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Abstract Software Defined Networking (SDN) is emerging as a key technology
for future Internet. SDN provides a global network along with the capability to
dynamically control network flow. One key advantage of SDN, as compared to
the traditional network, is that by virtue of centralized control it allows better
provisioning of network security. Nevertheless, the flexibility provided by SDN
architecture manifests several new network security issues that must be addressed to
strengthen SDN network security. So, in this paper, we propose a Gated Recurrent
Unit Recurrent Neural Network (GRU-RNN) enabled intrusion detection system for
SDN. The proposed approach was tested using the NSL-KDD and CICIDS2017
dataset, and we achieved an accuracy of 89% and 99% respectively with low
dimensional feature sets that can be extracted at the SDN controller. We also
evaluated network performance of our proposed approach in terms of throughput
and latency. Our test results show that the proposed GRU-RNN model does not
deteriorate the network performance. Through extensive experimental evaluation,
we conclude that our proposed approach exhibits a strong potential for intrusion
detection in the SDN environments.
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1 Introduction

1.1 Motivation

The current Internet architecture has been developed for nearly three decades
and is now becoming an increasingly complex system. It is largely decentralised,
autonomous and built from a large number of network devices such as routers,
switches and numerous types of middleboxes (e.g., firewall, load balancing, etc.)
with several complex protocols implemented on each of them. These network
devices are traditionally developed by several manufacturers. Each manufacturer
has their own designs, firmware and other software to operate their own hardware in
a proprietary and non co-operative way. Consequently, current Internet architecture
lacks the agility to respond to ever changing demands and the dynamic nature of
modern day applications. Software Defined Networking (SDN) [21] is introduced
as a promising architecture, enabling scalability and unprecedented flexibility in
the configuration and deployment of network services. The separation of control
and data planes provides more flexibility and greater control over the traffic flows.
Nevertheless, as highlighted in [13], the SDN architecture also introduces various
security issues pertaining to the control plane, the control-data interface and the
control-application interface. Recently, as mentioned in [14] and [26], SDN security
has become a serious concern and attracted significant interest.

An intrusion detection system (IDS) is one of the most important network
security tools. IDSs can be broadly classified into two categories: Signature-based
IDS and Anomaly-based IDS. The signature-based IDS uses the signature database
of the previous attacks to detect the new attacks. This system gives a low false
alarm rate but it fails to detect zero-day attacks. The operational efficiency of the
signature-based IDS is strongly coupled with the integrity and freshness of sig-
nature information available in databases. Maintaining such databases incurs huge
operational overhead and is difficult if not impossible to realize in real-time. The
anomaly-based IDS tries to identify the observation that deviates from the baseline
model. Thus, this system can detect zero-day attacks better than the signature-
based IDS. Various approaches have been proposed for intrusion detection like
artificial neural networks (ANNs), support vector machines (SVMs), and Bayesian
approaches. However, these techniques have a quite high false alarm rate and
associated computational cost as mentioned in [28]. Recently, Deep Learning (DL)
has emerged as a new approach and achieved a huge success in computer vision
and language processing areas. DL has the ability to process raw data and learn the
high-level features on its own, and so DL delivers higher accuracy than traditional
machine learning techniques. The flow-based nature of SDNs enables network
information acquisition in real-time via the OpenFlow [16] protocol. Consequently,
flow-based intrusion detection systems have recently attracted significant attention
in the context of SDNs.
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1.2 Contribution

Following the trajectory of current research, we believe that deep recurrent neural
networks can potentially offer better solutions for implementation of IDS under the
context of SDN. Recurrent Neural Networks (RNNs) have shown great success in
language modelling, text generating and speech recognition. We believe that the
RNN is a powerful technique that can represent the relationship between a current
event and previous events and then enhance the anomaly detection rate. In this
chapter, a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) is proposed
to detect the anomaly traffic traces.

In summary, the major contributions of this chapter are the following:

• We introduce an IDS in the SDN environment using GRU-RNN. To the best of
our knowledge, this is the first attempt to use GRU-RNN for intrusion detection
in the SDN environment.

