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Abstract: Radio Frequency Interference (RFI) is a key issue for Synthetic Aperture Radar (SAR) because
it can seriously degrade the imaging quality, leading to the misinterpretation of the target scattering
characteristics and hindering the subsequent image analysis. To address this issue, we present a
narrow-band interference (NBI) and wide-band interference (WBI) mitigation algorithm based on
deep residual network (ResNet). First, the short-time Fourier transform (STFT) is used to characterize
the interference-corrupted echo in the time–frequency domain. Then, the interference detection model
is built by a classical deep convolutional neural network (DCNN) framework to identify whether
there is an interference component in the echo. Furthermore, the time–frequency feature of the target
signal is extracted and reconstructed by utilizing the ResNet. Finally, the inverse time–frequency
Fourier transform (ISTFT) is utilized to transform the time–frequency spectrum of the recovered
signal into the time domain. The effectiveness of the interference mitigation algorithm is verified on
the simulated and measured SAR data with strip mode and terrain observation by progressive scans
(TOPS) mode. Moreover, in comparison with the notch filtering and the eigensubspace filtering, the
proposed interference mitigation algorithm can improve the interference mitigation performance,
while reducing the computation complexity.

Keywords: Radio Frequency Interference (RFI); interference mitigation; Synthetic Aperture Radar
(SAR); deep residual network (ResNet)

1. Introduction

Synthetic Aperture Radar (SAR) has the advantages of full-time, all weather, long range,
wide-swath, and high-resolution imaging, which plays a very important role in the fields of remote
sensing, reconnaissance, space surveillance, and situational awareness [1–7]. However, the measured
SAR data can be corrupted by other electronic systems in the frequency band, such as communication
systems, radiolocation radars, television networks, and other military radiation sources. The low-energy
Radio Frequency Interference (RFI) can potentially be partly mitigated thanks to the large coherent
signal-processing gain in the SAR imaging algorithm, while strong RFI will remain in the focused
SAR images. At the same time, the presence of strong RFI would yield inaccurate estimates of critical
Doppler parameters (e.g., centroid and modulation rate), which would result in blurry and defocused
SAR images. The presence of the haze-like RFI in SAR images buries interesting targets. Moreover,
it seriously degrades the quality of the SAR image, reducing the accuracy of feature extraction and
posing a hindrance to the SAR image interpretation [8–10]. Therefore, it is necessary to develop an
effective RFI detection and mitigation method to reduce the effects of RFI on SAR imaging.
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Generally speaking, RFI can be classified into two types, according to the relative bandwidth of
the interference: narrow-band interference (NBI) and wide-band interference (WBI). Figure 1 shows
the SAR echoes corrupted by NBI and WBI in two different domains to illuminate the difference
between the interferences and useful target signals. Figure 1a shows the SAR echoes contaminated
with NBI in the range-frequency azimuth-time domain. These echoes were collected in strip mode.
The vertical bright line marked within the white ellipse is the NBI signal and the NBI occupies only a
few frequency bins. Figure 1b shows the SAR echoes contaminated with WBI in the azimuth-frequency
range-time domain. The echoes were acquired in the terrain observation by progressive scans (TOPS)
mode. The bright lines marked within the white rectangle in Figure 1b represent the WBI with a
wider bandwidth and the center frequencies vary randomly along the range time. It should be noted
that the NBI and WBI can be represented in different domains. To better represent the interferences
characteristics, the echoes corrupted by the NBI and WBI shown in Figure 1 are represented in the
range-frequency azimuth-time domain and azimuth-frequency range-time domain, respectively.
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Figure 1. Synthetic Aperture Radar (SAR) echoes corrupted with (a) and (b) narrow-band interference
(NBI) in range-frequency azimuth-time domain and wide-band interference (WBI) in azimuth-frequency
range-time domain.

Since NBI and WBI may be time-varying signals, not all of the SAR echoes contain interference.
Therefore, it is necessary to identify whether interference exists in the SAR echoes. Zhou et al.
developed an interference detection algorithm that assumed the amplitude of the useful target
signal obeys the Gaussian distribution, while the interference-corrupted echo follows a non-Gaussian
distribution [11]. Thus, the interference detection problem can be solved by measuring the deviation
extent from the Gaussian distribution. In [11], kurtosis was adopted to evaluate deviation from
the Gaussian distribution. Under the same principle, Tao et al. presented an interference detection
method which utilized the negative entropy to measure the non-Gaussianity of the distribution [12].
The abovementioned interference detection algorithms can effectively identify whether there is
interference in the SAR echoes. However, these two algorithms seriously depend on the threshold
selection. If a higher threshold is selected, it will increase the missed-detection probability. If a lower
threshold is chosen, the probability of false alarms will increase.

In the past few decades, various RFI mitigation methods have been developed to mitigate the
influence of RFI on SAR imaging [11–26]. Generally, these interference mitigation algorithms can be
divided into two types. The first are parametric methods, which mainly utilize mathematical models to
characterize the SAR echoes and optimize the model parameters under specific criteria [15–18]. Then, the
interference is reconstructed from the contaminated SAR echoes. Guo et al. developed an interference
mitigation method based on the maximum a posterior (MAP) estimation and Bayesian inference [18].
After careful modeling of sparse prior and data likelihood, the method performs a Bayesian inference of
the posterior and estimates the model parameters by MAP. Then, it reconstructs NBIs and subtracts it
from the NBI-contaminated SAR echoes. However, parametric methods generally require high accuracy
prior knowledge, and the model error will seriously restrict the interference mitigation performance.
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The other type is nonparametric interference mitigation methods, which mainly design a reasonable
filter and separate the interference and useful signal in a specific domain [11–14,19–26]. Range-spectrum
notch filtering is a simple but efficient method for interference mitigation. It has been utilized in
Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar
(PALSAR ) [8] and Experimental airborne Synthetic Aperture Radar (E-SAR) systems [19]. However, it
fails at WBI mitigation because it introduces too much signal loss and distortion. Tao et al. investigated
WBI mitigation methods for high-resolution airborne SAR [12]. In [12], the WBI-corrupted echoes were
characterized in the time–frequency domain by utilizing the short-time Fourier transform (STFT). In this
way, the original range-spectrum WBI mitigation problem can be simplified into a series of instantaneous
spectrum NBI mitigation problems. Instantaneous spectrum notch filtering and eigensubspace filtering
were utilized to perform this NBI mitigation. Instantaneous-spectrum notch filtering can achieve a
tradeoff between accuracy and efficiency. The eigensubspace filtering can effectively mitigate the WBIs
in the SAR echoes with less signal loss, but with a relatively larger computation burden.

