
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Multi-period and multi-resource operating room scheduling under
uncertainty: A case study
Mohammad Mahdi Vali-Siar, Saiedeh Gholami⁎, Reza Ramezanian
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

A R T I C L E I N F O

Keywords:
Healthcare
Operating room planning and scheduling
Resource constraints
Robust optimization
Genetic algorithm
Constructive heuristic

A B S T R A C T

Efficient planning and scheduling is essential for timely treatment of patients and improving the quality of
operating room services and activities. In the present study, attempts are made to investigate a multi-period and
multi-resource operating room integrated planning and scheduling problem under uncertainty. To this end, a
mixed integer linear programming model has been developed for minimizing the tardiness in surgeries, overtime
and idle time. Constraints related to human resources, equipment, as well as beds in pre-operative holding unit,
recovery unit, ward and intensive care unit are taken into consideration. The durations of surgeries and re-
coveries are assumed uncertain, and a robust optimization approach has been used to manage the uncertainty.
Due to the complexity of the model and the inability to solve large-scale problems, a metaheuristic method based
on the genetic algorithm and a constructive heuristic approach have been proposed. After setting the parameters
of the solution approaches using the Taguchi method, numerical experiments are performed based on various
instances, and the results obtained from solving the mathematical model are compared to the results of the
proposed metaheuristic and heuristic approaches. The results indicate that the proposed methods have a very
good performance and the heuristic approach outperforms the genetic approach because the objective function
of the proposed constructive heuristic is on average, about 19% better than the objective function of the genetic
approach. A case study is also conducted in a hospital. The results obtained from the comparison of the proposed
approaches with the hospital scheduling show that overtime and idle time are significantly improved in the
proposed approaches.

1. Introduction

Hospitals are one of the fundamental elements of the healthcare
industry. They consist of several units, such as a pharmacy, operating
room, recovery unit, blood bank, laboratory, and radiology. Operating
room is one of the most important and expensive units, and besides, it is
a bottleneck resource (Landa, Aringhieri, Soriano, Tànfani, & Testi,
2016). Today, healthcare organizations are under pressure to offer
surgical services at the lowest possible cost, and are facing challenges
such as limited budgets, increasing waiting lists and aging populations
at the same time (Molina-Pariente, Fernandez-Viagas, & Framinan,
2015). The demands for surgery are usually more than its supply, and
this gives rise to long waiting times for patients and leads to reduced
quality of services and dissatisfaction (Aringhieri, Landa, Soriano,
Tànfani, & Testi, 2015). It is estimated that 60–70% of hospital ad-
missions will require operating rooms (Van Essen, Hans, Hurink, &
Oversberg, 2012). Operating rooms are very expensive. Surgical costs
usually account for more than 40% of hospital costs (Denton, Viapiano,

& Vogl, 2007). On the other hand, surgeries account for about 67% of
hospital revenues. Of course, surgeries don’t provide any revenue in
many public hospitals in different countries (Saadouli, Jerbi, Dammak,
Masmoudi, & Bouaziz, 2015).

Inattention to effective management and planning leads to delays,
postponement of surgeries, withdrawal of patients, overtime, and
eventually loss of revenue and decline in quality of treatment
(Vancroonenburg, Smet, & Berghe, 2015). Timely treatment and in-
creased efficiency and productivity in hospitals and operating rooms
require proper management. Operating room planning and scheduling
is one of the important aspects of operating room management which
represents an application of optimization in the field of healthcare.

Operating room scheduling is associated with specific complexities
due to the inherent uncertainties, various constraints and the presence
of different beneficiaries. This issue has been one of the challenging
research topics in the recent decades and years (Landa et al., 2016).

Different resources must be considered for proper scheduling and
planning of operating theaters. Operating rooms, human resources
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(including surgeons, nurses, anesthesiologists, technicians, etc.), sur-
gical equipment and tools, beds needed in preoperative holding unit
(PHU), post-anesthesia care unit (PACU), intensive care unit (ICU) and
ward are the resources that should be accessible and coordinated (Pham
and Klinkert, 2008; Xiang, Yin, & Lim, 2015). According to Weinbroum,
Ekstein, and Ezri (2003), the most important factors in waste of time in
operating rooms are: lack of access to operating rooms 32%, lack of
access to nurses 20%, lack of beds in the post-anesthetic care unit 10%
and lack of access to specialist surgeon 4.7%. Therefore, about 70% of
the waste of times in the operating rooms can be attributed to lack of
coordination between resources and inaccessibility of them.
Jonnalagadda, Walrond, Hariharan, Walrond, and Prasad (2005) found
that the most important reasons for cancellation or delays in surgical
procedures in developing countries include the lack of access to beds in
the recovery unit (15%), problems in PHU (13%) and the lack of access
to nurses (11%). These items demonstrate the importance of the
downstream resources.

As mentioned before, operating room scheduling is associated with
various uncertainties. The most important of which are uncertainty of
the duration of surgery, postoperative length of stay, and arrival of
emergency patients. Uncertainty of the surgery and post-operative
length of stay has a direct effect on scheduling efficiency. The arrival of
emergency patients (in case the resources for elective and emergency
patients are not independent) causes disruptions in the plans.
Uncertainty of the surgery duration can lead to overtime. Also, un-
certainty in the length of stay in the recovery unit, intensive care unit,
or ward may lead to cancellation of surgeries due to the shortage of
beds (Neyshabouri and Berg, 2017).

Decisions made for management and planning of operating theaters
are usually divided into three hierarchical levels: strategic, tactical, and
operational. These items are fully described in the review articles in this
area (Cardoen, Demeulemeester, & Beliën, 2010; Guerriero & Guido,
2011; May, Spangler, Strum, & Vargas, 2011) and we skip explaining
them here. In the present paper, we focus on the operational level.
Operating room scheduling at the operational level generally includes
two main steps: the advance scheduling and allocation scheduling. The
first step involves selection of patients from the waiting lists and as-
signment of specific date and operating room to them during the
planning horizon. The second step provides a precise sequence of sur-
gical procedures (determining start and finish times), along with allo-
cation of resources to each patient. The former case is sometimes called
operating room planning, and the latter is sometimes called operating
room scheduling. In the literature, these two steps are presented as si-
multaneous (integrated) or hierarchical. Hierarchical scheduling re-
duces the quality of the acquired schedules due to the interdependence
of the advance scheduling and allocation scheduling (Cardoen,
Demeulemeester, & Beliën, 2009). Therefore, the interest in integrated
planning and scheduling is increasing among researchers (Molina-
Pariente et al., 2015; Roland, Di Martinelly, Riane, & Pochet, 2010; Van
Huele and Vanhoucke, 2014). In this paper, an integrated approach has
been used.

Many researchers distinguish between three management policies
for the planning and scheduling of the operating rooms. Guerriero and
Guido (2011) describe these three types of management policies in-
cluding open, block, and modified block policies. In the block strategy,
a set of time blocks are allocated to specific surgical specialties. In open
strategy, time blocks do not belong to certain surgical groups and sur-
gical procedures are planned based on the requests of surgeons. Open
strategy performs significantly better than block strategy (Fei, Chu,
Meskens, & Artiba, 2008; Van Huele and Vanhoucke, 2014). The
modified block strategy is similar to the block strategy, except that
some time blocks remain open in the schedule in order to provide more
flexibility.

In this paper, the multi-period operating room planning and sche-
duling problem is studied with a comprehensive view of resources.
Constraints on the number and availability of resources related to the

surgical processes before and after surgery, including human resources
(surgeons, anesthesiologists and nurses), beds of recovery unit, in-
tensive care unit and ward as well as the required equipment and tools
are taken into account. The uncertainty in the duration of surgery, re-
covery, and post-operative length of stay are also taken into con-
sideration. Scheduling is done for elective patients under open sche-
duling strategy. A mixed integer linear programming model (MILP) has
been developed and three criteria are considered for optimization: Idle
time and overtime are considered as criteria based on hospital point of
view, while the tardiness in surgery is a criterion based on patient point
of view. Due to the complexity of the problem, a constructive heuristic
(CH) algorithm and a hybrid genetic algorithm (GA) are proposed to
solve medium-scale and large-scale problems. A case study is also
conducted to investigate the efficiency of the mathematical model and
the proposed algorithms in real conditions. The contributions of this
paper are as follows:

• Developing a new mixed integer linear programming (MILP) mod-
el for multi-period integrated operating room planning and sche-
duling.
• Considering different units in the operating theater, including the
PHU, the operating rooms, PACU, the intensive care unit and the
ward.
• Providing a comprehensive view on the resources needed at the
operating theater, including human resources, equipment and beds,
and consideration of the limited number and availability of them for
the first time.
• Considering uncertainty in the duration of surgery and recovery and
using a robust optimization approach to manage uncertainty. Also,
paying attention to the uncertainty in post-surgery length of stay.
• Proposing a new constructive heuristic algorithm for solving the
problem.
• Implementing experimental analysis to compare the proposed ap-
proaches.

The remainder of this paper is classified as follows: Section 2 pro-
vides a review of relevant literature. Section 3 describes the problem
and provides the mathematical model. Section 4 explains the proposed
solution methods. Section 5 presents the computational results and
analysis. A case study is presented in Section 6. Finally, Section 7
concludes and summarizes the study.

