenation of two GANs rather than a single GANs architecture allows
iterative reduction of residuals when estimating full-dose images based
on low-dose images, and the concatenation architecture could progres-
sively mitigate the inconsistency of the feature distributions between the
full-dose and low-dose PET images. This is consistent with the NMSE
values shown in Fig. 7 (b), indicating the concatenated 3D c-GANs based
progressive refinement scheme can further improve image quality of the
estimated full-dose PET image.
Clinical evaluation for specific ROIs

Images with abnormal uptake can be often obtained in the real-world
applications and a number of factors can affect the tracer uptakes. For
example, patients with brain atrophy may not normally uptake the tracer
in particular ROIs. Therefore, the robustness of a PET image estimation
method, tackling abnormal uptake, is a significant consideration in
clinical practice. Here, we use the SUV measure to investigate the
effectiveness of the proposed method for specific ROIs on both the
normal subjects and the MCI subjects. Since the hippocampal regions are
highly related to the MCI, it is particularly crucial that the estimated PET
images can well maintain the SUV in hippocampal regions. Thus, the SUV
differences are computed on both left and right hippocampi. Smaller
differences in SUV are preferred, indicating that the estimation does not
substantially change the quantitative makers of the PET images. We
delineated the hippocampal regions based on the MRI-T1 images. Spe-
cifically, during the PET scans, a T1-weighted MRI sequence was also
acquired by the Siemens Biograph PET-MR system. For each subject, the
PET images are respectively co-registered to the T1 image via affine
transformation (Smith et al., 2004). Then, we labeled the T1 images with
hippocampal ROIs based on a multi-atlas segmentation method (Rohlfing
et al., 2004). Fig. 8 shows an example of the delineated hippocampal
regions in three views. The average SUV differences and standard devi-
ation are shown in Table 2.
Fig. 7. Quantitative comparison between single 3D c-GANs and concatenated 3D c-
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As observed, compared to the low-dose PET image, the SUV differ-
ences between the 3D c-GANs estimated image and the real full-dose one
are much smaller, suggesting the faithful preservation of tracer uptake of
the proposed method. Similar conclusion can be drawn from the MCI
group. In addition, the SUV differences of the MCI subjects are smaller
than those of normal subjects. The main reason probably lies in that the
hippocampal lesions in MCI patients lowers the metabolic activity, thus
decreasing the uptake of the radioactive tracer in hippocampal regions.
The above results illustrate that the estimated PET image does not
significantly change the quantitative markers of the corresponding real
full-dose PET image.
Comparison with the existing PET estimation methods

In this section, we compare our method with the existing PET esti-
mation methods, including: 1) mapping based sparse representation
method (m-SR) (Wang et al., 2016), 2) semi-supervised tripled dictionary
learning method (t-DL) (Wang et al., 2017), and 3) convolutional neural
networks based method (CNN) (Xiang et al., 2017). The qualitative
comparison results are shown in Fig. 9.

It can be seen from Fig. 9 that by all methods, the image qualities of all
three views (axial, sagittal and coronal) have been enhanced compared
with the low dose images. The estimated images by the sparse repre-
sentation based methods (including m-SR and t-DL) are over-smoothed
compared with the real full-dose PET images. This is because these
methods estimate the full-dose PET image in a voxel-wise manner and the
final estimation for each voxel is determined by averaging the results of
the overlapping patches. Although the estimations by CNN based method
are sharper than those of the sparse representation based methods,
apparently our proposed method still performs better in all three views
(as indicated by red arrows in Fig. 9). The quantitative comparison in
terms of PSNR, NMSE and SUV differences is also provided in Fig. 10.

As shown in Fig. 10 (a), m-SR, CNN and t-DL obtain similar PSNR
values in the two groups of subjects, indicating their estimation results
are comparable. In contrast, our proposed method achieves the highest
GANs, in terms of PSNR and NMSE. Error bar indicates the standard deviation.



Fig. 8. An example of the delineated hippocampal regions (Blue: left hippocampus; Red: right hippocampus). In the axial and coronal images, the left side of the image
is the right side of the brain, and the right side of the image is the left side of the brain.

Table 2
Average SUV differences and standard deviations in left/right hippocampal regions of the normal subjects and the MCI subjects, respectively.

Normal subjects MCI subjects

Left hippocampi Right hippocampi Left hippocampi Right hippocampi

Low-dose PET 0.652� 0.157 0.501� 0.135 0.218� 0.098 0.305� 0.102
Concatenated 3D c-GANs 0.037� 0.015 0.067� 0.018 0.015� 0.009 0.019� 0.010