Deep convolutional neural network (DCNN) can automatically extract the hierarchical features
of the targets in the images, and have been successfully applied to image classification [27–29], target
detection [30–32], semantic segmentation [33–35], noise suppression [36,37], image super-resolution [38],
image fusion [39], image generation [40,41], and image transformation [42,43]. Simonyan et al. proposed
a visual geometry group (VGG) network and investigated the effect of the convolutional network depth
on the accuracy in the large-scale image recognition setting, which achieves state-of-the-art classification
results on the Image Net Challenge 2014 [28]. Michelsanti et al. proposed a method to enhance the speech
signal by utilizing the conditional Generative Adversarial Network (cGAN) [40], which uses the Pix2Pix
framework to learn mapping from the spectrogram of noisy speech to an enhanced counterpart [37].
Ledig et al. presented a method for image super-resolution using GAN and the deep residual network
(ResNet) [29], which can convert low-resolution images to high-resolution images and the generated
images contain rich textural details [38]. Motivated by these advancements, we combine the ability of
deep learning in feature extraction and image generation to identify whether the SAR echoes contain
interference, and reconstruct the target signal from the interference-contaminated SAR echoes.

In this paper, we develop an interference detection and mitigation algorithm based on deep
learning. Firstly, the interference detection network (IDN) is built, using the classical VGG network
with 16 layers (VGG-16) [28] to identify whether the interference exists in the SAR echoes according
to the difference between the useful target signal and the interference in the time–frequency domain.
Then, ResNet and skip-connections are employed to extract the features of the useful target signal in the
time–frequency domain and reconstruct the useful target signal. In this paper, the short-time Fourier
transform (STFT) is utilized to characterize the SAR echoes in the time–frequency representation. Since
the input of DCNN is a real-valued image, the complex-valued SAR echoes in the time–frequency
domain need to be separated into the real part and the imaginary part. Finally, the inverse short-time
Fourier transform (ISTFT) is utilized to transform the recovered echoes into the time domain. Moreover,
the proposed interference mitigation network (IMN) based on ResNet can mitigate both NBI and
WBI. Since the interference mitigation can be realized in parallel along range dimension or azimuth
dimension, the time cost can be further reduced.

In summary, the contribution of this paper can be summarized as follows:
1) An interference detection algorithm based on DCNN is proposed, which can effectively extract

the time–frequency characteristics of NBI and WBI. It outperforms the state-of-the-art approaches by
using a classical convolutional neural network architecture of VGG-16;

2) An interference mitigation algorithm based on ResNet is proposed. Compared with the
traditional interference mitigation, the IMN improves the NBI and WBI mitigation performance,
while reducing the computational complexity. Moreover, the IMN can extract features of the useful
target signal without designing a specific feature filter, which reduces the complexity of designing the
interference mitigation algorithm.
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The remainder of this paper is organized as follows. Section 2 introduces the time–frequency
characteristics of the interference and interference detection method. Section 3 elaborates the
interference mitigation algorithm based on ResNet. The experimental results and performance
analysis of the interference mitigation on the simulated and measured data are presented in Section 4,
followed by the discussion in Section 5 and conclusions in Section 6.

2. Interference Formulation and Detection

In this part, we analyze the interference in the time domain, frequency domain, and time–frequency
domain. Then, we propose the interference detection method based on the DCNN.

2.1. Interference Formulation

For an SAR system, the received complex-valued SAR echo at fast time t and slow time τ can be
modeled by:

x(t, τ) = s(t, τ) + I(t, τ) + n(t, τ), (1)

where s(t, τ), I(t, τ), and n(t, τ) denote the useful target signal, the interference, and the additive noise,
respectively. Interference can be classified into NBI and WBI according to the bandwidth of interference.
The NBI can be written as:

INB(t, τ) =
K∑

k=1

ak(t, τ) exp
{
j(2π fkt + φk)

}
, (2)

where ak(t, τ), fk, and φk denote the complex envelope, frequency, and phase of the kth interference
component, respectively. Generally, there are two ways to modulate WBI signal, the chirp-modulated
(CM) WBI and sinusoidal-modulated (SM) WBI. The CM WBI signal can be expressed as:

ICM(t, τ) =
K∑

k=1

ak(t, τ) exp
{
j
(
2π fkt + πγkt2

)}
, (3)

where ak(t, τ), fk, and γk are the complex envelope, frequency, and the chirp rate of the kth interference
component. Furthermore, the SM WBI signal can be defined as:

ISM(t, τ) =
K∑

k=1

ak(t, τ) exp
{
jβk sin(2π fkn + φk)

}
, (4)

where ak(t, τ), βk, fk, and φk denote the complex envelope, modulation factor, frequency, and initial
phase of the k th interference component.

Figure 2 shows the interference-corrupted SAR echoes in different domains. The echo shown in
Figure 2a–c is acquired from an airborne SAR system operating at X-band, and the echo shown in
Figure 2d–f is collected from a space-borne SAR system operating at C-band. Figure 2a,d show that the
echoes are contaminated by the NBI and WBI, respectively. The difference between the interference and
the useful target signal is not obvious in the time domain. Figure 2b shows the range-spectrum of the
NBI-corrupted echo. It is shown that the NBI energy mainly concentrates on a certain few frequency
units and the amplitude of the NBI is much larger than the adjacent frequency units. Figure 2e shows
the azimuth-spectrum of the WBI-corrupted echo, the WBI occupies a large proportion of bandwidth in
the frequency domain and the amplitude of the WBI is stronger than the useful target signal. Figure 2c
shows the time–frequency representation of the NBI-corrupted echo, the horizontal bright line is NBI
and its amplitude is larger than surrounding useful target signal. Figure 2f shows the chirp modulated
WBI-corrupted echo in the time–frequency domain, the line is the interference and its amplitude is
much stronger than the surrounding useful target signal.
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Figure 2. An example of the (a) NBI-corrupted echo in the range-time domain, (b) NBI-corrupted echo in
the range-frequency domain, (c) NBI-corrupted echo in the time–frequency domain, (d) WBI-corrupted
echo in the azimuth-time domain, (e) WBI-corrupted echo in the azimuth-frequency domain,
and (f) WBI-corrupted echo in the time–frequency domain.

