تمرین ۲:

الف- با استفاده از نرم افزار power world شبکه قدرت زیر را شبیه سازی کنید دقت کنید که تمامی اطلاعات داده شده برای شبکه را بطور کامل و دقیق در نرم افزار وارد نمایید

ب- عناصر ماتریس Ybus را با کمک نرم افزار بدست آورید

TABLE 6.1 Bus input data for Example 6.9*	Bus	Туре	V per unit	δ degrees	P _G per unit	Q _G per unit	P _L per unit	Q _L per unit	Q _{Gmax} per unit	Q _{Gmin} per unit
Example 0.9	1 S 2 L 3 C	wing oad Constant voltage	1.0 1.05	0	0 5.2	0	0 8.0 0.8	0 2.8 0.4	 4.0	-2.8
	4 L 5 L	oad oad			0 0	0 0	0 0	0 0		
	*S _{base} = 1	100 MVA	, $V_{base} = 1$	5 kV at bus	es 1, 3, a	nd 345 k	V at bu	ises 2, 4, 5		
TABLE 6.2 Line input data for Example 6.9	Bus-to-B	us	R′ per unit	X′ per u	init	G' per un	it	B' per unit	1	1aximum MVA per unit
Example 0.7	2–4 2–5 4–5		0.0090 0.0045 0.00225	0.10 0.05 0.02	00 60 25	0 0 0		1.72 0.88 0.44		12.0 12.0 12.0
TABLE 6.3 Transformer input data for Example 6.9	Bus-to-B	us	R per unit	X per unit	G _c per unit	B _n pe uni	r it	Maximum MVA per unit	1	1aximum TAP Setting per unit
	1–5 3–4		0.001 <i>5</i> 0 0.00075	0.02 0.01	0 0	0 0		6.0 10.0		_
TABLE 6.4	Bus			Input Da	ta		Ur	nknowns	_	
Input data and unknowns for Example 6.9	1 2		$V_1 = P_2 = Q_2 = Q_2$	$ 1.0, \delta_1 = 0 P_{G2} - P_{L2} = Q_{G2} - Q_{L2} $	= -8 = -2.8			$\begin{array}{c} \mathbf{P}_1, \mathbf{Q}_1 \\ \mathbf{V}_2, \delta_2 \end{array}$	_	
	3 4 5		$V_3 =$ $P_3 =$ $P_4 =$ $P_5 =$	$\begin{array}{l} 1.05 \\ P_{G3}-P_{L3} \\ 0, \ Q_4 = 0 \\ 0, \ Q_5 = 0 \end{array}$	= 4.4			$egin{array}{c} Q_3,\delta_3 \ V_4,\delta_4 \ V_5,\delta_5 \end{array}$		

تمرین ۳:

دقت نمایید که اطلاعات شبکه تمرین ۲ را مطابق آنچه که در آزمایشگاه گفته شد، دقیق وکامل وارد نمایید. در پاسخ به سوالات زیر نتایج حاصل از شبیه سازی و تحلیل آنها را در قالب یک فایل word یا همین فایل تنظیم نمایید.

- ۱- پخش بار شبکه قبلی را با روش نیوتن رافسون انجام دهید و تعداد تکرارها را بدست آورید. (از گزینه single solution full newton استفاده نمایید و هر بار Mismatches را چک نمایید)
 - ۲- در صورتی که نتایج شبیه سازی مطابق با نتایج زیرنباشد اطلاعات شبکه را درست وارد نکرده اید و لازم است که اصلاح نمایید

			Gene	ration	Le	oad
Bus #	Voltage Magnitude (per unit)	Phase Angle (degrees)	PG (per unit)	QG (per unit)	PL (per unit)	QL (per unit)
1 2 3 4 5	1.000 0.834 1.050 1.019 0.974	$\begin{array}{r} 0.000 \\ -22.407 \\ -0.597 \\ -2.834 \\ -4.548 \end{array}$	3.948 0.000 5.200 0.000 0.000	1.144 0.000 3.376 0.000 0.000	0.000 8.000 0.800 0.000 0.000	0.000 2.800 0.400 0.000 0.000
		TOTAL	9.148	4.516	8.800	3.200
Line #	Bus to B	اطلاعات خروجی	Ρ	Q		S
1	2 4 4 2		-2.920 3.036	-1.392 1.216		3.232 3.272
2	2 5 5 2		-5.080 5.256	-1.408 2.632		5.272 5.876
3	4 5 5 4		1.344 -1.332	1.504 -1.824		2.016 2.260