Fig. 9. Qualitative comparison of low-dose PET images, estimated by the mapping based sparse presentation method (m-SR), by semi-supervised tripled dictionary
learning method (t-DL), by convolutional neural networks (CNN), and by the proposed concatenated 3D c-GANs method (3D c-GANs), as well as the real full-dose PET
images (Ground truth). In the axial and coronal images, the left side of the image is the right side of the brain, and the right side of the image is the left side of
the brain.
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PSNR values in both the normal and the MCI groups, which significantly
outperforms the compared three methods. This can also be observed from
NMSE results in Fig. 10 (b), where our proposed method achieves the
lowest error. For the normal subjects, compared with t-DL which gains
the second-best performance, the averaged PSNR by our method in-
creases by approximately 0.9. For the MCI subjects, compared with the
second-best performance of the CNN based method, the averaged PSNR
by our method increases by about 1.1. In addition, we can see from
Fig. 10 (c) that, compared with the existing methods, the SUV differences
by the proposed method is the smallest. This indicates that the estimated
full-dose PET images by our method can better preserve the SUV.
Therefore, our method potentially improves the clinical usability as
compared to the low-dose PET images or the results by the previous
methods.
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Compared with the existing PET estimation methods, another major
advantage of our proposed method is the processing speed. Since the
sparse representation based methods cannot build a predictive model, if a
previously unknown subject is added into the test set, the entire algo-
rithms would need to be retrained with all the samples. Thus, the
computation is quite burdensome. In contrast, our method only needs to
do the estimation with the pre-trained model, which is much more effi-
cient. It is worth noting that, the discriminator network is only used
during training, without introducing extra computational burden during
the test. Specifically, our method has a runtime of less than 1 s on a
64� 64� 64 vol, on a NVIDIA GeForce GTX 1080 Ti with 11 GB
memory.



Fig. 10. Quantitative comparison between the existing PET estimation methods and the proposed method, in terms of PSNR, NMSE and SUV differences. Error bar
indicates the standard deviation.
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Comparison with the state-of-the-art c-GANs models

In (Wolterink et al., 2017), Wolterink et al. proposed a method for
noise reduction in low-dose CT images, which also employs 3D c-GANs
model. Nevertheless, there are several major distinctions between their
approach and ours. First, the network structures are significantly
different. Wolterink's generator utilizes seven convolutional layers
without any padding, thus causing the output size smaller than the input
size. To ensure the de-noised CT image has the same size with the
routine-dose CT image, they have to first apply zero padding to the input
image. In contrast, our U-net-like generator architecture includes both
convolutional and de-convolutional layers, which can ensure the same
size of the input and the output without any additional pre-processing.
Also, we use skip connections in the generator architecture to combine
hierarchical features for better estimation. The skip connection strategy
could relieve the vanishing gradient problem, allowing the network ar-
chitecture could be much deeper. Second, Wolterink et al. used the L2
distance to measure the voxel-wise estimation error. However, as known,
L2 norm error is more sensitive to outliers compared with L1. Thus, we
adopted the L1 norm to encourage less blurring. Third, we also proposed
a concatenated 3D c-GANs based progressive refinement scheme to
further improve the estimated image quality. In Section 4.3, we have
demonstrated the effectiveness of the concatenated c-GANsmodel. In this
experiment, in order to evaluate the effect of the different network
structures and loss functions between Wolterink's approach and our
proposed method, we compare the proposed model with other two
methods (CNN-like generator model and L2 distance based model). In
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CNN-like generator approach, the skip connections are removed from the
generator network of our model. Since directly removing the skip con-
nections from the very deep architecture can easily cause model collapse,
we use six convolutional layers in the generator network. The L2 distance
based model means that we use L2 distance instead of L1 to measure the
estimation error. Fig. 11(a) shows the quantitative comparison in terms
of PSNR while Fig. 11(b) gives a visual example in sagittal view.

From Fig. 11(a), the advantage of using U-net-like generator over
CNN-like generator can be well demonstrated by comparing the results of
CNN-like generator model (blue bar) and our model (green bar).
Although the performance of L2 distance based c-GANs model almost
catches up with our model using L1 norm, we can clearly see from
Fig. 11(b) that the L2 distance based model tends to generate blurry
estimations, as indicated by the red block. Both qualitative and quanti-
tative results suggest that, compared with Wolterink's approach, our
method gains better estimation performance.

Investigation of the potential of domain adaption of our method

In deep learning, the potential of domain adaption is quite important,
that is, whether the deep model trained using one dataset could be
applied on another dataset. In order to investigate the potential of
domain adaption of our method, we split our data into two non-
overlapping datasets according to the clinical labels, i.e., the normal
control (NC) dataset and the MCI dataset, and each dataset consists of 8
subjects. As is known, these two groups have different data distributions.
We first use the NC dataset to train a c-GANs model, and then test the pre-



Fig. 11. Comparison with the state-of-the-art c-GANs models. (a) Comparison in terms of PSNR, and (b) visual comparison in sagittal view. Error bar indicates the
standard deviation.
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trainedmodel on theMCI dataset. However, due to the discrepancy of the
data distributions between the two distinct datasets, directly applying the
pre-trained model on the other dataset may lead to unsatisfactory per-
formance. To tackle this problem, we further fine-tune (a type of transfer
learning) the pre-trained model based on the test dataset, thus trans-
ferring the useful knowledge of the training dataset to help image esti-
mation, and this model is named as fine-tune model. Please note that
transfer learning is a common strategy used in deep learning to adapt a
pre-trained model to another dataset, and takes only a small number of
epochs, which is very fast in contrast to the full training procedure.
Specifically, we fine-tune the pre-trainedmodel using the MCI dataset via
the leave-one-subject-out strategy. That is, one subject of the MCI dataset
is reserved for test and the rest 7 subjects are used for fine-tuning the pre-
trained model. The averaged performance in terms of PSNR is reported in
Fig. 12(a). For comparison, we also list the result of the proposed model
which trained by all samples, i.e., reserve one subject for test and train
the model using the rest 15 subjects. Similarly, we further use the MCI
dataset to train a c-GANs model and test this model based on the NC
dataset. The results are shown in Fig. 12(b).