2. Literature review

Operating room planning and scheduling has been the subject of
extensive studies. Review papers conducted by Cardoen et al. (2010),
Guerriero and Guido (2011) and May et al. (2011) provide compre-
hensive literature review in this field. Accordingly, here we will review
studies that are directly related to the subject of this article.

In the context of deterministic operating room scheduling, Jebali,
Alouane, and Ladet (2006) introduced a two-stage approach consisting
of sequencing and allocation for operating room scheduling. The au-
thors proposed two mixed integer programming models. Constraints on
resources such as surgeons, equipment and beds of recovery and in-
tensive care units were taken into account. Roland et al. (2010) in-
vestigated the multi-period operating room planning and scheduling
under the open scheduling strategy. They provided a mixed integer
programming model. Constraints on access to renewable resources
(including nurses, surgeons and some tools and equipment), as well as
non-renewable resources (materials and some tools) were included in
the problem, but the constraints of other units of the operating theater,
such as the recovery unit, were not considered. The authors used ge-
netic algorithm to solve the model. In a similar study, Silva, de Souza,
Saldanha, and Burke (2015) studied the operating room scheduling
with consideration of the similar factors, but on a daily basis. In their
problem, a specialist human resource can simultaneously participate in

M.M. Vali-Siar et al. Computers & Industrial Engineering 126 (2018) 549–568

550



more than one surgery. Vijayakumar, Parikh, Scott, Barnes, and
Gallimore (2013) investigated the integrated and multi-period oper-
ating room planning and scheduling with consideration of limitations in
access to nurses, surgeons and equipment. However, constraints related
to other operating room units, including the recovery and intensive care
units were not taken into account. They presented a mixed integer
linear programming model with the objective of maximizing the
number of surgical operations. They developed a heuristic method to
solve the model. Meskens, Duvivier, and Hanset (2013) focused on
daily scheduling of surgical operations with regard to access to human
resources, their interdependence and preferences. They proposed a
mathematical model with consideration of the mentioned items, as well
as limitations on the recovery unit beds and the required equipment
and tools. A similar study was also conducted by Wang, Meskens, and
Duvivier (2015), in which mixed integer programming and constraint
programming were employed. Considering the similarity between the
daily operating room scheduling and the flexible job shop scheduling
problem with limited multiple resources Xiang et al. (2015) developed
a mathematical model with the aim of minimizing the duration of all
surgeries. The flow of patients was taken into account in the pre-op-
erative, intra-operative and post-operative stages. They used an ant
colony optimization algorithm to solve the problem. Molina-Pariente
et al. (2015) studied the multi-period integrated operating room plan-
ning and scheduling. They proposed an integer programming model
with consideration of surgeons and assistant surgeons, and used an i-
terative constructive method to solve the problem. The authors as-
sumed that the duration of the surgery depends on the experience of the
surgical team, which can consist of a corresponding surgeon and an
assistant surgeon. Vali Siar, Gholami, and Ramezanian (2017) studied
the scheduling and re-scheduling problem of surgical operations with
consideration of the constraints on access to surgeons and beds in the
PHU and recovery units. They developed a mixed integer programming
model and solved the problem with the rolling horizon approach.

In the aforementioned studies, the operating room scheduling pro-
blem is studied in the deterministic mode. As discussed in the in-
troduction, uncertainty is inherent in the operating room planning and
scheduling problem, and also exists in many factors such as the dura-
tion of surgery. In the following, we discuss the related articles that
address the uncertainty in the duration of surgical processes.
Researchers often use stochastic programming and robust optimization
approaches to manage the uncertainty in the duration of surgical pro-
cedures in the operating room scheduling (Addis, Carello, Grosso, &
Tànfani, 2016). Denton et al. (2007) considered the uncertainty in
duration of surgeries and presented a two-stage stochastic program-
ming model for the operating room scheduling problem. Taking into
account the uncertainty in the duration of surgeries, Min and Yih
(2010) used the two-stage stochastic programming approach for oper-
ating room scheduling in a multi-day planning horizon. They used the
sample average approximation method to solve the problem. Lee and
Yih (2014) modeled the operating room scheduling problem, with
consideration of constraint on access to recovery beds, as a flexible job
shop scheduling problem. They used fuzzy numbers for considering
uncertainty in the duration of surgeries and solved the problem using a
two-stage decision process and a genetic algorithm. Jebali and Diabat
(2015) used two-stage stochastic programming for scheduling elective
surgeries in a multi-day planning horizon with consideration of con-
straints of three hospital resources: operating rooms, beds in the in-
tensive care unit (ICU) and beds in the ward. They considered the un-
certainty of the surgery duration and the length of stay in the intensive
care unit and the ward. The authors used the sample average approx-
imation technique to solve the stochastic model. Two-stage stochastic
programing has also been used in the paper of Heydari and Soudi
(2016) in which the arrival of emergency patients was also taken into
account.

Latorre-Núñez et al. (2016) studied the operating room planning
and scheduling problem with consideration of constraints related to the

required resources in the operating rooms and the recovery unit and the
possibility of arriving emergency patients. They proposed an integer
programming model a genetic-based metaheuristic method to provide a
solution to the model. They also converted their model into a constraint
programming model and ultimately compared the solutions obtained
from the solution methods. Addis et al. (2016) provided an approach for
the operating room scheduling and re-scheduling problem under un-
certain surgery duration. They used the rolling horizon approach to
deal with disruptions in scheduling and re-schedule the surgeries. The
mathematical model presented by the authors was related to the op-
erating room planning i.e. assigning days and operating rooms to pa-
tients. They presented the robust optimization of the problem using the
robust optimization approach provided by Bertsimas and Sim (2004).
Neyshabouri and Berg (2017) investigated the operating room planning
problem with regard to uncertainties related to the duration of surgery
and length of stay in the intensive care unit. They used the two-stage
robust optimization approach based on the Bertsimas and Sim (2004)
approach to consider the uncertainties. The authors used the column
generation approach to solve the problem. The robust optimization
technique is also used by Marques and Captivo (2017). In this paper,
the authors considered the uncertainty in the surgery duration. Table 1
shows a summary of the articles related to the subject of the present
study.

According to the literature and Table 1, many authors have not paid
any attention to resources and have considered them unlimited, but this
is not possible in the real world. In other articles some of the resources
as well as their constraints and impacts have been addressed, but for a
comprehensive and realistic planning and scheduling, it is necessary to
take the limited resources into account. In recent years, researchers
have focused on uncertainty in the operating room planning and
scheduling. According to Table 1, more studies are needed in this area,
especially because robust optimization techniques have been used in
limited studies to manage uncertainty. In recent years, some authors
have conducted studies in this field. In general, the cardinality-con-
strained robust optimization approach has rarely been addressed in the
field of healthcare (Addis et al., 2016; Marques and Captivo, 2017).
According to the literature, Addis et al. (2016), Marques and Captivo
(2017) and Neyshabouri and Berg (2017) are among the few re-
searchers that have used this approach for operating room planning and
scheduling.

In order to fill the gaps, in this paper we have tried to consider all
important resources in the operating theater. Uncertainty is considered
in duration of surgery, recovery and length of stay in ICU/ward. Last
but not least, we have developed a novel constructive heuristic algo-
rithm to solve medium and large-scale problems.

In the present study we investigate the integrated multi-period op-
erating room planning and scheduling problem with a comprehensive
view of resources under uncertainty, in order to minimize tardiness of
surgeries, as well as idle time and overtime.

3. Problem description

The surgical procedure for elective patients consists of three main
stages. First, the patient is transported to PHU from the ward, and a bed
is assigned to him/her. The patient stays in this unit until the corre-
sponding nurse checks the patient’s condition and documents and
prepares him/her for surgery. After the necessary measures have been
taken, the patient is transported to the assigned operating room (which
has been prepared for surgery). Most hospitals have operating rooms
with different sizes, features, and applications. Depending on the type
of surgery, a suitable operating room with the necessary operational
features should be assigned. Various resources are needed to perform
surgery in the operating room. The required human resources include
specialized surgeons, nurses (scrub nurse, circulator nurses and nurse
anesthetists), anesthesiologists, and so on. In addition, sterilized tools
and necessary equipment should be available. Obviously, the
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composition of the surgical team and the necessary equipment and tools
depend on the type and characteristics of the surgery. In the operating
room, the patient is first anesthetized by an anesthesiologist and then
the surgery is performed by the corresponding team. After the surgery,
the patient is transported to the post-anesthesia care unit (recovery
unit). A bed is assigned to him/her and is placed under the care of a
nurse anesthetist. After that, in case the patient needs intensive care, he
will be transported to the intensive care unit and a bed is assigned to
him/her. The patient is taken care of and the necessary measures are
taken for him/her and then transferred to the ward after passing the
hospitalization period based on the specialist physician's opinion.
Otherwise, he/she will be directly transported to the ward and will be
discharged at the discretion of the corresponding physician when the
hospitalization period is over. It should be noted that some patients
may not need to be hospitalized and can be discharged shortly after
surgery. Considering that several resources are needed for surgery and
all surgeries are associated with many constraints, effective planning
and scheduling is necessary for operating theaters. In this study, at-
tempts are made to offer an efficient scheduling for reducing operating
room overtime, idle time, and tardiness in surgeries, with consideration
of the available resources and the existing constraints. Fig. 1 shows the
necessary resources and different stages of a surgical procedure. The
dashed arrows show that the patient may not enter the next stage.