2.2. Interference Detection

An important step before applying the interference mitigation method is to identify whether
the is interference in the SAR echoes. From Figure 2, it is difficult to determine the existence of
interference in the time domain. However, the characteristics of interference are quite different for the
useful target echo in the frequency domain and the time–frequency domain. Note that there are many
interference detection methods in the frequency domain [11] and the time–frequency domain [12].
In this paper, we propose an IDN based on the DCNN which transforms the interference detection
problem into a two-class classification problem. The IDN utilizes the VGG-16 architecture to capture
the time–frequency characteristic divergence between the useful target signal and interference, and
output the interference detection result. The VGG-16 consisted of 13 convolutional layers (Conv), 13
rectified linear units (ReLU), five maximum pooling layers (MP), three fully connected layers (Fc), and
one softmax layer. Figure 3 shows a schematic diagram of the IDN based on VGG-16. The convolution
kernel and stride of the Conv were set as 3× 3 and 1, respectively. The kernel and stride of the MP
were set as 2× 2 and 2, respectively. Moreover, the specific structure of the IDN can be referred to in
Table 1, and the third value in Conv denotes the number of feature maps.
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Table 1. IDN Architecture.

Input: Images in the Temporal–Frequency Domain

Layer 1 Conv. (3,3,64), stride = 1; ReLU layer;

Layer 2 Conv. (3,3,64), stride = 1; ReLU layer;

Layer 3 MP. (2,2), stride = 2;

Layer 4 Conv. (3,3,128), stride = 1; ReLU layer;

Layer 5 Conv. (3,3,128), stride = 1; ReLU layer;

Layer 6 MP. (2,2), stride = 2;

Layer 7 Conv. (3,3,256), stride = 1; ReLU layer;

Layer 8 Conv. (3,3,256), stride = 1; ReLU layer;

Layer 9 Conv. (3,3,256), stride = 1; ReLU layer;

Layer 10 MP. (2,2), stride = 2;

Layer 11 Conv. (3,3,512), stride = 1; ReLU layer;

Layer 12 Conv. (3,3,512), stride = 1; ReLU layer;

Layer 13 Conv. (3,3,512), stride = 1; ReLU layer;

Layer 14 MP. (2,2), stride = 2;

Layer 15 Conv. (3,3,512), stride = 1; ReLU layer;

Layer 16 Conv. (3,3,512), stride = 1; ReLU layer;

Layer 17 Conv. (3,3,512), stride = 1; ReLU layer;

Layer 18 MP. (2,2), stride = 2;

Layer 19 Fc. (1,1,4096);

Layer 20 Fc. (1,1,4096);

Layer 21 Fc. (1,1,2);

Layer 22 Softmax layer.

Figure 4 shows several training samples of different interference types in time–frequency
representation by utilizing STFT. The training samples were classified into two categories. One
was the useful target echo shown in Figure 4c, and the other was the interference-corrupted echo.
The IDN should be capable of detecting NBI and WBI. Therefore, the interference-corrupted echoes
consisted of the NBI-corrupted and WBI-corrupted echoes. Figure 4a,b show the samples of the
NBI-corrupted echoes and WBI-corrupted echoes, respectively. Tensorflow [44] was utilized to train
and test the IDN on the NVIDIA Titan-X Graphic Processing Unit (GPU). The Adam solver was utilized
to optimize the network parameters [20]. The minimum batch size was set to 256, the first momentum
was set as 0.5, the second momentum was set as 0.9, and the learning rate was set as 0.0001. Moreover,
the weight parameter was initialized to a Gaussian distribution with a mean of 0 and a variance of 0.01,
and the bias was initialized with a small constant of 0.1 [27].
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To better illustrate the principle of IDN, we introduce the basics of a convolutional neural network.

2.2.1. Convolutional Layer

The convolutional layer is the core building block of a convolutional network, which can be
interpreted as a set of learnable filters. Every filter is small spatially (along the width and height), but
extends through the full depth of the input volume. During the forward pass, we slid each filter across
the width and height of the input volume, producing a two-dimensional activation map. Stacking these
activation maps for all filters along the depth dimension formed the full output volume. We defined
the input feature maps of previous layers as I(l−1)

i (i = 1, . . . ., Nl−1), where Nl−1 is the number of feature

units in the l − 1 layer. The output feature maps were defined as I(l)j ( j = 1, . . . ., Nl), where Nl is the
number of feature units in the l layer. Each unit in the convolution layer can be expressed as [27,28]:

I(l)j (x, y) = f
(
O(l)

j (x, y)
)
; (5)

O(l)
j (x, y) =

Nl−1∑
i=0

F−1∑
u,v=0

k(l)ji (u, v)·I(l−1)
i (x− u, y− v) + b(l)j , (6)

where f (x) is ReLU; I(l−1)
i (x, y) denotes unit i of the activation map at position (x, y) in l − 1 layer;

I(l)j (x, y) denotes the unit j of the activation map at position (x, y) in l layer; k(l)ji (u, v) denotes the

trainable filter connecting the ith input feature map to the jth output feature map; b(l)j denotes the
trainable bias of the jth output feature map; every filter size is F× F.

