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Abstract
Positron emission tomography (PET) imaging is an effective tool used in determining disease stage and lesion malignancy;
however, radiation exposure to patients and technicians during PET scans continues to draw concern. One way to minimize
radiation exposure is to reduce the dose of radioactive tracer administered in order to obtain the scan. Yet, low-dose images are
inherently noisy and have poor image quality making them difficult to read. This paper proposes the use of a deep learning model
that takes specific image features into account in the loss function to denoise low-dose PET image slices and estimate their full-
dose image quality equivalent. Testing on low-dose image slices indicates a significant improvement in image quality that is
comparable to the ground truth full–dose image slices. Additionally, this approach can lower the cost of conducting a PET scan
since less radioactive material is required per scan, which may promote the usage of PET scans for medical diagnosis.
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Introduction

PET images are used in oncology for evaluating lesion malig-
nancy, disease stage, and treatment monitoring [1–3]. In order to
obtain PET images, patients are injected with a standard dose of
radioactive tracer prior to scanning. The concentration of radio-
active uptake is measured and reconstructed by the scanner,
which is then used to produce images. The primary method for
diagnosis is visual inspection of the images, though radiologists
often use the standard uptake value (SUV) of a lesion to supple-
ment their findings [4]. PET imaging, however, uses radioactive
tracers for lesion detection, and there is a growing concern over
the amount of radiation patients and technicians are exposed to
during these scans [5]. Exposure to high levels of radiation can
result in an increased risk of cancer developing. Thus, there is a

desire to reduce the dose of radioactive tracer with which the
patients are injected to minimize radiation exposure.
Unfortunately, lower doses of radioactive tracer result in a sig-
nificant image quality degradation, so higher doses are generally
administered in clinical practice.

While low-dose computed tomography (CT) reconstruction
and denoising has seen tremendous success in CT imaging, the
work on low-dose PET for any given instrumentation is scarce.
Some preliminary efforts have been made toward medical imag-
ing dose reduction, specifically toward denoising low-dose med-
ical images using deep learning [6–12]. The relationship between
the low-dose images and the full-dose images is learned by the
model. Xiang et al. proposed using a convolutional neural net-
work (CNN) to predict full-dose PET images from PET/MR
images taken at 1/4th of a full dose [6]. Yang et al. addressed
the over-smoothing effect of CNNs by using a different loss
function than the mean squared error (MSE) during training
[7]. Similarly, Wolterink et al. reduced smoothing by
implementing a convolutional generative adversarial network
(GAN) using low-dose (1/5th of a full dose) CT images to predict
full-dose CT images [8]. While the methods mentioned were
relatively effective in reducing the noise in low-dose medical
images, the resultant images fell short in edge and structure pres-
ervation, as well as under or incorrectly textured the images.

In this paper, we propose a residual CNN to estimate full-
dose PET images from 1/10th dose PET images that preserves
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edge and structural details by specifically accounting for them
in the loss function during training, and maintains the appro-
priate natural texture through the features specified in the loss
function and by introducing an adversarial discriminator net-
work partway through training. The main contributions of our
work include the following:

(1) Applying a low-pass filter to the low-dose image before
inputting it into the model to aid training by removing
some noise without compromising key structural details.

(2) Using a loss function that combines specific features,
namely the gradient and total variation, with the MSE
and an adversarial network to ensure the estimated full-
dose images preserve edge, structure, and texture details.
This becomes particularly important when the training
data is scarce.

(3) Sectioning the body into different regions and training a
model for each region to account for the vastly different
structures and textures that occur between regions.