In the present study, emergency surgeries are not taken into ac-
count. In reality, emergency surgical operations are often performed in
different operating rooms, which are not used for elective patients. In
addition, different surgeons are selected as corresponding emergency
surgeons in different months and weeks (Augusto, Xie, & Perdomo,
2010). Due to the afore-mentioned reasons, emergency surgeries have
not been taken into account in the present study. We have proposed a
mixed integer linear programing model. The following conditions and
assumptions are taken into account:

1. Time is discretized into 20-min intervals.
2. Each patient is operated at most once during the planning horizon.
3. A specialized surgeon and a suitable operating room are assigned to
each surgery (if the surgery is planned to be done).

4. The team assigned to each surgery consists of a surgeon, an an-
esthesiologist, a circular nurse, a nurse anesthetist and a specified
number of scrub nurses (surgeon assistants).

5. The list of surgical operations as well as other necessary information
are input of the problem.

6. In the PHU and PACU a circular nurse and a nurse anesthetist will be
assigned to each patient respectively. Given that in the intensive
care unit and the ward, one nurse is usually assigned to several or all
the available beds (depending on the unit size), the nurses assigned

to these units are not included in the model.
7. Each surgery has a specific due date which gives priority to patients.

The indexes, parameters and decision variables of the mathematical
model are defined as follows:

Sets
j Index for PHU ( j = 1), operating room ( j = 2) and

recovery unit ( j = 3)
k Index for intensive care unit (k = 1) and ward (k = 2)
p Index for patients requiring surgery; …p P: 1, 2, ,
s Index for surgeons; …s S: 1, 2, ,
o Index for operating rooms; …o O: 1, 2, ,
d Index for days of the planning horizon; …d D: 1, 2, ,
dex Index for extended set of days of the planning horizon (For

considering days exceeding the planning horizon):
…d D: 1, 2, ,ex ex

t Index for time slots during day; …t T: 1, 2, ,
e Index for equipment; …e E: 1, 2, ,
Parameters
RT The last time slot in the regular opening hours (which is

The last time slot that is not considered as overtime)
OT The last time slot in the opening hours (RT plus maximum

allowed overtime hours)
dupj Duration of stage j for patient p
dtp Latest day to perform surgery p (similar to due date in

production scheduling)
OSstd A binary parameter; 1, if surgeon s is not available at time t

on day d; 0, otherwise.
Nutd

c Total number of circular nurses available at time t on day d
Nutd

at Total number of nurse anesthetists available at time t on
day d

Nutd
sc Total number of scrub nurses available at time t on day d

Nutd
as Total number of anesthesiologist available at time t on day

d
Eqetd Total number of available equipment type e at time t on

day d
ep Number of equipment type e required for the patient p
p The number of scrub nurse required for patient p

Bpos A binary parameter; 1, if surgery of patient p can be
performed by surgeon s in the operating room o; 0,
otherwise

Hs
max The maximum number of time slots which surgeon s can

perform surgery in the entire planning horizon

Fig. 1. Stages and resources in performing surgeries.
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Lospk Length of stay of patient p after operation in ICU (k = 1) or
ward (k = 2)

wbp Number of days that patient p stays in the ward before
surgery

Bedj Total number of beds available in PHU ( j = 1) and the
recovery unit ( j = 3)

Bedward Total number of beds available in ward
BedICU Total number of beds available in ICU

dex
ICU Number of patients staying in the ICU on day dex from the

previous planning horizon

dex
ward Number of patients staying in the ward on day dex from the

previous planning horizon
wT Weighted factor for the minimization of tardiness of

surgeries
wO Weighted factor for the minimization of overtime
wI Weighted factor for the minimization of idle time
Decision variables
xpostd A binary variable; 1, if patient p is scheduled in OR o with

surgeon s at time t on day d; 0, otherwise
ypod A binary variable; 1, if patient p is scheduled in OR o on

day d; 0, otherwise
ptdj A binary variable; 1, if phase j of surgical operation of

patient p is scheduled at time t on day d; 0, otherwise
zsps A binary variable; 1, if patient p is assigned to surgeon s; 0,

otherwise
tspj Start time of phase j for patient p
tcpj Finish time of phase j for patient p
v pdex A binary variable; 1, if patient p stays in ward on day dex

(before surgery).
pd kex

A binary variable; 1, If patient p stays in ICU (k = 1) or
ward (k = 2) on daydex

ovtod The overtime of operating room o on day d
idtod The idle time of operating room o on day d

3.1. Deterministic mathematical model

In the mathematical model of this study, three criteria are mini-
mized in the objective function. These criteria include: idle time,
overtime and tardiness of surgeries. The precise modeling of the oper-
ating room planning and scheduling problem may vary considerably
from one hospital and surgery department to another (Riise, Mannino,
& Burke, 2016). In the present study, attempts are made to offer a
comprehensive and generalized modeling with maximum applications
in different circumstances.
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The objective function (1) consists of three parts. The first part
minimizes the tardiness of surgeries. The second and third parts are
related to minimization of overtime and idle time of the operating
rooms respectively. Constraint (2) states that at each time slot, a
maximum of one operating room and one surgeon can be assigned to
each patient (surgery) during the planning horizon. Constraint (3) en-
sures that a maximum of one surgery can be performed in an operating
room on each day. Constraint (4) ensures that each surgeon can per-
form one surgery at a given time slot per day. Constraint (5) states that
no surgery can be performed after the last time slot that ORs are per-
mitted to be active. Constraint (6) ensures that each patient can be
assigned to one operating room and is scheduled at most once during
the planning horizon. Also, this constraint allows a surgery of a patient
only if he/she can stay in the ward wbp days before surgery. Constraints
(7) and (8) contribute to determination of variables ypod and zsps that are
required in the objective function and the other constraints. Constraint
(9) ensures that sufficient number of time slots is assigned to each
surgery according to its duration. Constraint (10) ensures that the
surgeon assigned to a surgery is available at the scheduled time and
day. Constraint (11) ensures that the surgeon has the specialty for
performing the surgery, and the assigned operating room is suitable for
the surgery. Constraints (12) and (13) help determine the value of
variable ptdj that is required in other constraints and necessary for
determining the correct schedule and sequence between PHU, oper-
ating room, and PACU. Constraint (13) states that if the surgery of
patient p̄ is scheduled on day d̄ =( )y 1pod¯ ¯ then ptdj¯ ¯ ¯ can be 0 or 1. It
means that ptdj¯ ¯ ¯ is surely 0 for the days other than d̄. Constraint (14)
states that the total number of assigned time slots at each stage is suf-
ficient with regard to the associated duration. Following the explana-
tions presented for constraint (13), if the surgery of patient p̄ is
scheduled =( )y 1pod¯ , ptdj¯ must be equal to 1 for a day d, then based on
constraint (13) d should be equal to d̄, because ptdj¯ ¯ ¯ is zero for the other
days. So, staying in the PHU, performing surgery, and staying in the
PACU are sequenced and performed on one single day that is obviously
logical. Constraint (15) is related to the sequencing of afore-mentioned
three stages, and states that the start time of each stage is equal to finish
time of the previous stage; that is, there is no waiting time between two
consecutive stages. This constraint guarantees that the stage related to
the surgery (j=2) starts after finishing the stage related to PHU (j=1),
and also recovery (j=3) starts after completion of surgery. Constraints
(16) and (17) determine the start and finish times for each stage re-
spectively. Constraint (18) warrants that the difference between the
start and finish time at each stage is equal to the assigned time slots.
Constraint (19) ensures that, at each time slot on a given day, the total
number of patients staying in the PHU or PACU should not exceed the
number of beds available in these units. Constraint (20) determines the
days that patient stay in the ward before surgery. Constraints (21) and

(22) determine the days in which the patients stay in ward or ICU after
the surgery. Considering the capacity of ICU and ward and the number
of patients staying in these units from the previous planning horizons,
constraints (23) and (24) limit the number of patients who can stay in
the ICU and ward on each day. Constraints (25)–(29) are related to res
the limitations of on the number of nurses, anesthesiologists and
equipment. Constraint (30) limits the maximum number of time slots
which a surgeon can perform surgery during the planning horizon.
Constraints (31) and (32), compute the idle time and overtime time of
each OR on each day. Finally, constraint (33) delineates the type and
sign of decision variables. +I denotes the set of positive integer num-
bers.