2.2.2. Pooling Layer

It is common to periodically insert a pooling layer between successive convolutional layers in the
convolutional network architecture. It aims to progressively reduce the spatial size of the representation
to reduce the number of parameters and computation in the network, to avoid overfitting. The pooling
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layer operates independently on every depth slice of the input and resizes it spatially, using max
operation. The max pooling operation can be defined as [27,28]:

I(l+1)
i (x, y) = max

u,v=0,...,G−1
I(l)i (x·s + u, y·s + v), (7)

where G is the pooling size; s is the stride determining the intervals between neighbor pooling windows.
The most common form is a pooling layer with filters of size 2× 2 applied with a stride of 2.

2.2.3. Softmax Classifier

The softmax classifier is utilized to solve the multiclass classification problems, which gives a
slightly more intuitive output over each class and also has a probabilistic interpretation. The final output
of the convolutional neural network is a k-dimensional vector, each element of which corresponds to
the probability pi = P(y = i

∣∣∣x), for i = 1, ..., K. The softmax nonlinearity operation can be calculated as:

pi =
exp

(
I(L)i

)
∑K

j=1 exp
(
I(L)j

) , (8)

where I(L)j denotes the weighted sum of inputs to the jth unit on the output layer computed using

(2). Given that training samples contain m components, it can be defined as
{(

x(i), y(i)
)
, i = 1, ..., m

}
,

where y(i) denotes the true label of targets. Then, the lost function of cross-entropy can be expressed
as [27,28]:

L(w) = −
1
m

m∑
i=1

log P
(
y(i)

∣∣∣x(i); w
)
, (9)

The cross-entropy loss function measures the difference between the correct label distribution
and probability distribution estimated by the network. By minimizing this loss function, the trainable
parameters w will be adapted to increase the probability of the correct class label.

2.2.4. Back Propagation Algorithm

In DCNN, a back-propagation algorithm is utilized to compute the derivative of loss function with
respect to trainable weights on each layer. In the back-propagation algorithm, we need to compute the
error term, expressed as δl

i(i = 1, ..., Nl). The error term can be obtained by analytically computing
derivation with respect to the parameter w on each unit. For units in the output layer, the error term
can be defined as:

δL
i = −(yi − pi), (10)

where yi refers to the true label; and pi denotes the prediction of the convolutional network. Then, the
previous layer error term can be computed through the output layer error term. If the l + 1 layer is the
convolutional layer, the l layer error term can be defined as [27,28]:

δ
(l)
i (x, y) =

∑
j

F−1∑
u,v=0

k(l+1)
ji (u, v) · δ(l+1)

j (x + u, y + v), (11)

where δ(l+1)
j refers to the jth unit error term in the l + 1 layer.



Remote Sens. 2019, 11, 1654 9 of 26

In the pooling layer, there are no trainable weights, but the error terms need to be back propagated
to previous layers. If layer l + 1 is max pooling layer, only the unit with the largest values are in the
error term, while other units are defined as zeros. The error term in the l layer can be defined as:

δ
(l)
i (x, y) = f ′

(
I(l)i (x, y)

)
·

∑
m,n

δ
(l+1)
i (m, n) · ζ(ui,m + m · s− x, vi,n + n · s− y), (12)

where ζ(x, y) denotes the Dirac delta function. After calculating the error term over each layer, the
derivation of loss function respect to the convolution weights and biases can be expressed as:

∂L

∂k(l)ji (u, v)
=

∑
x,y
δ
(l)
j (x, y) · I(l−1)

j (x− u, y− v ); (13)

∂L

∂b(l)j

=
∑
x,y
δ
(l)
j (x, y ). (14)

3. Theory and Methodology

Here, we illustrate the training procedure and network architectures of the proposed IMN. Then,
the metrics for evaluating performance are introduced.

3.1. Interference Mitigation Network

Compared with manual feature extraction and selection, DCNN can automatically capture the
textural features and spatial information of the target in images. DCNN has wide applications in
image generation, classification, detection, image segmentation, and image fusion. Motivated by
the outstanding performance of DCNN in image processing, we developed the IMN for interference
mitigation based on ResNet, the framework for which is shown in Figure 5. The IMN utilized the ResNet
structure to solve the problem of network saturation and performance degradation when the structure
of the IMN was deepened. The inputs and outputs of the IMN were interference-corrupted echoes and
recovered echoes in the time–frequency representation, respectively. ResNet captured the features
of the useful target signal and reconstructed the useful target signal in the time–frequency domain.
The IMN consisted of 16 residual blocks, and was composed of two Conv, two batch normalization
layers (BN), one ReLU, and one element-wise sum layer (Es). The kernel size and stride of Conv were
set to be 3× 3 and 1, respectively. Moreover, the number of feature maps output by each Conv was 64.
The detailed architecture of the IMN is shown in Table 2, where the residual block is denoted as Block.
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Table 2. The IMN Architecture.

Interference Mitigation Network

Input: Images in the Temporal–Frequency Domain

Layer 1 Conv. (3,3,64), stride = 1; ReLU layer;

Block 1 Conv. (3,3,64), stride = 1; BN; ReLU layer;
Conv. (3,3,64), stride = 1; BN; Es. (Layer 1);

Block 2 Conv. (3,3,64), stride = 1; BN; ReLU layer;
Conv. (3,3,64), stride = 1; BN; Es. (Block 1);

. . . . . .

Block 16 Conv. (3,3,64), stride = 1; BN; ReLU layer;
Conv. (3,3,64), stride = 1; BN; Es. (Block 15);

Layer 18 Conv. (3,3,64), stride = 1; BN; Es. (Layer 1);

Layer 19 Conv. (3,3,64), stride=1.