• Our GRU-RNN approach yields a detection rate of 89% in the NSL-KDD
dataset using a minimum number of features compared to other state-of-the-art
approaches. This gives our approach significant potential for real time detection.
The GRU-DNN achieves an impressing detection rate of 99% dealing with DDoS
attacks in the CICIDS2017 dataset.

• We also evaluate the network performance of our proposed approach in the SDN
environment. Then results show that our approach does not significantly degrade
the SDN controller’s performance.

The remainder of this paper is organized as follows. Section 2 presents a literature
review. In Sect. 3, we give a system description. Section 4 presents the intrusion
detection performance and network performance analysis. Finally, Sect. 5 concludes
the paper and presents future work.

2 Literature Review

2.1 What Is Software Defined Networking?

The idea of programmable networks has been proposed as a way to facilitate the
evolution of the conventional network. The idea of programmable networks and
decoupled control logic has been around for several years. In general, SDN is built
under four principles:

• Seperation of Control and Data Plane: these planes must be logically separated
and connected via an interface. The control aspect is removed from forwarding
devices and delegated to an external entity.
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• Network Programmabitity: The provision of open API is a core aspect of the
SDN architecture. Software and scripts should be able to access, configure, and
modify network elements with ease.

• Network Abstraction: the view of the network is virtualized for any elements of
a higher hierarchy. Services and applications are aware of the state of the whole
network, but physical attributes and resources are irrelevant for configurations
and computations.

• Logically Centralized Control: all forwarding devices of a domain are linked to
a controlling entity and are subjected to its enacted policies.

SDN is defined by the Open Networking Foundation (ONF) which was founded
in 2011 by Microsoft, Google, Facebook, Yahoo, Verizon and Deutsche Telekom.
As of 2015 the organization has more than 150 industry members and receives
endorsement by several network equipment vendors such as Cisco, Dell, Brocade
and HP. An SDN architecture decouples the network control and forwarding
functions enabling the network control to become directly programmable. The
separation of the control plane from the data plane lays the ground for the SDN
architecture. Network switches become simple forwarding devices and the control
logic is implemented in a physical or logical centralized controller. The logical
centralized controller dictates the network behaviour and offers several benefits.
Firstly, it is simpler and less error-prone to modify network policies through
software from a single place without reconfiguring individual devices. Secondly,
a control program can automatically react to dynamic changes of the network and
thus maintain the high level policies in place. Thirdly, the centralised control logic
has global knowledge of the whole network, including the network topology and
the state of the network resources, thus giving the flexibility and simplifying the
development of more sophisticated network functions. For example, the controller
can dynamically adjust flow tables to avoid congestion or apply different routing
algorithms to different types of traffic.

The SDN architecture is divided into three layers: infrastructure layer, control
layer and application layer.

• Infrastructure layer (Tier-1): This layer consists of the forwarding hardware such
as switches/routers.

• Control layer (Tier-2): Network intelligence is installed in software-based log-
ically centralized SDN controllers. The control layer regulates and manages
forwarding hardware. The controller is the core of SDN networks. It lies between
network devices at the one end and the applications at the other end. The SDN
controller takes the responsibility of establishing every flow in the network by
installing flow entries on switch devices.

• Application layer (Tier-3): Application and services take advantage of the control
and infrastructure layer. Conceptually the application layer is above the control
layer and enables easy development of network applications. These applications
perform all network management tasks. Some examples of SDN application are
load balancers, network monitors, and IDSs.
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Table 1 SDN threat vectors

No. Threat vector

1 Forged or faked traffic flow

2 Attacks on vulnerabilities in switches

3 Attacks on control plane communications

4 Attacks on and vulnerabilities in controllers

5 Lack of mechanisms to ensure trust between the controller and management application

6 Attacks on and vulnerabilities in administrative stations

7 Lack of trusted resources for forensics and remediation

2.2 Security in SDN

The SDN concept was originally designed with significant advantages over the
traditional networking. Even though SDN brings significant advantages to network
security, it also introduces new targets for potential attacks. The main causes of
concern actually lie in SDN’s main benefits: network programmability and control
logic centralization. These capabilities actually introduce new fault and attack
planes, which open the doors for new threats that did not exist before or were harder
to exploit. According to Kreutz et al. [14], there are seven main potential threat
vectors identified in SDN and summarized in Table 1.