Methods

Network Architecture

Shown in Fig. 1, the deep learning model consists of an esti-
mator network and an adversarial discriminator network. The
estimator network has 4 hidden convolutional layers (conv),
which compute the 2D convolution of the previous layer with
learned kernels to extract features from the input. These are
followed by 4 hidden deconvolutional layers (deconv), which
compute the 2D transposed convolution of the previous layer
output with learned kernels. Layer 1 uses a 3 × 3 × 1 × 128
kernel, layers 2–7 use 3 × 3 × 128 × 128 kernels, and layer 8
uses a 3 × 3 × 128 × 1 kernel. All kernels use a stride of 2, and
all hidden layers are followed by ELU activation. Skip

connections, shown as + in Fig. 1, are utilized between layers
of the same dimension, where the features from a previous
layer are added to the features of a later layer. In the final layer,
the skip connection is between a residual image patch R, and
the input image patch X, which can be defined as

Ŷ ¼ X þ R ð1Þ

where Ŷ is the estimated full-dose image patch.
The discriminator network has 1 hidden convolutional lay-

er followed by 1 fully connected layer. Layer 1 uses a 3 × 3 ×
1 × 64 kernel with a stride of 1, and layer 2 uses 16,384 hidden
units. Both layers are followed by tanh activation. The fully
connected layer outputs the logits of the patches, which are
then passed through a final sigmoid activation yielding the
probability that the patch comes from a ground truth image.

Training

The estimator network is first pre-trained alone so that the
generated images are relatively close to the true ones. This is
done so that when the adversarial discriminator network is
introduced, it learns features beyond the structure and pixel
value, such as the texture, that distinguish the true images
from the generated ones. The loss function to be minimized
prior to introduction of the adversarial network is the weighted
sum of the MSE between the estimated full-dose and true full-
dose image patches, and various image features that are ex-
pected in the final estimation. It can be realized as
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Fig. 1 The deep learning model architecture used for estimating full-dose
PET images from low-dose (LD) ones. The filtered image (FI) is inputted
to the estimator network (a), which tries to estimate the true full-dose
(EFD) by predicting the residual image (R) from the true full-dose image

(FD). The network also tries to trick the discriminator network (b) which
tries to determine the ground truth full-dose images from the estimated
ones
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where N represents the number of patches, θ represents the
learned parameters (i.e., the kernel and bias values), Ŷ i θð Þ
represents the estimated full-dose patch, Yi represents the true
full-dose patch, j represents a pixel for a given patch, and ∇
Ŷ ix θð Þ and ∇ Ŷ iy θð Þ represent the gradients of the estimated
patch in the horizontal and vertical directions respectively.

The first term is the MSE, which is minimized to ensure the
estimated and true full-dose image patches are as similar in
values as possible. Some image smoothing occurs in the pro-
cess. The second term is a texture-preserving feature, which is
the total variation of the estimated patches. This term is max-
imized (subtracted) in the loss function to reduce the smooth-
ing effect caused by averaging in the MSE. This ensures that
the estimated image maintains texture and edge details found
in the low-dose image. The third term known as total variation
is an edge-preserving feature, which is the MSE of the gradi-
ents between the estimated and true full-dose image patches.
This term is minimized so that the structural components of
the estimated image are as similar as possible to those of the
true full-dose images.

The ADAM optimizer is used for training the network with
a learning rate equal to 0.001, and L1 regularization was ap-
plied to the kernels. Hyperparameters w1, w2, and w3 were
empirically chosen, and w1 = 1, w2 = 0.00005, and w3 =
0.075. Since the magnitude of each term is different, these
weights have different scales.

After 100 epochs of training, the estimator network con-
verges, and the adversarial network is introduced and trained
alongside it. At this time, the adversarial loss due to the esti-
mated images is incorporated and the loss becomes

L* θð Þ ¼ L θð Þ−w4
1
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where ẑi represents the probability, predicted by the discrimi-
nator network, that the patch was from a real image, zi repre-
sents the true labels of the patches (1 = real image, 0 = gener-
ated image), and w4 = 0.1. This term is the cross entropy loss
due to the estimated images. We maximize this term in the
estimator network loss function so that the network learns how
to trick the discriminator network (i.e. increase the error rate of
correctly distinguishing between true and generated images).
The learning rate is reduced by a factor of 10 when the adver-
sarial loss is included so that the estimator network learns finer
details, such as texture, without altering the already learned
structural and edge details.