The residual block connected the input and the output nodes through the structure of a
skip-connection, so that the gradient of the previous layer could be directly passed to the output of
the next layer. This could effectively solve the problem of gradient saturation at the deeper layers
of the network. The optimization function of the residual network could be transformed into a
residual function,

xl = F(xl−1) + xl−1, (15)

where xl−1 is the input of the residual block; xl is the output of the lth residual block; F(xl−1) denotes
the output of the xl−1 though the Conv, BN, and ReLU. The loss function of the IMN was modeled
by mean square error (MSE), which made the recovered echoes have a higher signal to noise ratio
(SNR). MSE reflected the mean square error between the original signal without interference and the
recovered signal. The loss function LIMN

MSE of the IMN based on MSE can be written as:

LIMN
MSE =

1
MN

M∑
m=1

N∑
n=1

[
Iori(m, n) −GIMN

(
Iinp(m, n)

)]2
, (16)

where M and N denote the width and height of the images, respectively; Iori(m, n) denotes the
grayscale value of the original signal without interference in time–frequency domain at the point (m, n);
GIMN

(
Iinp(m, n)

)
is the gray value of the recovered signal in time–frequency domain at the point (m, n)

by applying the IMN.
The complex-valued SAR echo was characterized in the time–frequency domain based on the

STFT. To satisfy the requirements of the input for the IMN, the complex-valued SAR echo in the
time–frequency domain was divided into real and imaginary parts. Then, the IMN was utilized to
separately train on the real and imaginary parts. The IMN was trained on an NVIDIA Titan-X GPU
using Tensorflow [44]. IMN utilized the Adam solver to optimize the network parameters [20]. The
minimum batch size was set to 32, the first momentum was set as 0.5, the second momentum was
set as 0.9, and the learning rate was set to 0.0001. Moreover, the weight parameter was initialized to
a Gaussian distribution with mean 0 and a variance of 0.01, and the bias was initialized as a small
constant 0.1 [38,45].

The workflow of the proposed scheme for interference detection and mitigation is shown in
Figure 6. First, the STFT was applied to a single pulse along width range or azimuth to get a set
of instantaneous spectra. For each spectrum, the DCNN-based interference detection method was
carried out to identify whether there was interference in the echo. If the was interference, the IMN was
performed to obtain a clean instantaneous spectrum. After parallel processing all of the instantaneous
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spectra, the clean instantaneous spectrum was returned to a time-domain signal by using the ISTFT.
Then, conventional SAR imaging algorithms were utilized to generate SAR images.Remote Sens. 2019, 3, x FOR PEER REVIEW  11 of 26 
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3.2. Evaluation Measures

In order to verify the performance of the IMN, the performance of different interference mitigation
algorithms was evaluated in a qualitative and quantitative way. For the qualitative evaluation, we
visually compared the divergence of recovered signals and SAR imaging results by applying different
interference mitigation algorithms. Moreover, we quantitatively evaluated the interference suppression
ratio (ISR) [12], signal distortion ratio (SDR) [11], multiplicative noise ratio (MNR) [12], average gradient
(AG) [46], mean square deviation (MSD) [39], and gray level difference (GLD) [47] performance over
several test data.

3.2.1. ISR

ISR is defined as the ratio of the energy before interference mitigation to that after interference
mitigation. This reflects the effect of interference suppression. The definition of ISR can be expressed as:

ISR = 10 log10

(∑
|x|2∑
|x̂|2

)
, (17)

where x denotes the interference-corrupted echo, and x̂ is the reconstructed signal after interference
mitigation. A larger ISR value implies removing more interference from the received signal.

3.2.2. SDR

A large ISR may also indicate that the echo is seriously distorted. The SDR was introduced to
evaluate the distortion of useful target signal after the interference mitigation. It is defined as the
normalized energy loss of the useful target signal after the interference mitigation, which can be
expressed as:

SDR = 10 log10

(∑
|x0 − x̂|2∑
|x0|

2

)
, (18)

where x0 denotes the original SAR echo without interference. A lower SDR means better useful target
echo recovery with less distortion.

3.2.3. MNR

ISR and SDR are commonly adopted to evaluate the performance of interference mitigation on
the simulated data. However, we could not obtain the ideal recovered echo in the measured data.
Therefore, the MNR was introduced to evaluate the performance of the interference mitigation on
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the measurement data. MNR represents the average energy ratio of the weak scattering region to the
adjacent strong scattering region in the SAR images. The definition of MNR can be expressed as:

MNR = 10 log10


1
N

N∑
n=1
|In|

2

1
M

M∑
m=1
|Im|

2

, (19)

where N and In indicate the number of pixels and the pixel values of the weak scattering region,
respectively. Moreover, M and Im denote the number of pixels and the pixel values of the strong
scattering region, respectively. Smaller MNR means a better recovery of the system image response
and better image contrast.

3.2.4. AG

The AG can reflect the presentation ability of image details and textures, which is always used to
assess the SAR image sharpness [46]. For a given M×N SAR image I, the AG can be defined as:

AG =
1

(M− 1)(N − 1)

M−1∑
m=1

N−1∑
n=1

1
4

√(
∂I(m, n)
∂m

)2

+

(
∂I(m, n)
∂n

)2

, (20)

where ∂I(m, n)/∂m and ∂I(m, n)/∂n denote the horizontal and vertical gradient values of the given
SAR image I, respectively. A larger AG implies clearer edge details of the image.

3.2.5. MSD

MSD is frequently used to measure the divergence between values predicted by a model, to
evaluate the fluctuation of the gray value of image and the degree of focus of the image [39]. For a
given M×N SAR image I, the MSD can be defined as:

MSD =
1

(M− 1)(N − 1)

√√√M−1∑
m=1

N−1∑
n=1

(I(m, n) − µ)2, (21)

where µ is the average gray value of the given SAR image. A larger MSD corresponds to a clearer image.

3.2.6. GLD

GLD not only considers the gray level changes of the transition region, but also represents the
extent of the gray level changes, which can characterize the properties of transition region well [47].
For a given M×N SAR image I, the GLD can be defined as:

GLD =
1

(M− 1)(N − 1)

M−1∑
m=1

N−1∑
n=1

(∣∣∣I(m, n) − I(m + 1, n)
∣∣∣+ ∣∣∣I(m, n) − I(m, n + 1)

∣∣∣) (22)

A larger GLD value implies that the image has clearer edge details.
We divided the evaluation measures into two categories. ISR and SDR were utilized to evaluate

the interference mitigation performance for the simulated echoes. MNR, AG, MSD, and GLD were used
to evaluate the SAR image quality after applying the interference mitigation algorithm. Meanwhile, a
no-return area was needed in the scene to calculate the MNR.
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4. Experimental Results

In this section, we conduct interference mitigation experiments on simulated and measured data to
verify the effectiveness of IMN. Moreover, qualitative and quantitative metrics are utilized to evaluate
the performance of different interference mitigation algorithms.