Among these seven threat vectors, number 3, 4 and 5 are not present in traditional
networking. They are specific to SDNs as they arise from the separation of the
control and data plane and the logical centralization of the controllers. Other vectors
were already presented in traditional networking. Threat vector number 5 would
have the most severe impact on SDN architecture because it could affect the entire
network. The controller emerges as a potential single point of attack. Attackers can
attack vulnerabilities of controllers and run several dangerous scripts. Therefore, if
there are no security settings to protect the controller, it would be under the control
of attackers. The controller provides an interface for SDN applications to manage
the network. However, this also give chances for malicious SDN applications to
take over the network because of the lack of trust between the controller and SDN
applications. Malicious hosts also can cause severe damage to the SDN architecture.
Malicious hosts can perform Denial of Service (DoS) attacks to controllers and
other hosts or network topology poisoning. DoS attack is one of the most dangerous
attacks in SDN. It can be done by flooding the network with a large number of forged
packets. These packets would trigger the switches to send a large number of requests
to the controller for new flow rules. Therefore the control channel bandwidth and the
controller CPU resources will be heavily consumed. As a result, the controller would
respond slowly to legitimate requests. At the same time, the switches would also
suffer from traffic congestion because the packets could quickly exhaust the memory
of the flow table storage in the switches. Compromised switches not only have the
same capabilities as the malicious hosts, but they are also capable of performing
more dynamic and severe attacks. Firstly, they can be used for traffic eavesdropping.
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Both data and control flows passing through the compromised switches can be
replicated and sent to the attacker for further processing. Furthermore, the attacker
can interfere with the control traffic passing through the compromised switches
to perform man-in-the-middle attacks. By doing so, the attacker can act as the
controller to some target switches.

2.3 Related Work

Researchers have employed classical machine learning approaches such as SVM,
K-Nearest Neighbour (KNN), ANN, Random Forest, etc., for intrusion detection
for several years. These proposed methods have achieved various degrees of
success while also exhibiting some inherent limitations. Parwez et al. [22] employ
K-means and hierarchical clustering to detect anomalies in call detail records
(CDRs) of mobile wireless networks data. In [19], Bayesian networks are employed
for anomaly and intrusion detection such as DDoS attacks in cloud computing
networks. Bang et al. [2] use Hidden semi-Markov models to detect LTE signalling
attacks. Principal Component Analysis (PCA) and SVM are also combined in [10]
to detect intrusions. PCA is used for dimensional reduction on network data and
SVM is used to detect intrusion on those data. These work only focus on traditional
network with a large set of features that cannot be applied to SDNs. These classical
mechanisms are still employed for intrusion detection in the context of SDN.

Braga et al. [3] present a lightweight approach using a Self Organizing Map
(SOM) to detect Distributed Denial of Service (DDoS) attacks in the SDN. This
approach based on six traffic flow features gives quite high detection accuracy. In
[17], the authors use four traffic anomaly detection algorithms (threshold random
walk with credit based rate limiting, rate limiting, maximum entropy and NETAD)
in the SDN environments. The experiments indicate that these algorithms perform
better in the SOHO (Small Office/Home Office) network than in the ISP (Internet
Service Provider) and they can work at line rates without introducing any new
performance overhead for the home network.

In the literature, the DDoS attacks are some of the most focused attacks for the
SDN context because of their severe effects. The controller is a single point of failure
in the SDN architecture. Therefore, if intruders trigger the DDoS attacks on the
controller and take control of it, they can also control the whole network. SVM is
also a quite popular algorithm for its high detection accuracy. In [12] and [24], SVM
is used to detect DDoS attacks quite efficiently. Winter et al. [31] train a one-class
SVM with a malicious dataset in order to reduce the false alarm rate. K-Nearest
Neighbour and graph theory are combined to classify DDoS attacks from benign
flows in SDNs by AlEroud et al. in [1]. Mousavi et al. [18] propose an early DDoS
attack detection method against the SDN controller based on the variation of the
entropy of the flow’s destination IP addresses. They assume that the destination IP
addresses are evenly distributed for the benign flows, while the malicious flows are
destined for a small amount of hosts. Thus, the entropy drops dramatically when any
attack happens. In [20], the authors propose a DL based approach using a stacked
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autoencoder (SAE) for detecting DDoS attacks in the SDN. They achieve a quite
high accuracy rate and low false alarm rate on their own dataset.