3.2. The model under uncertainty

In the present study, the durations of surgery and recovery are
considered uncertain in order to make the conditions as realistic as
possible. We have applied a robust optimization approach. The main
reason for using this approach is that it is very difficult to obtain and
construct a probability distribution in most of the times. On the other
hand, the probability distribution may not be appropriate for building
scenarios in the short term planning. In other words, the probability
distribution of surgical and recovery durations for a small group of
patients in the next week may be completely different from the prob-
ability distribution obtained using data from several years. The robust
optimization method provides tools for obtaining solutions that are
protected against uncertainty. This feature is very important in the field
of healthcare, including operating room planning, because planning
without regard to uncertainty would have serious impacts on the health
of patients. In two-stage stochastic programming, evaluation of the
second stage is required for each scenario, and if the number of sce-
narios is high, solving issues may become problematic in terms of
tractable and intractable solution methods. The risk-averse nature of
robust optimization method makes it an appropriate framework be-
cause it inherently caters towards patient safety and focuses on high-
quality care and treatment (Neyshabouri and Berg, 2017).

In order to deal with uncertainty, in this section, the robust model is
presented based on the robust optimization approach proposed by
Bertsimas and Sim (2004). In the model described in Section 3, con-
straints (9) and (14) include uncertain parameters and can be rewritten
as follows:

x du zs p
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s

ps2
(34)

du y p j,
t d

ptdj pj
o d
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Now, the formulation provided by Bertsimas and sim (2004), can be
used to extract the robust formulation of these two constraints. Here,
dupj and dupj are nominal values and the maximum deviation from the
nominal value, respectively. pj which is the budget of uncertainty is
denoted by j (in other words, it is the same for all patients) and ac-
cording to the constraints we have j [0, 1]. The constraints (36)–(41)
are robust counterparts of constraint (34):
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In the above constraints, zp and qp are the variables required to build
the robust counterpart. The robust counterpart of constraint (35) is also
written via constraints (42)–(47) according to the formulation provided
by Bertsimas and Sim (2004).

+ +du y z q p j,pj
o d

pod j pj pj
t d
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u p o d0 , ,pod (47)

In the above constraints, zp, qp and upod are robust variables. Of
course, the constraints (38), (41), (44) and (47) can be removed be-
cause the variables are binary and will never be negative.

4. Solution methods

In this section, the complexity of the problem is addressed, and then
the proposed solution methods are described. In this paper, a meta-
heuristic based on genetic algorithm, and also a constructive heuristic
algorithm are developed.

4.1. The problem complexity

The proposed mixed integer programming model discussed in
Section 3 is based on the model proposed by Vijayakumar et al. (2013).
They studied the scheduling of elective patients considering operating
rooms, surgeons and nurses. In detail, the assignment of patients to
operating rooms, days and surgeons and determining the start and
finish times of surgeries are the decisions made in their model. If we
omit our decision variables and constraints related to considering PHU,
PACU, ICU and ward and objectives associated to minimization of idle
time and overtime, the problem can approximately be reduced to the
one proposed by Vijayakumar et al. (2013) and all the mentioned de-
cisions are made in our model too. Vijayakumar et al. (2013) have
expressed that their proposed model is NP-hard via comparing their
problem with the dual bin packing problem. Therefore, the problem
presented in this paper which has more decision variables and con-
straints and has considered other stages of operating theatre is NP-hard
too. In addition, operating room scheduling problem considering dif-
ferent stages can be seen as a flexible flow-shop scheduling problem
(Latorre-Núñez et al., 2016), which is actually an NP-hard problem
(Gupta, 1988). Our preliminary tests suggest that the MILP model was
able to solve the problems up to 20 patients, 5 operating rooms, 5
surgeons and a planning horizon of 6 days. The computational tests are
performed on a computer with 8 GB of RAM and an Intel (R) Core (TM)
i72630QM, 2 GHz CPU, running on Windows 8.1 (64-bit), in a suitable
CPU time. The mentioned problem instances are not acceptable in
comparison with real world problems, on the other hand, it is necessary
to create efficient operating room schedules in reasonable CPU times.
Therefore, heuristic and metaheuristic solution methods are needed to
solve large-scale problems. In the following, we introduce the proposed
solution methods.

4.2. Genetic algorithm

The genetic algorithm was derived from research on cellular auto-
mata in the 1970s and was first introduced by Holland (1975). As its
name implies, this algorithm is inspired by biological evolution. Genetic
algorithms are a popular class of evolutionary algorithms and utilize
some rules derived from evolutionary biology including crossover,
mutation and selection (Roland et al., 2010). GA is a constructive and
population-based algorithm. In this algorithm, each candidate solution
is shown by a chromosome. In the other words, each chromosome is a
representation of a candidate solution. The solution representation
differs from a problem to another. The population of GA consists of
chromosomes and in an iterative process the population evolves to-
wards a higher quality population. The initial step of the algorithm
includes generating a population randomly (POP) containing a specific
number (npop) of individuals (solutions). In each iteration, the quality of
the individuals is evaluated via fitness function. In order to evolve the
population, in an iterative process, the algorithm implements crossover
and mutation operators on a certain percentage of individuals to obtain
higher-quality individuals. The function of crossover operator is to in-
herit some characteristics of the two parents to generate the offsprings
or children. Also, a certain number of individuals are affected by mu-
tation. This operator acts on a single individual in a way that one or
more genes of the chromosome of individuals are mutated (Talbi,
2009). In the last step of each iteration the algorithm select npop in-
dividuals which have better quality based on fitness function values and
then the next iteration starts. The algorithm is repeated until a stopping
criterion is met which can be a CPU time limit or reaching to a specific
number of iterations. The steps involved in the implementation of the
proposed genetic algorithm are discussed below.

4.2.1. Solution representation
Each solution (population member) is represented by three un-

correlated chromosomes as =I µ( , , ), where is the list of surgeries
along with the day assigned to them. and µ indicate the operating
rooms and surgeons assigned to the surgeries respectively. A similar
approach is used in Roland et al. (2010). The solution is represented as
follows:
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The couple p d( , )i i of means operation of patient pi is scheduled on
day di. The operating room oi and surgeon si are also determined by
and µ respectively. The surgical operations on a given day will be ar-
ranged according to the order of surgeries determined in . For ex-
ample, assume that 6 patients exist in the waiting list. The planning
horizon has 3 days, the number of operating rooms is 2, and the number
of surgeons is 3. A generated solution can be represented as Fig. 2. For
example, this figure shows that patient 4 should be operated on day 2 in
the operating room 2 by surgeon 1.

4.2.2. Generating initial population
The initial population in the genetic algorithm is usually generated

randomly, but sometimes, due to the existence of numerous constraints,
to avoid generation of too many non-feasible solutions and increase the
convergence rate of the solutions, heuristic algorithms are used. The
heuristic algorithm used in this study acts as follows: at first, surgical
operations (a total of P surgeries) are randomly arranged. Then,

Fig. 2. Solution representation of the proposed genetic algorithm.
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according to the specialties of surgeons specified in the matrix Bpos,
surgeons are randomly assigned to the surgeries. The day of each sur-
gery is randomly selected among the days that the assigned surgeon is
available in the hospital considering matrix OSstd. In addition, the
length of stay in the hospital before surgery should be taken into con-
sideration. For each surgery, matrix Bpos is used to randomly assign an
operating room among all of the suitable operating rooms, provided
that the total amount of time used in that operating room on the as-
signed day (Cons time_ o di i), plus the duration of the intended surgery
(dui2), do not exceed the total time allowed of the operating room (OT ).
Accordingly, the initial solution generation process is supposed to
provide feasible solutions as much as possible. Using this process, the
generated population size should be as large as npop. The pseudocode of
this algorithm is presented in Fig. 3.

4.2.3. Decoding and feasible maker procedures
As indicated in the solution representation structure, the time al-

located to surgical operations is not specified in the structure. In this
research, a heuristic algorithm is used to allocate the solutions to the
time axis. This algorithm is, in fact, a feasible maker procedure that
tests different constraints to avoid generation of infeasible solutions as
much as possible. Some patients may not be operated due to unavail-
ability of resources on the assigned day and be canceled. If the neces-
sary conditions are provided for each patient, depending on the as-
signed day and operating room, the vacant time slots (starting from the
first vacant time slots) will be assigned to the surgery in question. The
pseudocode of the described heuristic algorithm is presented in Fig. 4.

As can be observed in Fig. 4, in an iterative process, all p( ) patients
are considered and each surgery will be scheduled considering the input
data from the step of generating random solutions, provided that it is
possible due to different constraints. If a surgery is to be scheduled, it
will be registered in the matrix Scheduleodt which is a three dimensional
(lengths of dimensions are O, D and OT respectively) matrix and all of
its elements are initially zero. Then in each iteration, the relevant ele-
ments will be assigned to a surgery that should be scheduled based on

its assigned day, operating rooms and time slots. The purpose of up-
dating the status of the resources in Fig. 4 is to change the status of the
surgeon to unavailable while he/she performs a surgery, reduce the
number of available anesthesiologists, nurses and equipment based on
the amount used, and finally update the number of beds available in
PHU, recovery, intensive care unit and ward according to the time or
days assigned to the patients. Another point is that the time index
T index( _ )od indicates the time slot that a surgery can start from. In-
itially, the value of this index is 1 for all days and all operating rooms
and is updated during the implementation of the heuristic algorithm.