4.1. Results of the Simulated Data

To validate the effectiveness of the IMN, we conducted interference mitigation experiments on
the simulate NBI-corrupted and WBI-corrupted echoes. Figure 7a shows the original SAR echoes
without interference in the time–frequency domain. The simulated NBI-corrupted and WBI-corrupted
echoes in the time–frequency domain for training and testing the IMN are shown in Figure 7b. Before
performing the IMN, the IDN was utilized to identify whether there was interference in the echoes.
Figure 8 shows the convergence curve of training accuracy. It can be observed that the IDN accuracy
gradually reached a stable 99.8%.
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Figure 7. Simulated SAR echoes in the time–frequency domain for training and testing the IMN. (a) the
original SAR echoes without interference, and (b) the interference-corrupted echoes.
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Figure 8. The convergence curve of training accuracy with training iterations.

Figure 9a shows the STFT of the measured original NBI-free echo, while Figure 9b shows the
STFT of the simulated NBI-contaminated echo. It can be seen that the existence of NBI significantly
changes the spectrum of the useful signal, which severely hinders the interpretation of the embedded
information. Figure 9c–e show the performance comparison of the range-spectrum notch filtering, the
eigensubspace filtering, and the IMN, respectively. It can be seen that the original NBI-free echoes
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were recovered well via range-spectrum notch filtering and eigensubspace filtering, but also had less
signal loss and distortion. Moreover, the echo recovered by applying the IMN was basically consistent
with the original NBI-free echo, which illustrates the effectiveness of the IMN. To further illustrate the
effectiveness of IMN, we utilized the ISR and SDR to evaluate the performance of the range-spectrum
notch filtering, the eigensubspace filtering, and the proposed IMN, as shown in Table 3. The last column
shows the improvement of the IMN compared with range-spectrum notch filtering and eigensubspace
filtering. The proposed IMN had an overall good performance, with an improvement in the SDR, and
obtained the highest ISR. This experiment demonstrates that the IMN achieves better NBI mitigation
performance than the range-spectrum notch filtering and the eigensubspace filtering. It should be
noted that only the ISR and SDR can be used to evaluate the performance of the interference mitigation
for simulated echo.
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Figure 9. Representation in the time–frequency domain. (a) Short-time Fourier transform (STFT) of
the NBI-free pulse. (b) STFT of the simulated NBI-corrupted pulse. (c) STFT after the range spectrum
notch filtering. (d) STFT after the eigensubspace filtering. (e) STFT after the IMN.

Table 3. Comparison for the simulated NBI-contaminated echo.

Range-Spectrum
Notch Filtering

Eigensubspace
Filtering IMN Improvement (%)

ISR (dB) 5.08 5.09 5.32 4.72/4.52

SDR (dB) −11.66 −11.75 −12.32 5.66/4.81

Figure 10 compares the interference mitigation performance of the instantaneous-spectrum
notch filtering, the eigensubspace filtering, and the IMN for the simulated WBI-contaminated echo.
Figure 10a,b show the STFT of the original measured WBI-free echo and the WBI-contaminated echo,
respectively. Figure 10c shows the interference mitigation result of applying the instantaneous-spectrum
notch filtering method. Compared with Figure 10a, an obvious data gap can be observed in Figure 10c,
which indicates severe signal loss. Figure 10d shows the result of applying eigensubspace filtering,
which causes lower signal losses and distortion. Figure 10e shows that after applying the IMN, the
recovered echo looks very similar to the original WBI-free echo. In order to further illustrate the
effectiveness of IMN, the ISR and SDR were utilized to provide a quantitative performance comparison
of the instantaneous-spectrum notch filtering, the eigensubspace filtering, and the IMN, as shown
in Table 4. The last column of Table 4 shows the performance improvement of the proposed IMN.
The three different methods achieved similar ISR, while generally the IMN performance was good,



Remote Sens. 2019, 11, 1654 15 of 26

with an SDR improvement. It is shown that the IMN removes WBI and causes lower signal loss
and distortion, which indicates that the IMN also achieves better interference mitigation than the
WBI-corrupted SAR echo.Remote Sens. 2019, 3, x FOR PEER REVIEW  15 of 26 
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Figure 10. Representation in the time–frequency domain. (a) STFT of the WBI-free pulse. (b) STFT
of the simulated WBI-corrupted pulse. (c) STFT after the instantaneous-spectrum notch filtering. (d)
STFT after the eigensubspace filtering. (e) STFT after the IMN.

Table 4. Comparison for the WBI-contaminated echo.

Instantaneous-Spectrum
Notch Filtering

Eigensubspace
Filtering IMN Improvement (%)

ISR (dB) 5.47 5.49 5.49 0.37/0.00

SDR (dB) –9.62 –10.22 –12.77 32.74/24.95

4.2. Results of the Measured NBI-Corrupted Data

Figure 11 shows two measured NBI-contaminated echoes in the time–frequency domain.
The echoes were collected by an X-band airborne SAR working in the strip mode. It can be seen that
the NBIs were concentrated into a few frequency bins. The NBIs appear as bright stripes superimposed
onto the useful target signal. Before applying the mitigation algorithms, it is necessary to identify
whether there is interference in each individual pulse. Figure 12 shows the detection probabilities of
the SAR pulses via utilizing the IDN. The pulses whose detection probabilities were larger than the
threshold (red line) can be identified as the NBI and the threshold was set to 0.5. Figure 13a shows the
imaging result without interference mitigation. It can be seen that the NBIs blurred the SAR imaging
result, and the magnitude of NBI varied with azimuth time. Because interference was not matched with
the echoes, the interference signal did not accumulate by applying matched filtering. Interference also
had stronger energy, so it would appear in the original range-azimuth bin, while also being continuous
along the time bins. Therefore, interference looks like bright lines in SAR images. Figure 13b–d show
the imaging results after applying the range-spectrum notch filtering, the eigensubspace filtering, and
the IMN, respectively. These three methods can achieve good focusing quality, where the villages and
farms can be seen clearly. In order to further illustrate the effectiveness of IMN for the NBI, the AG,
MSD, and GLD were utilized to evaluate the SAR image quality, and the results are shown in Table 5.
Because there was no no-return area in the scene, the MNR was not utilized here. It is shown that
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the IMN outperformed the range-spectrum notch filtering and eigensubspace filtering in terms of all
evaluation metrics. The target edge and contrast in the SAR imaging result following IMN was clearer,
which demonstrates the performance improvement of the proposed method.
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Figure 11. The representation of the (a) 500th and (b) 1000th measured NBI-contaminated echoes in the
time–frequency domain.
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Figure 12. The detection probability of radar pulse before NBI mitigation, where the red line represents
the threshold.
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filtering, and (d) the SAR image after applying the IMN.