In 2016, we applied a Deep Neural Network (DNN) under the context of SDNs
to train and test the NSL-KDD dataset [29]. We obtained a potential accuracy of
75.75% with just six basic features. In this paper, we continue this trend by using
GRU-RNN to improve the detection accuracy and reduce the false alarm rate of the
system.

3 Methodology/System Description

In this section, the Recurrent Neural Network (RNN) and Gated Recurrent Units
(GRUs) are briefly reviewed. Then the architecture of the SDN-based IDS is
described in detail.

3.1 Recurrent Neural Networks

A RNN is an extension of a conventional feed forward neural network. In general,
a neural network architecture is as shown in Fig. 1.

The RNN is called “recurrent” because it performs the same task for every ele-
ment of a sequence, with the output being dependent on the previous computations.
Mathematically, the hidden states of the RNN are computed as:

ht = σ(Wxt + Uht−1 + bh), t = 1, 2, . . . , T , (1)

where σ(·) is a non-linearity function, xt is an input vector at time t, ht is a hidden
state vector at time t, W is an input to hidden weight matrix, U is a hidden to hidden
weight matrix, and bh is a vector bias term.

The Backpropagation Through Time (BPTT) algorithm is used for training the
RNN. However, BPTT for the RNN is usually difficult due to a problem known as
vanishing/exploding gradient [9]. Long Short Term Memory (LSTM) [8] networks
and GRUs [5] were proposed to solve this problem and are among the most widely
used models in DL.

GRUs are selected in our research because of their simplicity and faster training
phase compared to LSTMs [7].

For a GRU the activation ht is computed differently from (1) as follows:

ht = (
1 − zt

)
ht−1 + zt h̃t , t = 1, 2, . . . , T , (2)

where an update gate zt defines how much of the previous memory to keep and h̃t

is the candidate activation. The update gate is computed by

zt = σ
(
Wzxt + Uzht−1

)
. (3)
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Fig. 1 The deep neural network structure

The candidate activation h̃t is computed by

h̃t = tanh
(
Whxt + Uh(ht−1 � rt )

)
, (4)

where a reset gate rt determines how to combine the new input with the previous
activation vector and � is an element-wise vector multiplication. The reset gate is
computed by

rt = σ
(
Wrxt + Urht−1

)
, (5)

where σ(·) is again a non-linearity function in (3) and (5). Finally, all the W and U
terms are learned weight matrices.

3.2 System Architecture

As mentioned earlier, the SDN decouples the control plane and data plane from
network devices. The data plane, termed as switches, is just simple packet for-
warding elements. The control plane can be either a single computer or a group of
logically centralized distributed computers. The two entities communicate in order
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to exchange network information and manage the whole network. In principle, the
SDN network works in the following manner: packets from the internet traverse an
SDN switch under the control of the SDN controller. Switches have flow tables for
flow rules that contain match-fields, counters and actions that control traffic flows
in the network. If the arriving flow does not match any rule in the SDN switch, the
switch will send a packet-in message with the arriving flow header’s information
to the controller. The controller sends back a packet-out or flow-mod message to
the switches to instruct them how to process the corresponding flow. Applications
that run inside a controller can program the data plane for different purposes such as
firewall, load balancer, IDS, etc. This paper focuses on the use of the SDN paradigm
as network infrastructure for intrusion detection.

The IDS is implemented as an application on the SDN controller. The SDN-
based IDS architecture is described in Fig. 2. It has three main components: Flow
Collector, Anomaly Detector and Anomaly Mitigator.

• Flow Collector: This module is triggered when a packet-in message arrives.
It will extract all the flow statistics such as protocol, source and destination
IP and source and destination port. This module is also triggered by a timer
function to send a ofp_flow_stats_request message to switches to request all the
flow statistics information. Once the request is received, a ofp_flow_stats_reply
message, which contains all the aggregated statistics of all flow entries, is sent
back to the controller. All the features needed for anomaly detection will be
created from these statistics and sent to the Anomaly Detector module.