4.2.4. Evaluation
The value of the solutions generated at each stage should be in-

vestigated by a fitness function. The fitness function used in this re-
search is the same as the objective function of the problem which is as
follows:
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4.2.5. Parent selection
In this paper, the roulette wheel selection is used for parent selec-

tion. In this method, the following selection function is used:

=P e _Costs Worst Cost( / ) (50)

Generating random solutions 
Input: list of patients who require surgery, the number of days of the planning horizon, matrix posB

, matrix stdOS , data of patients’ staying in ward before surgery and staying in the ICU/ward after 

surgery, the duration of surgeries, matrix of consumed time odtimeCons _
output: initial population with size of npop (based on the structure of solution) 
Begin

Step 0. 
sort patients randomly. 
Step 1.
for i=1 to P do

select a surgeon randomly using matrix posB and assign to patent i ( is ).

select an operating room randomly using matrix posB and assign to patent i ( io ). 

select a day randomly using matrix stdOS and assign to patent i ( id ). (For Patients who need 

to stay in ward before surgery 1ii wabd .
while OTdutimeCons ido ii 2_ do

repeat above steps.
end
update matrix of consumed time. 

end
end
report generated random solution.

Fig. 3. Pseudo-code of generating initial population.
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where the parameter is adjustable and is often selected in such a way
that the probability of the first half of the population members is about
0.8 (at first the population is ranked according to the fitness function,
and then the above function is used. therefore the first half of the po-
pulation is actually the first half of the ranked population).

4.2.6. Operator
In this section, two operators (crossover and mutation operators)

used in the proposed genetic algorithm are described.

4.2.6.1. Crossover. The parents selected by the roulette wheel selection
procedure are used to generate new members by the Crossover
operator. This operator is applied to a certain number of population
members (adjustable), and a new member is generated in each stage
according to the mechanism described below.

In the present study, partially mapped (PMX) crossover is used
(Buckles, Petry, & Kuester, 1990). This operator, first randomly selects
two numbers to specify the crossing locations. The alleles of the first
parent that fall between the two crossover sites are copied into the same
positions of the offspring. The positions of other alleles of the offspring
are determined by the second parent according to a two-step process.
First, the alleles of the second parent which are not within the crossing
sites are copied to the corresponding positions of the offspring. Next, for
each allele of the second parent within the crossing sites, the position of
allele from first parent that has displaced it is determined in the second
parent and the allele is placed in the same position in the offspring.

In our paper, the described operator is applied to patients (Part 1 of
the first chromosome in each solution) and the genes of other chro-
mosomes are also determined simultaneously. In the other words, the
day, the surgeon and the operating room assigned to each patient are
copied from the parent who has entered the allele related to patient to
the offspring chromosome. Fig. 5 shows how the crossover works.
Considering this figure, surgeries 7, 9, 2 and 6 (number of patients and
their corresponding information including assigned day, operating
room and surgeon) are directly copied from the first parent into the
same positions of the offspring. Surgeries 8, 1 and 5 are copied from the
second parent into the same positions of the offspring. Surgery 3 in the
second parent is displaced by surgery 7 from first parent. As can be

seen, the position of surgery 7 is determined in the second parent
(denoted by “∗”) and surgery 3 is placed in the specified position. A
same process occurs for surgery 4.

4.2.6.2. Mutation. Just Like the crossover operator, this operator is
applied to a certain number of population members. First, for the
patients = …i P1, 2, , the surgeries pi and +pi 1 are replaced with each
other with probability Pmut so that the day, the operating room and the
surgeon assigned to each operation remain intact. Then, the patients

= …i P1, 2, , , are assigned to new days, operating rooms, and the
surgeons with the same probability (considering the points mentioned
for generating the initial population).

Fig. 6 shows the general scheme of the genetic algorithm in form of
a pseudocode. At first, the GA main parameters are determined. Then,
in the first step (Step 1), an initial population is generated randomly.
After that, the iterative process (Step 2) begins; in each iteration
crossover and mutation operators are applied (Steps 2.1 and 2.2) and in
the last step (Step 2.3), a sufficient number of solutions (npop) is se-
lected based on fitness function values. Then, the next iteration starts.
The termination criterion of the proposed algorithm is to reach a re-
petition threshold.

4.3. Constructive heuristic algorithm

The constructive heuristic algorithm consists of two main phases. In
the first phase, an initial schedule with highest possible quality is
generated. In the second step, the schedule obtained from the first
phase is improved. This algorithm is repeated for a certain number of
generations and the best solution is reported as the final solution. Just
like the genetic algorithm, the fitness function used in this algorithm is
the objective function of the problem (Eq. (51)).

4.3.1. Phase 1 of the heuristic Algorithm: generation of initial schedule
In the first phase, patients are randomly ordered (WL). Then, in the

second step, the algorithm goes to the first patient in the randomly
ordered list, and assigns each patient to a specific day with considera-
tion of all possible modes, i.e. all modes in which the patient can be
operated in different operating rooms by different surgeons in the

Decoding (feasible maker procedure) 
Input: generated solutions by Generating initial population procedure/solutions affected by crossover 
or mutation, data related to duration of different stages, data related to accessibility and number of 
recourses, data related to number of required resources for each patient and matrix odtSchedule , time 

index vector odindexT _
output: initial and feasible population with size of npop
for i=1 to P do

if OTduindexT ido ii 2_

if surgery i can be scheduled in assigned operating room io  on determined day id and operated 

by assigned surgeon is in period
idindexTt _ to 1_ 2id duindexTt

i
, satisfying all 

constraints then 
Assign possible time slots to surgery i and update odtSchedule  .

Register the completion time of surgery i ( itc ). 
update the status of all resources.
update time index vector: 1_ ido tcindexT

ii
.

end 
end 

end 
report initial feasible solution.

Fig. 4. Pseudo-code of decoding procedure (feasible maker procedure).
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earliest possible time. All of the found schedules should be saved in a
structure that is denoted by D_SCH. Then, the best possible schedule is
selected for each day, depending on the value of fitness function.
Finally, after obtaining a schedule for all potential days, the best
schedule is selected (Schedule) and the list of operated patients (ope)
and the status of resources is updated according to this schedule. The
pseudocode of this phase is presented in Fig. 7.

4.3.2. Phase 2 of the heuristic algorithm: improving the initial schedule
The role of the second stage is to improve the initial schedule cre-

ated in the first phase. This phase consists of three main steps. In the
first step, the algorithm begins with patient number 1, and eliminates
the patient from the schedule if it is partly or totally scheduled in the
overtime. The new schedule is then evaluated and replaced with the
initial schedule if it has a higher quality and the patient is removed
from the list of scheduled patients. In the second step, patients who are
not scheduled are identified and are then scheduled step-by-step if
possible in order to decrease idle time and also to avoid tardiness. In
case the fitness function is improved, the new schedule replaces the
previous one. In the third step, a specific number of surgeries are ran-
domly selected and removed from the schedule and put in the list of
removed surgeries (re). Then they are rescheduled at other possible
times and days. Finally, the schedule is evaluated and replaced with the
initial schedule if it has higher quality. The pseudocode of the im-
proving phase (second phase) is shown in Fig. 8.

The pseudocode of the proposed CH algorithm is shown in Fig. 9.

4.4. Setting the parameters of the proposed algorithms

In this section, we draw on the Taguchi method to tune the para-
meters of the two proposed algorithms using the Minitab 16 software.
The proposed genetic algorithm includes 5 parameters that need to be
set. Three levels are considered for each parameter. Table 2 shows these
parameters and their levels. The Taguchi method offers 27 experiments
for this purpose.

Taguchi proposes two ways for analysis. The First is a standard
approach in which the result of one-time implementation of the method
or average of frequent implementations is introduced into the analysis
of variance. The second approach, which Taguchi strongly recommends
for frequent implementations, is the signal to noise ratio (S/N). The S/N
analysis determines the most robust operating conditions against the

variations of the results (Roy, 1990).
Here, the signal to noise ratio approach is used. The S/N diagram of

the 27 experiments is presented in Fig. 10. Eq. (51) is used in this
diagram:

=
=

S N Log
n

y/ 10 1

i

n

1

2

(51)

Similarly, the Taguchi method was applied to the constructive
heuristic algorithm to determine the optimal level for number of
iterations and the removal probability (step 3 of the improvement
phase). The selected values of these two parameters were 300 and 0.4,
respectively. Here we ignore explaining more details (see Table 3).

5. Computational experiments

In this section, the solution methods and mathematical model are
experimented based on 27 instances with various sizes. Four datasets
have been used to perform computations and comparisons Similar to
Vijayakumar et al. (2013). Table 4 shows the conditions of these sets.
Table 5 shows the number of patients in the numerical examples.

The operating rooms are assumed to be active from 8 am to 6 pm.
The overtime is considered from 3 pm. to 6 pm. Four types of surgical
specialties including general surgery, orthopedics, otorhinolaryngology
and ophthalmology are taken into account in the study.