Table 5. The SAR image quality evaluation for the measured NBI-contaminated data.

Range Spectrum
Notch Filtering

Eigensubspace
Filtering IMN Improvement (%)

AG 4.926 4.974 5.288 7.35/6.31

MSD 0.049 0.050 0.052 6.12/4.00

GLD 41.561 41.941 44.524 7.13/6.16

4.3. Results of the Measured WBI-Corrupted Data

Figure 14 shows an original measured WBI-contaminated echo in the time–frequency domain.
The echo was collected by the C-band, dual-pol Sentinel-1A over a mountainous area of western
China with the TOPS mode on 25 August 2017. Figure 14a shows the STFT of the WBI-corrupted
echo before de-ramping, and the bright vertical line is the WBI signal occupying the entire frequency
band. Figure 14b shows the STFT of the WBI-corrupted echoes after de-ramping, and the original WBI
signal becomes a Chirp Modulated Wideband Interference (CMWBI). Figure 15 shows the detection
probabilities of the SAR pulses by utilizing the IDN, the pulses whose detection probabilities are larger
than a threshold (red line) can be identified as WBI signals and the threshold is set to 0.5. Figure 16
shows the imaging result using TOPSAR mode [48] without interference mitigation processing. It can
be seen that there are many horizontal bright lines along the range time, which obscure the targets.
In order to illustrate the effectiveness of the IMN, the imaging results after different interference
mitigation algorithms are shown in Figure 17. Figure 17a shows the zoomed version of the imaging
result within the blue box in Figure 16a. The town and roads can be clearly seen from the zoomed
result marked by the orange box in Figure 17a. Figure 17b–d show the imaging results after the
instantaneous-spectral notch filtering, the eigensubspace filtering, and the IMN, respectively. It can be



Remote Sens. 2019, 11, 1654 18 of 26

seen that the WBI signals in the left part have been removed. The town and roads can also be clearly
seen with less signal distortion. Moreover, the SAR images marked with green rectangle and red
rectangle shown in the left part indicate that these three different methods had similar performances, in
which the resulting images were in good focus. To better verify the performance of these three methods,
the MNR, AG, MSD, and GLD were utilized for evaluating the SAR image quality, as shown in Table 6.
The MNR results for different interference mitigation methods were calculated using the imaging
result marked with a blue rectangle and red rectangle, shown in Figure 17. It can be seen that the IMN
achieved a better performance than the instantaneous-spectrum notch filtering and the eigensubspace
filtering. Meanwhile, the AG, MSD, and GLD of the IMN were larger than the other two methods,
which indicates that the targets had more clear edges and better contrast in the SAR imaging result by
applying the IMN. Moreover, since the eigensubspace filtering suffers from a higher computational
burden because it involves the eigendecomposition, the IMN can decrease the computational burden
in the testing stage. The instantaneous-spectral notch filtering, the eigensubspace filtering, and the
IMN take about 61.30 s, 1287.02 s, and 61.27s to mitigate WBIs on this measured SAR data, respectively.
Figure 16b shows the imaging results after the IMN. Compared with Figure 17, the targets under the
interference coverage can be clearly seen in Figure 16b.
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Figure 14. The representation of the measured WBI-contaminated echoes in the time–frequency
domain. (a) The STFT of the WBI-contaminated echo before de-ramping, and (b) the STFT of the
WBI-contaminated echo after de-ramping.
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Figure 15. The detection probability of radar pulse before WBI mitigation, where the red line represents
the threshold.
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Table 6. SAR image quality evaluation for the measured WBI-contaminated data.

Instantaneous Spectrum
Notch Filtering

Eigensubspace
Filtering IMN Improvement (%)

MNR (dB) −15.03 −15.43 −15.72 4.59/1.88

AG 6.25 6.41 6.69 7.04/4.37

MSD 0.052 0.053 0.055 5.77/3.77

GLD 50.407 51.747 53.875 6.88/4.11

To further evaluate the performance of the IMN, we performed a WBI mitigation experiment for
more complicated WBI. This dataset was acquired by European Space Agency (ESA) C-band, dual-pol
Sentinel-1B over an area in northeastern Germany on 8 May 2019. Figure 18 shows two measured
WBI-contaminated echoes in the time–frequency domain, in which the WBIs are no longer simple lines
but have more structure. Figure 19 shows the detection probabilities of the SAR pulses by utilizing
the IDN, the pulses whose detection probabilities were larger than the threshold (red line) can be
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identified as the WBI signals and the threshold was set to 0.5. Figure 20a shows the imaging result
using TOPSAR mode [48] without interference mitigation processing. It is shown that interferences
obscure the targets completely. Figure 20b–d show the imaging results after the instantaneous-spectral
notch filtering, the eigensubspace filtering, and the IMN, respectively. It can be seen that the WBI
signals were eliminated by all three mitigation methods, and the ships masked by interference were
recovered. Moreover, the zoomed version of the SAR result marked with an orange rectangle is shown
in the right part of Figure 20. It can be seen that there are ships marked with a red ellipse that were
not well-focused by using the instantaneous-spectral notch filtering and the eigensubspace filtering.
The MNR, AG, MSD, and GLD were utilized for evaluating the SAR image quality, as shown in Table 7.
The MNR results for different interference mitigation methods were calculated using the imaging
results marked with orange and blue rectangles shown in Figure 20. It can be seen that the IMN
achieved a better performance than the instantaneous-spectrum notch filtering and the eigensubspace
filtering with the AG, MSD, GLD, which indicates that the targets had clearer edges and better contrast
in the SAR imaging result when applying the IMN. Meanwhile, the MNR of IMN was smaller than
other interference mitigation methods, which indicates that the quality of the SAR image after IMN
had a better recovery of system image response. Moreover, the instantaneous-spectral notch filtering,
eigensubspace filtering, and the IMN took about 86.41 s, 190.37 s, and 81.64 s to mitigate WBIs on this
measured SAR data, respectively. Therefore, the proposed IMN has better interference mitigation
performance for WBI.
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Figure 18. The representation of two measured WBI-contaminated echoes in the time–frequency domain.