SDN Controller

Flow Collector 

Anomaly Detector

Anomaly Mitigator

Firewall
SDN Switch

LANInternet

Fig. 2 SDN-based IDS architecture
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• Anomaly Detector: We have chosen the GRU-DNN algorithm for the core of the
Anomaly Detector module in this paper. The anomaly detector module loads a
trained model, receives the network statistics and decides if a flow is an anomaly
or not.

• Anomaly Mitigator: Through the Anomaly Detector’s results, the Anomaly
Mitigator module can make decisions on what to do with the flow. For example,
it is possible to immediately stop the flow in order to prevent possible further
attacks or to mirror the traffic to a deep packet inspector to further analyze the
flow.

4 Performance Analysis

In this section, we firstly describe all datasets used in our experiment. Secondly, we
explain all metrics used to evaluate our model performance. Thirdly, we describe
all experimental setups. Detection results are given and compared with other works
for a better overview in next section. Finally, the network performance of our GRU-
RNN is evaluated and analyzed.

4.1 Datasets

Currently, there are only a few public datasets available for IDS evaluation (i.e.,
KDD Cup 99, NSL-KDD, DAPRA, and ISCX 2012) and none of them are specified
for the SDN architecture. The KDD Cup 99 [11] and NSL-KDD datasets are some
of the most popular datasets used in the literature to assess the NIDS performance.
As mentioned in [15], the KDD Cup 99 has several inherent problems that makes
the classifier fail to deliver a better accuracy. The NSL-KDD dataset [30] is
introduced by Tavallaee et al. to solve these problems. However, the above datasets
are out of date, lack traffic diversity and feature sets. Recently, the CICIDS2017
dataset [27] was published to deal with these issues. The SDN architecture is still
under development, and so the NIDS dataset for the SDN is still quite rare and
unpublished. Several researchers still use the conventional dataset to evaluate their
approaches. In this paper, the NSL-KDD and CICIDS2017 datasets are chosen to
evaluate our particular method.

4.1.1 NSL-KDD Dataset

The NSL-KDD contains 125,973 and 22,544 records in the training set and testing
set respectively. Each traffic trace in this dataset has 41 features that are categorized
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Table 2 Attacks in the NSL-KDD dataset

Category Training set Testing set

DoS back, land, neptune, pod, smurf,
teardrop

back, land, neptune, pod, smurf,
teardrop, mailbomb, processtable,
udpstorm, apache2, worm

R2L fpt-write, guess-passwd, imap,
multihop, phf, spy, warezclient,
warezmaster

fpt-write, guess-passwd, imap,
multihop, phf, spy, warezmaster, xlock,
xsnoop, snmpguess, snmpgetattack,
httptunnel, sendmail, named

U2R buffer-overflow, loadmodule, perl,
rootkit

buffer-overflow, loadmodule, perl,
rootkit, sqlattack, xterm, ps

Probe ipsweep, nmap, portsweep, satan ipsweep, nmap, portsweep, satan,
mscan, saint

Table 3 The NSL-KDD’s feature description

Feature name Description

duration Length (number of seconds) of the connection

protocol_type Type of the protocol (e.g. tcp, udp, etc.)

src_bytes Number of data bytes from source to destination

dst_bytes Number of data bytes from destination to source

srv_count Number of connections to the same service as the current
connection in the past two seconds

dst_host_same_src_port_rate Number of connections that were to the same source port

into three types of features: basic, content-based and traffic-based features. Attacks
in this dataset are categorized into four categories according to their characteristics.
Our IDS is trained by the KDDTrain+ dataset and tested by the KDDTest+ dataset.
In addition, the KDDTest+ dataset contains 18 different types of attacks in addition
to 22 attack types out of the KDDTrain+ dataset. Details of each attack category
are described in Table 2. Thus, the KDDTest+ dataset is a reliable indicator to the
performance of the model on zero-day attacks as well.