In the literature, the majority of researchers have used the log-
normal distribution to generate the duration of surgical operations
(Marcon, Kharraja, Smolski, Luquet, & Viale, 2003). In this study, the
durations of surgical operations are estimated via log-normal distribu-
tion (Marcon et al., 2003; Neyshabouri and Berg, 2017; Strum, May, &
Vargas, 2000). Similar to Jebali et al. (2006), the durations of patients'
recovery (post-anesthetic cares in the PACU) are estimated using the
log-normal distribution, based on the data obtained from Marcon et al.
(2003). So that, the means of surgical durations are extracted from
Marcon et al. (2003) and their standard deviations are considered equal
to quarter of the standard deviation of surgeries durations. The max-
imum deviation in surgery duration for patient p in stage j, du ,pj is
chosen =dupj dupj where U (0.5, 1.5). All durations are first gen-
erated in minutes, and then rounded and turned into time slots. The
percentage of patients in each surgical specialty is also selected ran-
domly. Table 6 shows the details of the statistical distribution of the
surgical groups and the percentage of patients in each group. The length

Fig. 5. Implementing crossover via PMX approach.
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of stay in the ward and ICU is also generated using log-normal dis-
tribution, in accordance with the conditions stated by Neyshabouri and
Berg (2017).

The Latest day to perform surgery, the number of operating rooms
and the number of beds are generated randomly according to Vali Siar
et al. (2017). Maximum desired working hours of surgeons are selected
according to Van Huele and Vanhoucke (2014). In all datasets, all
surgeons are available every day except for dataset 2. The availability
status of surgeons in dataset 2 is presented in Table 7.

Now, the generated numerical examples are used to evaluate and
compare the performance of the MILP model, proposed genetic algo-
rithm and proposed constructive heuristic algorithm. The analysis of

the results is carried out in three different parts. In the first part, the
solutions are compared according to the value of the objective function
and the computational time. In the second and third parts, the solutions
are investigated and compared according to criteria based on hospital
and patient point of views respectively. Hospital criteria include oper-
ating rooms utilization rate (U.R), the number of idle time slots (Id.T)
and the number of overtime slots (OV.T). Patients' criteria include the
number of operated patients (Op.), The number of patients who were
operated before the latest surgery date (op. < Dt) and the number of
patients who have not been operated and their latest date of surgery has
passed (wait > dt).

The MILP model was coded in GAMS version 24.1.3 and the CPLEX

Fig. 6. Pseudocode of proposed genetic algorithm.
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solver was used to solve the problem. The heuristic and metaheuristic
algorithms were coded in MATLAB version R2015a. All algorithms
were run with time limit of 4 h (14,400 s). In the computational time
column, the problems that have been stopped before reaching the final
solution (due to the time limit) are marked with ∗. The reported values
for both metaheuristic and heuristic methods are the mean values of 10
implementations for each instance.

According to opinions of experts (surgeons and nurses), it is of vital
importance to avoid delay in surgery and maintain patient health. Also,
maximum utilization of the operating rooms, lack of idle time and
overtime are considered as the second most important factors.
Therefore, according to the experts' opinion weights were selected as
follows: =W 0.5t , =W 0.25i and =W 0.25o . The computational results
presented in this section are obtained considering the assumption of
existing uncertainty in surgery and recovery durations.

In Table 8, the solution methods are compared in terms of the value
of the objective function, and the CPU time. In the columns related to
each method, the value of the objective function (Obj), the computa-
tional time (time), and the relative percentage deviation (RPD) can be
seen. The RPD is calculated as below:

= ×RPD Method Best
Best

% | | 100sol sol

sol (52)

In the above equation, Methodsol is solution obtained from the
method used for the problem in question and Bestsol is the best solution
to that problem.

The column titled “%Gap” related to solutions obtained by MILP
denotes the gap between the current solution and the best lower bound
when the problem solving process is stopped before the optimal solu-
tion is reached. In each of the two heuristic and metaheuristic methods,
the values standard deviations ( )obj of the objective function values are
reported. In cases where the methods are not able to find the solution
before the time limit is reached, their corresponding column is marked

with “–”
As Table 8 shows, using GAMS software, an optimal solution is

obtained in 10 out of the total of 27 problems before the time limit is
reached. Two other methods have also reached an optimal solution,
which indicates their high performance. In the vast majority of other
instances, the heuristic method outperforms the genetic method. More
precisely, by comparing the results of the genetic algorithm and the
constructive heuristic algorithm, it can be concluded that in cases
where the value of the objective function is the same in two methods,
the heuristic method outperforms the genetic algorithm, since this
method has reached solutions by spending about one-third of the
computational time spent by genetic algorithm. In other cases, the
constructive heuristic method is superior to the genetic method, for the
objective function value of the heuristic method, especially in large-
scale problems, is better than the objective function of genetic method,
and this method can reach the solution within a much shorter period of
time. Overall, it can be said that constructive heuristic method has
outperformed the MILP and genetic methods in terms of the objective
function value and computational time. Also, both proposed algorithms
have very small standard deviations, and in most of these problems
their standard deviation is about zero, indicating the high-quality of the
proposed methods.

Fig. 11 shows the comparison between the objective function values
in different problems. As seen, in small size problems, there is no dif-
ference between methods, but with increase in the size of the instances,
MILP loses its efficiency. Among two other methods, the constructive
heuristic method has a better performance. This difference is more
significant in larger scale instances (instances 19–27).

Table 9, compares the solution methods with consideration of the
hospital criteria. In small size problems, for which optimal or relatively
optimal solutions are provided using MILP (according to Table 8), no
difference is observed between the results of the genetic algorithm and
the proposed constructive technique. As the size of the instances grows,

Fig. 7. Pseudocode of The first stage of CH (generation of Initial Schedule).
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the proposed heuristic and metaheuristic methods offer better perfor-
mance in comparison with MILP. Meanwhile, the constructive heuristic
method has a better performance with about 12% lower idle time and
80% lower overtime compared with the genetic method.

The results obtained from the comparison of the solution methods
based on the patients' criteria are also reported in Table 10. In most
cases, the number of operated patients in the proposed heuristic method
is greater, and the number of patients whose surgery is delayed is lower.

In large-scale instances, the differences between the genetic algorithm
and constructive heuristic method have become more significant. For
example, the average number of patients in the heuristic method is 20%
more than the genetic method.

• Pairwise statistical comparisons of solution methods
In order to make the comparisons statistically convincing and

Fig. 8. Pseudocode of The first phase of CH (Improving).
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comparing the solution methods more accurately, in this section, sta-
tistical tests are performed based on different criteria using SPSS (ver-
sion 24) software. Using the Kolmogorov-Smirnov test at the significant
level of 0.05, it was found that the results presented in the previous

tables do not follow normal distribution, so here the nonparametric
Wilcoxon signed rank test is applied at the significance level of 0.05. In
Table 11 the values of asymptotic significance (A.S.) level and the Z
statistic are reported. In cases where the significance level is less than
0.05, the difference between the two methods is statistically significant.

Constructive heuristic (CH) 
Input: patients’ full data, data related to resources, the value of CH parameters, vacant structure ANS
output:  best found schedule for surgeries and the related objective function value
begin
For it=1:Maximum Iteration  do

Phase 1 (producing initial schedule) 
Phase 2 (improvement) 
Step 1 
Step 2 
Step 3 

itSchedule = obtained schedule.

itObj = evaluate the itSchedule itSchedule . 

Save the itSchedule  and itObj  in ANS.
end 
Find the best found schedule. 
report best fond schedule and the related objective function value

Fig. 9. Pseudocode of the general procedure of the proposed CH algorithm.

Table 2
Parameters of genetic algorithm and their levels.

Level/
parameter

Number
of
iterations

Population Probability
of crossover

Probability
of mutation

Mutation rate

1 100 50 0.6 0.05 0.4
2 200 100 0.7 0.1 0.5
3 300 200 0.8 0.15 0.6

Fig. 10. S/N ratio diagram related to the parameters of the genetic algorithm.

Table 3
Selected levels for genetic parameters based on the results of parameter setting.

Parameter Number
of
iterations

Population Probability
of crossover

Probability
of mutation

Mutation rate

Symbol MAxit Npop Pc pm Pmut
Value 200 100 0.8 0.15 0.4
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According to Table 11 in the patients' criteria, there is no statisti-
cally significant difference between the MILP and the other two
methods. But in all of the patients' criteria, the proposed constructive
heuristic method outperforms the genetic method. In criteria of oper-
ating room utilization and overtime, there is no significant difference
between the genetic method and the MILP, while the heuristic method
provides better results compared to other methods. Based on the ob-
jective function and its standard deviation the heuristic method shows
better performance compared with genetic algorithm. Finally, based on
the computational time, heuristic and meta-heuristic outperform the

MILP. Also, the proposed heuristic method reaches the solution in a
shorter CPU time compared to the genetic method. According to the
results achieved, the proposed constructive heuristic method has the
best performance.

The comparison between the objective function values of the
methods in deterministic and uncertain conditions for different pro-
blems is presented in Fig. 12 (“U” shows the solution method has been
run uncertainty). With a closer look at this figure, it is found that the
value of the objective function in uncertain mode is relatively less
(better) than the deterministic mode.