Data

Whole body PET image slices of two patients given a full-
dose of 18F-2-deoxyglucose (18FDG) acquired on an investi-
gational Philips Vereos PET/CT system were used. The low-

dose images (1/10th counts) were reconstructed from the sub-
set events of list-mode files. Full-dose and low-dose images
are spatially aligned by default. Since the PET images have a
large range in pixel values (either counts or activity concen-
tration), we convert the PET images to their SUV scale which
aids in the CNN training. The low-dose images are first passed
through a Gaussian filter with σ = 1.5 to reduce some noise
without losing too much structural detail. The value of σ was
chosen empirically. All images have a large portion of back-
ground which contains no relevant information for diagnosis.
Only the foreground image containing relevant information is
used for estimating the denoised full-dose images. In order to
reduce the computational costs and augment data for training,
the cropped portions of the images are then split into 16 × 16
pixel patches that overlap by 2 pixels. The number of patches
used for training is also increased by flipping the values along
the longitudinal axis. The patches are extracted from the low-
dose and full-dose images at the same locations and are ulti-
mately fed through the deep learning model. There are 482
slices per patient and all images are 288 × 288 pixels with an
isotropic voxel size of 2 mm in each dimension. Each patient
data was split into four regions—the brain, chest, abdomen,
and pelvis—where a model was trained for each region. This
was done to aid training since different regions of the body
have vastly different textures and structures.

These patients were chosen in order to simulate a patient
follow-up study since they were similar in size and structure.
Follow-up studies are used in clinical practice to monitor treat-
ment efficacy and changes in lesions [2]. A similar patient was
used to simulate the changes that may occur between follow-
up studies since the Vereos system has just been released and
there have not yet been follow-up patient studies acquired on
the same scanner. The model was trained on one patient using
435 slices (96,692 patches) and tested on the second patient
using 440 slices (53,360 patches). Slices from the brain to the
legs with edge slices removed were used.

We also conducted an experiment on a single-patient study
reserving separate slices for training and testing, which shows
similar results but due to space limitations, it will not be
discussed here.

Experimental Results

We used the root mean square error (RMSE), mean structural
similarity (MSSIM) index, and peak signal-to-noise ratio
(PSNR) between the estimated full-dose image and the true
full-dose image as metrics for image quality. Resultant images
for visual comparison are shown in Fig. 2. Comparing the top
row (1/10th dose) and the middle row (estimated full-dose) of
Fig. 2, the improvement of image quality is apparent. Notice
also the visual similarity between the middle row and the
bottom row (true full-dose).
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We computed the RMSE, MSSIM, and PSNR between the
estimated full-dose and the true full-dose image foregrounds,
and between the low-dose and the true full-dose image fore-
grounds. Due to limited data, we analyzed the data collective-
ly instead of analyzing each network by body section. With
more patient data, the body part-based analysis can provide
insights to understand and optimize individual networks. The
results are shown in Table 1. From the table, it is clear that the
estimated full-dose images are more similar to the true full-

dose images than the low-dose ones. Additionally, the high
values of the MSSIM and PSNR, and the low RMSE of the
estimated full-dose images show that the image quality pro-
duced by the learned model is more comparable to that of the
true full-dose images.

We compared the distributions of the three metrics for
low-dose and estimated full-dose images. The results are
shown in Fig. 3. To determine if these distributions were
indeed statistically different, we conducted a paired two-
sample t test on the distributions of the RMSE, MSSIM,
and PSNR for the 1/10th dose and estimated full-dose
image slices. The null hypothesis was that the distribution
means are identical and we used significance value of α =
0.05. Each of the three tests resulted in p ≪ 0.001. The
extremely small p values for each of the three metrics
show that the mean values for 1/10th dose and estimated
full-dose image qualities are indeed statistically different.

We also examined whether or not the image quality in
the estimated images from low-dose images is comparable

Fig. 2 PET images from various portions of the body from (top row) 1/
10th of a full-dose, (middle row) the estimated full-dose from the deep
learning model, and (bottom row) the ground truth full-dose. Column 1 is

in the brain, column 2 is in the heart, column 3 is in the liver, and column
4 is in the pelvis

Table 1 The average values and standard deviation of the RMSE,
MSSIM, and PSNR for both 1/10th of a full-dose and the estimated
full-dose images using our deep learning model relative to the ground
truth full-dose images