Within the context of SDN, the packet content is not directly accessible in
the current OpenFlow protocol. The OpenFlow protocol does not allow us to get
all the 41 features in the NSL-KDD dataset. This leads to a reduction of the
features for the anomaly detection. So we just focus on the basic features and
traffic-based features of the NSL-KDD dataset. Some of the features in these
two categories can be easily retrieved from the SDN switches. In our research,
a mixed feature set that contains six features from both the basic feature and
traffic-based feature set are selected out of 41 features of the NSL-KDD dataset.
The selected feature are (duration, protocol_type, src_bytes, dst_bytes, srv_count,
dst_host_same_src_port_rate). These are SDN related features. Table 3 shows
details of these features. They are selected based on their SDN related nature without
any feature selection or optimization algorithms.



186 T. A. Tang et al.

The NSL-KDD dataset contains both the numerical and symbolic features, and
so we will transform the symbolic features into numerical values. After converting,
the dataset is normalized into the range of [0–1] by Min-Max scaling as follows:

x
′ = x − min(x)

max(x) − min(x)
, x > 0, (6)

where x
′

is the normalized value and x is the original value.

4.1.2 CICIDS2017 Dataset

The CICIDS2017 dataset covers seven types of common attack families (i.e., Brute
Force Attack, Heatbleed Attack, Botnet, DoS Attack, DDoS Attack, Web Attack,
and Infiltration Attack). In this chapter, we choose a Wednesday dataset focusing
on DoS, Heartblead, Slowloris, Slowhttptest, Hulk and GoldenEye Attacks. These
types of attacks are on the rise and are a major threat to the SDN architecture.

In this dataset, we use 622,265 and 69,141 records for training and testing sets
respectively. We extract a subset of nine features out of 80 features of this dataset
for our research. These features have an SDN-related nature and can be extracted
easily by SDN controllers. Details of these features can be seen in Table 4. This
dataset is also normalized into the range of [0–1] by the Min-Max scaling as with
the NSL-KDD dataset.

4.2 Evaluation Metrics

In order to evaluate our proposed approach, Precision (P), Recall (R), F1-measure
(F1) and Accuracy (ACC) metrics are used. These metrics are calculated by using

Table 4 The CICIDS2017’s feature description

Feature name Description

Source port Source port of the flow

Destination port Destination port of the flow

Protocol Protocol type of the flow

Flow duration Duration of the flow in microsecond

Fwd packet length mean Mean size of packets in forward direction

Flow bytes/s Number of flow bytes per second

Flow packet/s Number of flow packets per second

Flow IAT mean Mean inter-arrival time of packets

Fwd packet/s Number of forwarded packets per second
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four different measures – True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN), defined as follows:

• TP: the number of anomaly records correctly classified.
• TN: the number of normal records correctly classified.
• FP: the number of normal records incorrectly classified.
• FN: the number of anomaly record incorrectly classified.

So the four metrics are:
Accuracy (ACC): the percentage of true detection over total traffic records,

ACC = T P + T N

T P + T N + FP + FN
× 100%. (7)

Precision (P): the percentage of predicted anomalous instances predicted are actual
anomalous instances,

P = T P

T P + FP
× 100%. (8)

Recall (R): the percentage of predicted anomalous instances versus all the anoma-
lous instances presented,

R = T P

T P + FN
× 100%. (9)

F1-measure (F1): the harmonic of the precision and recall metrics to express the
performance of the model,

F1 = 2
1
P

+ 1
R

× 100%. (10)

4.3 Experimental Setup

According to our experiments, A DNN with three hidden layers gives best results
in all experiment cases. Therefore, we propose a GRU-RNN with three hidden
layers. For the training phase, the batch size and epoch number are 100 and 1000
respectively. We use a Nadam optimizer and Mean Squared Error (MSE) function
for the model. In addition, we added L1-regularization to our model to prevent over
fitting during the training phase. A DNN is also implemented with the same structure
as the proposed GRU-RNN. We used Keras [6] to implement our GRU-RNN, DNN,
and VanilaRNN models. Scikit-learn library [23] is used to implement the SVM
algorithm and measure all the evaluation metrics.
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Table 5 Performance metric
evaluation for the NSL-KDD
dataset