In this study, computations were performed assuming deterministic
length of stay in the ICU and ward. However, the operating room
scheduling can be affected by uncertainty in the length of stay, because
the capacity of ICU and ward is limited. Due to the stated reasons, a
number of simulations were implemented to test the robustness of the
schedules. 100 simulations were performed for each numerical in-
stance, taking into account the variability in the patients' length of stay.
The variability of the length of stay is determined based on the log-
normal distribution with consideration of mean length of stay and
standard deviations of 5%, 10%, 15% and 20%. Robustness is assessed
according to idle time, operating room utilization rate, the number of
operated patients, and the number of patients who have not been op-
erated and their surgery is delayed. The reason for choosing these cri-
teria for robustness assessment is that when the ICU or ward is facing
challenges associated with resource constraints, less surgical operations
are performed and the utilization rate declines, therefore a number of
patients may also face with delay in their surgeries. The results are
presented in Table 12. In these computations, the durations of surgery
and recovery are also considered uncertain.

As can be seen, the criteria are not influenced by the uncertainties in
the length of stay, or are insignificantly influenced. Base on the idle
time, utilization rate and the number of operated patients, impacts are
also insignificant. The number of patients who have not been operated
and their surgeries are delayed has not been changed. Therefore, the
solutions are robust against the uncertainty in the length of stay.

6. Case study

In this section, scheduling performed in a hospital is compared to
the scheduling obtained from the proposed methods in order to mea-
sure the performance of proposed methods in real life situations. There
are four surgery specialties in the hospital including general surgeries,
orthopedics, obstetrics and gynecology and ophthalmology. Operating
room Scheduling is performed by the head nurse usually on a weekly
basis. The surgical data are available to the operating theater at least
48 h before the first day of week (Saturday) and surgeries are scheduled
on a weekly basis (6 days) based on the latest surgery date determined
by the specialist surgeon. Due to the traffic in surgeries, the remaining
surgeries in the waiting list or the surgeries recorded in the waiting list
during the planning horizon will be scheduled in the coming weeks

Data for a 2-week period in October of 2016 was available to us
which is summarized in Table 13. As already mentioned, only the
elective surgeries are taken into account.

Table 14 and Figs. 13 and 14 compare the performance of proposed
scheduling methods (PM) and scheduling of hospital (HS). According to
the results, in the first week, all three methods have reached same and
high-quality solutions. In the second week, the mathematical model and
the constructive heuristic method have reached optimal solution and
have outperformed the genetic algorithm and hospital schedule. The
analyses and computations are done with considering uncertainty in
surgery and recovery durations. The idle time of the proposed methods
is 19% and 14% lower than the idle time of the hospital schedule in the
first and second weeks respectively. Also, overtime of the surgery de-
partment of the hospital can decrease about 73% in the first week and
about 47% in the second week via implementing the proposed methods.
According to the results, the constructive heuristic method is the most

Table 4
Datasets used for computational analysis.

Parameters/Dataset 1 2 3 4

Total number of allowed time slots for
performing surgery

36 36 36 36

Number of allowed time slots for
overtime

12 12 12 12

Length of each time slot 20min 20min 20min 20min
Number of operating rooms 5 5 5 8
Number of surgeons 5 5 5 8
Number of anesthesiologist 5 5 5 8
Number of PHU beds 5 5 5 8
Number of PACU beds 6 7 8 7
Number of ICU beds 4 6 5 7
Number of ward beds 16 18 20 22
Number of surgical specialties 4 4 4 4
Number of equipment types 4 4 4 4
Number of equipment of each type 10 8 10 18
Number of scrub/circulator/

anesthetist nurses
7/7/7 7/7/7 7/7/7 9/9/9

Number of days of planning horizon 2 3 6 6
Maximum allowed working time slots

for surgeons
48 72 144 288

Number of General/Orthopedic/ear,
nose, and throat (ENT)/
ophthalmology surgeons

2/1/1/1 2/1/1/1 2/1/1/1 3/2/2/1

Table 5
Numerical examples used for computational analysis.

Dataset Problem no. Number of patients

1 1–5 5/10/15/20/30
2 6–12 5/10/15/20/30/40/50
3 13–22 5/10/15/20/30/40/50/60/70/80
4 22–27 90/100/110/120/130

Table 6
Details of the statistical distribution of the surgery duration of different surgical
groups.

Surgical Specialty Average of
surgery duration
(minutes)

Standard deviation
of surgery duration
(minutes)

Percentage of
patients

Orthopedics 120 30 30.46%
Ophthalmology 60 15 90.00%
General 180 60 38.00%
ENT 45 30 22.54%

Table 7
Access to surgeons during scheduling days in dataset 2.

Surgeon/day 1 (time slots) 2 (time slots) 3 (time slots)

1 General 1–36 13–36 1–24
2 General 1–24 1–36 7–36
3 Orthopedics 1–36 1–36 10–36
4 ENT 7–24 1–36 1–36
5 Ophthalmology Absence 1–36 13–24
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efficient one, for it reaches high-quality solutions in less than 30 s.
Summing up, the results obtained using the proposed methods are of
much higher quality compared to the actual schedules provided by the
hospital.

In Table 15, the mean duration of surgery and recovery, and also
expected duration of length of stay have been changed up to 5%, 10%,
15%, and 20% and the values of performance criteria have been re-
ported. The last row of the table shows the change in the objective
function value relative to the objective function values presented in
Table 14. Since the constructive heuristic method outperforms other
methods, this method is applied here. Note that the computations are
done under the uncertainty of duration of surgery and recovery.

The results show that despite the increase in mean duration of
surgery, recovery and length of stay, the schedules obtained from the
proposed method are still much better than hospital schedule.
According to the results, the operating room utilization rate has im-
proved, and with increasing the percentage of durations has led to an
increase in overtime. In terms of patients' criteria, all patients are
scheduled before the latest surgery date, and only when the durations
increase by 15% and 20%, one and two surgeries are delayed

respectively, which can be compensated through overtime. Therefore,
even with increasing the mean durations of surgeries under uncertainty,
and the expected durations of lengths of stay, planning and scheduling
based on the proposed methods prove to be very efficient and quite
superior to hospital schedule.

7. Conclusion

In this paper, the integrated operating room planning and sche-
duling is investigated for elective patients under uncertainty. In addi-
tion to operating rooms, the PHU, recovery (PACU), ICU and ward were
taken into account. Constraints related to human resources, equipment
and beds were taken into consideration. A linear mixed integer pro-
gramming model was presented to formulate the problem. The intended
objectives were to minimize the tardiness of surgeries which is a cri-
terion based on patients point of view and minimize idle time and
overtime as criteria based on hospital point of view. The durations of
surgery and recovery are considered uncertain and a robust optimiza-
tion approach is used to manage uncertainty. Due to the high com-
plexity of the model, a meta-heuristic method based on the genetic

Table 8
Comparing solution methods based on objective function and CPU time.

Instance MILP (Cplex) GA CH

Obj. %Gap Time % RPD Obj. Time Obj. % RPD Obj. Time Obj. % RPD

1 0.19 0.00 2.65 0.00 0.19 0.70 0.00 0.00 0.19 0.11 0.00 0.00
2 0.17 0.00 31.13 0.00 0.17 1.16 0.00 0.00 0.17 0.13 0.00 0.00
3 0.12 5.31 * 0.00 0.12 204.09 0.00 0.00 0.12 25.30 0.00 0.00
4 0.09 5.88 * 0.00 0.09 274.06 0.00 0.00 0.09 16.66 0.00 0.00
5 0.12 54.24 * 50.00 0.08 245.25 0.01 33.33 0.06 71.24 0.00 0.00
6 0.21 0.00 3.91 0.00 0.21 0.53 0.00 0.00 0.21 0.42 0.00 0.00
7 0.17 0.00 31.05 0.00 0.17 1.08 0.00 0.00 0.17 0.53 0.00 0.00
8 0.14 0.00 268.57 0.00 0.14 7.98 0.00 0.00 0.14 2.57 0.00 0.00
9 0.12 4.60 * 0.00 0.12 95.55 0.00 0.00 0.12 61.15 0.00 0.00
10 0.12 15.51 * 9.00 0.12 1443.27 0.00 9.09 0.11 110.82 0.00 0.00
11 – – * – 0.15 1976.23 0.01 36.36 0.11 116.07 0.00 0.00
12 – – * – 0.17 917.52 0.02 21.43 14 100.15 0.00 0.00
13 0.23 0.00 5.12 0.00 0.23 0.48 0.00 0.00 0.23 0.15 0.00 0.00
14 0.21 0.00 118.13 0.00 0.21 0.76 0.00 0.00 0.21 0.34 0.00 0.00
15 0.21 0.00 225.14 0.00 0.21 1.08 0.00 0.00 0.21 0.57 0.00 0.00
16 0.18 0.00 4326.45 0.00 0.18 1.51 0.00 0.00 0.18 0.95 0.00 0.00
17 0.14 0.00 10802.08 0.00 0.14 74.47 0.00 0.00 0.14 6.32 0.00 0.00
18 – – * – 0.13 186.23 0.00 0.00 0.12 131.82 0.00 0.00
19 – – * – 0.11 736.10 0.00 22.22 0.09 222.26 0.00 0.00
20 – – * – 0.12 1058.74 0.01 20.00 0.10 626.24 0.00 0.00
21 – – * – 0.13 1332.08 0.00 85.71 0.07 462.64 0.00 0.00
22 – – * – 0.13 1515.08 0.01 62.50 0.08 664.43 0.00 0.00
23 – – * – 0.14 6218.13 0.01 27.27 0.11 2219.25 0.00 0.00
24 – – * – 0.14 6839.34 0.01 55.56 0.09 3015.35 0.00 0.00
25 – – * – 0.14 4662.51 0.01 75.00 0.08 1475.65 0.00 0.00
26 – – * – 0.14 8373.87 0.00 75.00 0.08 3844.40 0.00 0.00
27 – – * – 0.16 8509.34 0.01 77.78 0.09 3901.20 0.00 0.00

Average 0.16 9.29 6054.28 3.93 0.15 1654.74 0.00 22.27 0.13 632.47 0.00 0.00
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Fig. 11. Comparing solution methods based on objective function (under uncertainty).
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algorithm and a constructive heuristic method are proposed to solve
medium and large-scale problems. Comparisons and computations were
performed based on the objective function value, computational time,
and patient and hospital criteria. The results indicate that heuristic and

metaheuristic methods are very efficient in obtaining high-quality so-
lutions. Comparison of the proposed constructive heuristic method and
the genetic-based metaheuristic method showed that the heuristic
method has a better performance and the objective function value in
this method is about 19% better than the objective function value ob-
tained from the genetic algorithm.