RMSE MSSIM PSNR

1/10th dose 0.384 ± 0.096 0.919 ± 0.038 28.075 ± 4.253

Estimated full-dose 0.265 ± 0.078 0.940 ± 0.030 30.557 ± 3.801
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to the true full-dose images in regions of interests (ROIs)
such as tumors or lesions. Some typical results are shown
in Fig. 4. On the top row are, from left to right, the low-
dose image, estimated full-dose image, and true full-dose
image on one slice. On the bottom row are the similar
images on a different slice. The ROIs in both cases are
delineated with the white boxes on the low-dose images.
All images are scaled to their respective SUV ranges for
display. 2D ROI analysis was performed for simplicity.
The mean and standard deviation of pixels in the ROI
for each of the three images on the top row from left to
right are 3.99 ± 2.64, 3.94 ± 2.20, and 3.95 ± 2.52, respec-
tively. The associated pixel ranges (i.e., minimum and
maximum) are (0.56, 10.22), (0.84, 8.93), and (0.60,
10.37), respectively. The mean and standard deviation of
the ROI in the bottom row from left to right are 4.34 ±

3.06, 3.72 ± 2.29, and 3.39 ± 2.10, respectively, and the
associated pixel ranges are (0.77, 13.62), (0.96, 10.04),
and (0.91, 9.36), respectively. Overall, the ROI statistics
in the estimated images are comparable to those in the
true full-dose images. Since the low-dose images have a
high noise content, which can strongly impact the estimat-
ed images, it will limit how much the dose can be reduced
for clinical use.

Discussion and Conclusion

We have presented a deep learning algorithm to estimate full-
dose PET images from 1/10th dose PET images while preserv-
ing edge, structural, and textural details. Unlike existing
methods, our method specifically accounts for different

Fig. 4 From left to right are PET
low-dose, estimated full-dose,
and true full-dose images. Top
and bottom rows show different
slices. The lesions analyzed are
delineated with the white boxes
on the low-dose images (see text
for details)

Fig. 3 The distributions of the
RMSE, MSSIM, and PSNR for
both the low-dose and the esti-
mated full-dose images using our
deep learning model relative to
the ground truth full-dose images
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features in the loss function during training, as well as by
introducing an adversarial discriminator network partway
through training. Since we only had access to limited data
for training, as is usually the case for medical imaging, the
explicit features considered are necessary. Future work will
focus on adapting the model for use on a patient-by-patient
basis or for a general population. The other possible extension
is to handle 3D data directly by using different channels for
neighboring slices.

For example, the same patient may have multiple scans tak-
en to monitor the effectiveness of treatment. In this case, the
study is more controlled and it is appropriate to train the model
on a single patient to estimate the progress of treatment. The
scarcity of the training data must be carefully considered.
During the initial scan, both low-dose PET and full-dose PET
are reconstructed, which are used to train the model. When the
patient comes back for a follow-up study, only low-dose PET is
prescribed and acquired. The low-dose PET is then fed into the
model to predict a full-dose equivalent PET. It should be noted
that the model does not warp the previous full-dose image into
the space of the current low-dose image, instead the trained
network synthesizes the full-dose estimate based on the current
low-dose image as input and the learned relationship between
the low-dose and true full-dose image data. This work could be
thought of as a simulated follow-up study for the training pa-
tient where the testing patient represents the changes that may
occur between studies. For an actual patient follow-up study,
the changes in structure and uptake that occur between scans
will not be as drastic as it is between patients. Thus, we argue
that the image quality presented in our experiment will improve
even more for a real patient follow-up study since the data will
be more similar to that of the training set.

To be applied to the general population, the model must be
trained using many more patients to acquire large amounts of
data that is representative of the population. In the case of
surplus data, one extremely complex model could be trained
for the entire body. In the case of less, but still large data, it
may still be appropriate to section the body into different
regions and develop a robust model for each region.
Detailed analysis of the model performances can shed more
light in this area.

We recently became aware of the work conducted at
Stanford University where researchers were able to achieve
200× dose reduction using neuro images [13]. While the brain
has much higher activity than the majority of the body which
make is easier for dose reduction, 200× dose reduction is still
remarkable. It would be interesting to see how far we can
reduce the dose for PET imaging while still maintaining clin-
ical relevance.
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