Class name Precision (%) Recall (%) F1-measure (%)

Legitimate 87 89 88

Anomaly 91 90 90

Fig. 3 Performance metric comparison

Table 6 Accuracy
comparison with other
algorithms

Algorithm Accuracy

VanilaRNN 44.39%

SVM 65.67%

DNN 75.9%

GRU-RNN (Proposed Model) 89%

4.4 Experiment Results

To start with, we present the anomaly detection performance of our proposed model
in terms of Precision, Recall, F1-measure and accuracy on the NSL-KDD dataset.
Details of the results given in Table 5 show that our GRU-RNN performs well for all
the evaluation metrics. Both the legitimate and anomaly traffic traces are detected
really well by the GRU-RNN. The detection rates of the legitimate and anomaly
traffic traces is 89% and 90% respectively. The anomaly detection accuracy of 90%
shows that the GRU-RNN is good at detecting zero-day attacks.

We also compare the performance of our proposed model with other popular
algorithms like VanilaRNN, SVM and DNN using the same subset of six features.
As we can see in Fig. 3, the GRU-RNN outperforms other algorithms in all the
evaluation metrics. The GRU-RNN yields good results for both legitimate and
anomaly traffic traces, while other algorithms just work well in only one class.

The results in Table 6 show that our approach outperforms other methods in
terms of accuracy. The DNN, coming in second place, shows the potential of the
DL approach in anomaly detection. The VanilaRNN gives the worst result compared
with its counterpart GRU-RNN.
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Fig. 4 ROC curve comparison for different algorithms

The Receiver Operating Characteristic (ROC) curve is also presented to evaluate
our proposed approach. The ROC curve is created by plotting the false positive
rate versus the true positive rate. The area under the ROC curve (AUC) is used to
determine which classifier predicts the classes best. The higher the AUC, then the
better is the classifier. Figure 4 shows that the proposed GRU-RNN achieves the
highest AUC amongst all the tested algorithms with a True Positive Rate of 90%
and a False Alarm Rate of 10%. The VanilaRNN gives the worst result as expected.
As we can see, the GRU-RNN has a lowest False Positive Rate which is an important
factor of the IDS.

The Precision vs Recall curve shows the trade off between Precision and Recall
for different thresholds. A high area under the curve represents both high recall and
high precision. An ideal system with a high area under the curve will return many
results, with all results labelled correctly. As seen in Fig. 5, the GRU-RNN gives
us the best results amongst all the algorithms. As the Recall threshold increases, the
Precision decreases significantly for all the algorithms, except for GRU-RNN where
increases Precision increases to 89%.

Furthermore, we also compared the performance of our proposed model with
others in the literature. Our GRU-RNN is compared with other state-of-the-art
algorithms like SVM, DNN and NB Tree algorithms. The NB Tree gave the best
result in [30]. The results in Table 7 show that our proposed model outperforms all
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Fig. 5 Precision vs recall curves

Table 7 Accuracy
comparison with previous
studies

Method Accuracy

SVM [30] 69.52%

DNN [29] 75.75%

NB tree [30] 82.02%

GRU-RNN (Proposed Model) 89%

Table 8 Performance metric evaluation for the CICIDS2017 dataset

Method Precision Recall F1-measure

DNN 97% 97% 97%

ID3 [27] 98% 98% 98%

GRU-RNN (Proposed Model) 99% 99% 99%

the previous methods. Our GRU-RNN performs better than the SVM and NB Tree
algorithms that use the whole set of 41 features for training and testing. The GRU-
RNN result also indicates a significant improvement in accuracy compared to the
basic DNN in our previous work.

For further investigation, we evaluate the GRU-DNN performance as regards
detecting DDoS attacks in the CICIDS2017 dataset. We compare the proposed
GRU-DNN with DNN and ID3 algorithms. Results of ID3 algorithm are the
best achieved from the CICIDS2017 dataset in [27]. Table 8 gives details of our
evaluation. As can be seen, the proposed GRU-DNN has better results in all the
evaluation metrics compared with the best result from [27]. The DNN yields slightly
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lower results than that of the ID3. The proposed GRU-DNN can work well with
diverse and complex traffic traces and detect almost all types of DDoS attacks in the
CICIDS2017 dataset.