In the case study, the performance of the proposed methods was
compared to the actual schedule of a hospital. The results indicated that
in the schedule provided by the proposed methods, overtime is one-
sixth of the overtime of the hospital schedules. In addition, the idle time

Table 9
Comparing solution methods based on hospital's criteria.

MILP (Cplex) GA CH

Instance U.R Id.T Ov.T U.R Id.T Ov.T U.R Id.T Ov.T

1 0.24 183 0 0.24 182 0 0.24 182 0
2 0.34 159 0 0.34 159 0 0.34 159 0
3 0.54 111 0 0.54 111 1 0.54 111 1
4 0.65 85 0 0.66 81 3 0.66 82 1
5 0.54 110 1 0.71 71 1 0.75 60 0
6 0.18 297 0 0.18 297 0 0.18 297 0
7 0.31 250 0 0.31 250 0 0.31 250 0
8 0.44 203 0 0.43 204 1 0.44 203 0
9 0.52 174 0 0.54 167 1 0.54 167 1
10 0.52 174 0 0.58 151 8 0.57 153 0
11 – – – 0.67 120 36 0.65 127 3
12 – – – 0.65 126 0 0.67 120 5
13 0.08 660 0 0.08 660 0 0.08 660 0
14 0.15 610 0 0.15 610 0 0.15 610 0
15 0.17 596 0 0.17 596 0 0.17 596 0
16 0.28 518 2 0.28 518 0 0.28 518 0
17 0.44 406 0 0.44 406 0 0.44 406 0
18 – – – 0.49 366 3 0.55 326 1
19 – – – 0.61 278 11 0.65 252 1
20 – – – 0.57 310 7 0.64 260 6
21 – – – 0.54 330 14 0.76 172 3
22 – – – 0.61 281 13 0.74 186 5
23 – – – 0.55 559 5 0.60 461 3
24 – – – 0.58 492 67 0.67 384 1
25 – – – 0.58 484 23 0.74 306 4
26 – – – 0.61 452 35 0.75 292 5
27 – – – 0.55 532 35 0.71 348 9

Average 0.61 308.82 0.24 0.63 306.15 9.44 0.67 272.04 1.48

Table 10
Comparing solution methods based on patients' criteria.

MILP (Cplex) GA CH

Instance Op. Op. < dt Wait > dt Op. Op. < dt Wait > dt Op. Op. < dt Wait > dt

1 5 5 0 5 5 0 5 5 0
2 10 10 0 10 10 0 10 10 0
3 12 12 0 12 12 0 12 12 0
4 15 15 0 17 17 0 16 16 0
5 19 19 0 20 20 0 21 21 0
6 5 5 0 5 5 0 5 5 0
7 10 10 0 10 10 0 10 10 0
8 15 15 0 15 15 0 15 15 0
9 19 19 0 20 20 0 20 20 0
10 22 22 0 26 26 0 24 24 0
11 – – – 31 30 3 30 29 4
12 – – – 35 34 9 32 32 10
13 5 5 0 5 5 0 5 5 0
14 10 10 0 10 10 0 10 10 0
15 15 15 0 15 15 0 15 15 0
16 20 20 0 20 20 0 20 20 0
17 30 30 0 30 30 0 30 30 0
18 – – – 34 33 1 39 38 1
19 – – – 48 46 0 50 49 0
20 – – – 47 47 3 54 53 0
21 – – – 62 60 2 68 67 1
22 – – – 53 49 7 66 63 2
23 – – – 67 63 4 80 78 2
24 – – – 90 89 3 96 95 1
25 – – – 88 84 7 99 95 4
26 – – – 89 86 6 105 93 3
27 – – – 88 80 11 111 107 6

Average 14.78 14.78 0 23.31 22.00 2.54 28.14 26.77 1.64

Table 11
Wilcoxon signed-rank test for MILP, CH and GA based on performance mea-
sures.

Performance measure CH-MILP GA-MILP CH–GA

Number of operated patients Z −1.86 −1.84 −2.59
A.S. 0.06 0.07 0.01

Number of operated patients without
tardiness

Z −1.86 −1.84 −2.68

A.S. 0.06 0.07 0.01

The number of patients who have not
undergone surgery and are tardy

Z 0.00 0.00 −2.41

A.S. 1.00 1.00 0.02

%Utilization of operating rooms Z −2.02 −1.89 −3.13
A.S. 0.04 0.06 0.02

Overtime Z 0.00 −1.54 −3.52
A.S. 1.00 0.11 0.00

Objective function Z −1.34 −1.00 −3.31
A.S. 0.18 0.32 0.01

SD of objective function Z – – −2.89
A.S. – – 0.04

Computational time Z −3.52 −3.52 −4.54
A.S. 0.00 0.00 0.00

M.M. Vali-Siar et al. Computers & Industrial Engineering 126 (2018) 549–568

566



in the proposed methods is about 25% better.
The problem studied in this paper is based on the assumption that

the resources used for elective and emergency patients are independent.
Future research can be done based on the assumption that the same
resources are used for these two groups. Developing exact solution
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Fig. 12. Comparing solution methods based on objective function in deterministic and uncertain modes.

Table 12
Investigating the robustness of solutions using simulation.

Standard deviation Idle time Overtime Operated patients Tardy patients

0% 272.04 0.67 28.64 1.14
5% 272.04 0.67 28.64 1.14
10% 272.91 0.67 27.60 1.14
15% 272.91 0.67 27.48 1.14
20% 278.45 0.66 26.94 1.14

Table 13
Summary of data collected from the surgery department of the hospital.

Number of patients in week 1 51
Number of patients in week 2 45
Number of days in the planning horizon 6 (one week)
Number of operating rooms 3
Number of surgical specialties 4
Number of surgeons 11
Number of nurses 9
Number of critical equipment types 4
Number of equipment in each type 3
Length of each time slot 20min
Total number of time slots 27 (8:00 AM to 5 PM)
Number of overtime time slots 9 (2:00 PM to 5 PM)
Number of PHU beds 3
Number of PACU beds 2
Number of ICU beds 4
Number of ward beds 33
Mean surgery duration 0.5–5 h per case
The maximum deviation in surgery duration (from

the mean)
10–30% per case

Mean duration of recovery 0.5–2 h per case
The maximum deviation in recovery duration

(from the mean)
5–25% per case

Expected duration of staying in PHU 10–30min per case
Expected duration of staying in ICU/ward 0–2 days/0–5 days per case

Table 14
Comparing the proposed methods and the hospital schedule.

MILP GA CH Hospital schedule

Measure Ov.T Id.T U.R Ov.T Id.T U.R Ov.T Id.T U.R Ov.T Id.T U.R

Week 1 8 148 0.54 14 154 0.52 8 148 0.54 30 183 0.44
Week 2 10 132 0.59 13 135 0.58 10 132 0.59 19 154 0.54

Measure >dt < dt Op. >dt <dt Op. > dt <dt Op. Op. < dt Op.
Week 1 0 51 51 0 51 51 0 51 51 0 51 51
Week 2 0 45 45 0 45 45 0 45 45 0 45 45

Measure % RPDobj Time Obj. % RPDobj Time Obj. % RPDobj Time Obj. % RPDobj Time Obj.
Week 1 0.00 * 0.13 7.69 308.21 0.14 0.00 9.14 0.13 46.15 – 0.19
Week 2 0.00 821.12 0.12 0.00 314.54 0.12 0.00 23.36 0.12 25.00 – 0.15
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Fig. 13. Comparing the proposed methods and the hospital schedule based on
operating rooms idle time.
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Fig. 14. Comparing the proposed methods and the hospital schedule based on
operating rooms overtime.
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methods for obtaining optimal solutions for different problems can be a
great idea for the future studies. Finally, taking into account other
important performance criteria in the literature, including patient
waiting time and financial objectives, can be considered in future re-
searches.
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