From Fig. 12, we can see that the PSNR results of the pre-trained
model are much higher than those of the low-dose PET images, indi-
cating that the pre-trained model using one dataset could be applied on
another dataset for image synthesis. The results of the fine-tune model
almost catch up with those of the proposed model, which suggests that
the fine-tune strategy could decrease the discrepancy of the data distri-
butions between the two different datasets. In addition, the pre-trained
model and the fine-tune model tend to learn more efficiently with less
training samples. Experimental results show that the pre-trained model
and the fine-tune model can well estimate the full-dose PET images,
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indicating that our method has the potential of domain adaption. How-
ever, since both the NC dataset and the MCI dataset used in this paper
belong to the clinical data, it might be interesting to evaluate our method
using digital simulations, i.e., phantoms. Such simulations would be
helpful to understand the physical performance of the proposed method,
which is one of our research focuses in future.

Conclusion

In this paper, we have proposed a novel end-to-end framework based
on 3D c-GANs to estimate the high-quality full-dose PET images from the
low-dose PET images. Difference from the original GANs that consider
the image appearance slice by slice, our proposed method is carried on in
a 3D manner, avoiding the discontinuous cross-slice estimation that oc-
curs in 2D GANs models. To render the same underlying information
between the low-dose and full-dose PET images, we employ a 3D U-net-
like architecture as the generator to combine hierarchical features for
generating the estimated images. In addition, a concatenated GANs based
progressive refinement scheme is utilized to further improve the quality
of estimated images.

To train reliable 3D c-GANs model with small sample size, we use the
following strategies. First, for each subject we extract 125 large 3D
patches rather than directly using the entire 3D image as input. In this
way, we significantly increased the number of training samples (from 16
images to 2000 patches in total), and at the same time greatly reduced
the number of parameters to learn. Second, during training, to make full
use of available samples and reduce the possible bias to measure the
performance, we follow the widely used “Leave-One-Subject-Out” strat-
egy, i.e, we repeat the training and test for 16 times, at each time



Fig. 12. Investigation on the potential of domain adaption of our method. (a)
Using the NC dataset for training and then the MCI dataset for testing, and (b)
using the MCI dataset for training and then the NC dataset for testing. Error bar
indicates the standard deviation.
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sequentially reserve one subject (125 patches) for test and train our
model on the patches from the rest 15 subjects (1875 patches), and report
the average performance. Third, please note that, we can keep increasing
the number of training samples by extracting more overlapping patches
or smaller patches from the original 3D images as in the literature.
However, we found that more overlapping or smaller patches do not
further improve the performance. In contrast, they could possibly bring
the problems of either over-smoothing or inter-patch discontinuity,
leading to inferior performance to our current settings. Our experimental
results demonstrate that the above strategies could effectively mitigate
the impact of the small sample size. Certainly, involving more subjects
into the study could further increase the generalization capacity of our
model, and is one of our research focuses in future.

Extensive experiment has been conducted on a real dataset of human
brain PET images consisting of both the normal subjects and the MCI
subjects. Both the qualitative and quantitative results suggest that our
proposed method outperforms the benchmark methods and the existing
state-of-the-art estimation methods, for both normal subjects and sub-
jects with abnormal uptake (MCI subjects). The estimated full-dose PET
images by our method are close to the real ones. Moreover, the experi-
mental results demonstrate that, the desired quantification measure SUV
for specific ROIs can be faithfully preserved by the proposed method,
compared with the real full-dose PET images. In summary, the proposed
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method can greatly improve the quality of PET images with low dose
tracer injection. This potentially meets the requirement to reduce the
radioactive tracer during PET scans.

Please note that, the PET scanner is usually combined with other
imaging modalities, such as PET/CT and PET/MRI. It has been suggested
that the anatomical or the structural information from CT or MRI could
be utilized for improving the PET image quality. In our future work, we
will extend our method to incorporate the multi-modality information for
better estimation. Also, the current study is restricted to brain PET image
data. It would be highly interesting to evaluate our proposed method for
extended body areas and diseases, especially in pediatric patients, since
they are more susceptible to the radioactive tracer. In addition, since the
simulations of phantom would be helpful to understand the physical
performance of the algorithm, in the future, we plan to simulate digital
phantom data according to the standard PET quality assessment protocol,
and involve domain adaption and transfer learning techniques to inves-
tigate the relationship between different datasets.
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