From the above results, the GRU-DNN shows its strong potential in dealing with
low-dimensional and raw traffic. Therefore, it is a potential solution for intrusion
detection in the SDN paradigm.

4.5 Network Performance Evaluation

In this section, we evaluate the effect of our proposed GRU-RNN on the perfor-
mance of the POX controller in the SDN environment.

4.5.1 Experiment Setup

The GRU-RNN is implemented as an application written in Python language in
a POX [25] controller. Cbench [4] is a standard tool used for evaluating the
SDN controller performance. Cbench runs in two modes: throughput and latency
modes.

• The Throughput Mode: a stream of packet-in messages is sent to the controller for
a specified period of time to compute the maximum number of packets handled
by the controller.

• The Latency Mode: a packet-in message is sent to the controller and then waits for
the reply to compute the time needed to process a single flow by the controller.

We ran our experiments on a virtual machine having an Intel Core i5-4460
3.2GHz with 3 cores available and 8GB of RAM. The operating system is Ubuntu
14.04 LTS-64bit. The controller performance is tested with a different number of
virtual OpenFlow switches emulated by Cbench. The performance of the POX
controller running stand-alone is considered as a baseline for our evaluation. We
also compare the proposed GRU-RNN algorithm with the DNN algorithm in our
previous work [29].

4.5.2 Experiment Results

Throughput evaluation indicates the performance of the controller under heavy
traffic conditions. Figure 6 depicts the average response rate of the controller
under three testing scenarios. As we can see, both the DNN and GRU-RNN cause
overhead on the controller. The DNN algorithm is simpler than the GRU-RNN,
and so it gives a slightly better network performance than that of the GRU-RNN.
However, the GRU-RNN outperforms the DNN in terms of the detection accuracy.
The affect of the GRU-RNN on the controller performance is predictable. The
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Fig. 6 Throughput evaluation

network throughput decreases slightly when the network size increases from 32
switches to 64 switches. The network performance degrades by about 3.5% when
the network size is under 32 switches. When we increase the size to over 64
switches, the throughput drops by about 4%. The overhead on the controller of
the GRU-RNN module is unavoidable. The GRU-RNN module has to send several
ofp_flow_stats_request messages and process ofp_flow_stats_reply messages while
processing packet-in messages. However, the throughput degradation is quite low
and can be improved in the future.

Latency evaluation indicates the length of time that the controller takes to process
one single packet. As we can see in Fig. 7, the network latency increases along with
increasing the network size. When we increase the network size, the load on the
controller is increased as well and this causes the overhead. The GRU-RNN still
has the highest overhead amongst all. It takes time for the GRU-RNN to process
the ofp_flow_stats_reply messages, packet-in messages and detect anomaly flows,
so the overhead is unavoidable. The overall degradation is about 7% in all cases.
This overhead is not significant and can be improved in the future.

All in all, the overhead caused by the GRU-RNN on the SDN controller is quite
low, and so our proposed approach has significant potential for real-time intrusion
detection in the SDN paradigm. So there is a trade off between performance and
security. However, the network performance still can be improved in the future.
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Fig. 7 Latency evaluation

5 Conclusion

This paper has made an attempt to briefly introduce the SDN architecture and
its security issues. DL has great potential to be the key technology for intrusion
detection in SDN. Despite the recent wave of success of DL in computer vision
and language processing areas, there is a scarcity of DL applications in solving
SDN security issues. In this chapter, we present an Anomaly-based IDS in the SDN
environments using the GRU-RNN algorithm. We show that our proposed approach
outperforms other state-of-the-art algorithms with an accuracy of 89% and 99% for
the NSL-KDD and CICIDS2017 datasets. Our scheme uses a minimum number of
features compared to other state-of-the-art approaches so computational costs can be
reduced significantly. In addition, the network performance evaluation showed that
our proposed approach does not significantly affect the controller performance. This
makes our model a strong candidate for real-time detection. In the future, we will
optimize our model and use other features to increase the accuracy and reduce the
overhead on the controller. We will also try to extend our research to unsupervised
intrusion detection approaches.
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