Remote Sens. 2019, 3, x FOR PEER REVIEW  21 of 26 

 

interferences obscure the targets completely. Figures 20(b), (c), and (d) show the imaging results after 
the instantaneous-spectral notch filtering, the eigensubspace filtering, and the IMN, respectively. It 
can be seen that the WBI signals were eliminated by all three mitigation methods, and the ships 
masked by interference were recovered. Moreover, the zoomed version of the SAR result marked 
with an orange rectangle is shown in the right part of Figure 20. It can be seen that there are ships 
marked with a red ellipse that were not well-focused by using the instantaneous-spectral notch 
filtering and the eigensubspace filtering. The MNR, AG, MSD, and GLD were utilized for evaluating 
the SAR image quality, as shown in Table 7. The MNR results for different interference mitigation 
methods were calculated using the imaging results marked with orange and blue rectangles shown 
in Figure 20. It can be seen that the IMN achieved a better performance than the instantaneous-
spectrum notch filtering and the eigensubspace filtering with the AG, MSD, GLD, which indicates 
that the targets had clearer edges and better contrast in the SAR imaging result when applying the 
IMN. Meanwhile, the MNR of IMN was smaller than other interference mitigation methods, which 
indicates that the quality of the SAR image after IMN had a better recovery of system image response. 
Moreover, the instantaneous-spectral notch filtering, eigensubspace filtering, and the IMN took about 
86.41 s, 190.37 s, and 81.64 s to mitigate WBIs on this measured SAR data, respectively. Therefore, the 
proposed IMN has better interference mitigation performance for WBI. 

 
Figure 18. The representation of two measured WBI-contaminated echoes in the time–frequency 
domain. 

 
Figure 19. The detection probability of radar pulse before WBI mitigation, where the red line 
represents the threshold. 

Time Bins

Fr
eq

ue
nc

y 
Bi

ns

20 40 60 80 100 120

20

40

60

80

100

120

Time Bins

Fr
eq

ue
nc

y 
Bi

ns

20 40 60 80 100 120

20

40

60

80

100

120

0 500 1000 15000

0.2

0.4

0.6

0.8

1

1.2

Pulse Index

D
et

ec
tio

n 
Pr

ob
ab

ilit
y

Figure 19. The detection probability of radar pulse before WBI mitigation, where the red line represents
the threshold.
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Table 7. SAR image quality evaluation for the measured WBI-contaminated data.

Instantaneous Spectrum
Notch Filtering

Eigensubspace
Filtering IMN Improvement (%)

MNR (dB) –0.43 –0.60 –0.64 48.84/6.67

AG 3.55 3.21 3.83 7.89/19.31

MSD 0.013 0.012 0.015 15.38/25.00

GLD 29.16 26.20 30.85 5.80/17.75

5. Discussion

In this paper, an interference detection algorithm (IDN) based on DCNN and an interference
mitigation algorithm (IMN) based on ResNet were proposed. Compared with previous interference
detection algorithms, the IDN utilizes the DCNN to capture the characteristic differences between
interference and useful target signal. DCNN has a strong feature extraction ability and is widely
applied in the field of image classification. Therefore, it performs well in identifying whether there is
interference in echoes. Compared with previous interference mitigation algorithms, the IMN does not
need to construct a suitable filter and separate the interference in a specified domain. Instead, it utilizes
ResNet to extract useful features of the target signal and reconstruct this signal. ResNet is designed to
solve the problem of gradient disappearance within deeper layers of the network and can improve
the network’s ability to extract features. Therefore, the IMN can effectively eliminate the effects of
interference on an SAR image. One simulated and three measured SAR data were utilized to evaluate
the interference detection and mitigation performance of the IMN. The quantitative results indicate a
performance gain of the proposed IMN over other methods, as well as its ability to retain the phase of
the original signal. Therefore, the IMN can be used in coherent applications like interferometric SAR.
The interference mitigation training set only included NBI, CMWBI, and SMWBI. Therefore, the IMN
can effectively mitigate the above forms of interference for SAR. However, the mitigation performance
may be degraded for some complex forms of interference. In the future, we will include more forms of
interference to improve the performance of the proposed framework.
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6. Conclusions

In this paper, we proposed an interference detection algorithm (IDN) based on DCNN, which
converts the interference detection problem into a two-class classification problem. The network
architecture VGG-16 was utilized to train an interference detector and could precisely identify the
interference in SAR echoes. We also proposed an interference mitigation algorithm (IMN) based on the
deep residual network (ResNet). It extracted the characteristics of the interference and reconstructed
the useful target signal in the time–frequency domain, and mitigated the NBI and WBI signals in SAR
data effectively. The effectiveness was demonstrated on one simulated dataset and three measured
airborne and spaceborne SAR datasets. Moreover, six different metrics, ISR, SDR, MNR, AG, MSD, and
GLD, were adopted to assess the performance of the IMN, as well as range-spectrum notch filtering,
instantaneous-spectrum notch filtering, and eigensubspace filtering. The IMN can extract features of
the useful target signal without the need to design specific feature filters, reducing the complexity of
the resulting interference mitigation algorithm.
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