اطلاعات خروجي ترانسفورماتورها

Tran. #	Bus t	o Bus	Р	Q	S
1	1	5	3.948	1.144	4.112
	5	1	-3.924	-0.804	4.004
2	3	4	4.400	2.976	5.312
	4	3	-4.380	-2.720	5.156

- ۳- بعد از پایان پخش بار میزان توان عبوری از خطوط را بدست آورید. آیا ترانسفورماتور، خط یا خطوطی از شبکه دچار اضافه بار (over load) شده
 ۱ست؟
- ۴- با افزایش توان تولیدی ژنراتور متصل به شین ۳ میزان توان عبوری از خطوط را مشاهده نمایید و تعیین کنید در چه توانی(توان تولیدی ژنراتور ۳)
 ترانسفورماتور بین شین ۳ و ۴ به حداکثر بارگذاری می رسد؟(of max MVar)
 - ۵- با کاهش توان تولیدی ژنراتور ۳ تعیین کنید در چه توانی ترانسفورماتور بین شین ۱ و ۵ به حداکثر بارگذاری می رسد؟
- ۶- یک خازن شنت 200 MVar به شین ۲ متصل کنید. ولتاژ شین ۲ و تلفات کل شبکه را قبل و بعد از وصل خازن با هم مقایسه کنید چه نتیجه ای
 می گیرید؟ مقدار توان راکتیو تولیدی خازن چقدر است؟ آیا 200 Mvar است ؟ چرا؟
 - ۲- میزان توان راکتیو تولیدی خازن چقدر باید باشد که ولتاژ شین ۲ به ۱ پریونیت برسد؟ در این حالت تلفات کل چند مگاوات است؟

تمرین ۴: تحلیل خطا در شبکه قدرت

برای تحلیل خطا در شبکه های قدرت با کمک نرم افزار power world بعد از شبیه سازی شبکه مورد نظر در حالت Run Mode از گزینه Fault Analysis استفاده نمایید. بعد از باز شدن این پنجره می توانید پارامترهای خطا از جمله نوع خطا، شین خطا، نتایج خطا و ... را مشاهده نمایید.

توجه: در هر مرحله می توانید نتایج حاصل از شبیه سازی را در نرم افزار word ثبت نمایید copy / paste

- ۱- برای شبکه داده شده در تمرین ۳ که قبلا شبیه سازی نموده اید، یک خطای سه فاز به زمین در هر کدام از شین ها اعمال نمایید و جریان های خطا در خطوط و ولتاژهای خطا را در شین ۲ و بقیه شین ها بدست آورید. برای مشاهده نتایج خطا از گزینه Calculate استفاده نمایید. شبکه را بدون بار و ولتاژ تمام شین ها را قبل از اعمال خطا 1.05 تنظیم نمایید همچنین پارامترهای مربوط به ماشین سنکرون، خطوط و ترانسفورماتور را مطابق جداول زیر در نرم افزار تنظیم نمایید.
- ۲- برای یک خطای تکفاز به زمین ، دوفاز و دوفاز به زمین مرحله قبل را تکرار نمایید. ولتاژهای خطای سه فاز را برای تمام شین ها در کنار شین ها نشان
 داده شوند برای اینکار از گزینه Fault Option و سپس گزینه One line Display تغییرات لازم را اعمال کنید. نتایج مربوط به نوع خطا را صورت
 مرتب در جداول مناسب در نرم افزار word ثبت نمایید

با مقایسه نتایج بدست آمده برای ولتاژ و جریانهای خطای متقارن سه فاز و خطا های نامتقارن چه نتیجه ای می گیرید؟

TABLE 7.3	Bus	Machine Subtransient Reactance— X''_d (per unit)
data for SYMMETRICAL	1 3	0.045 0.0225
program*	$\label{eq:base} \begin{array}{l} {}^*S_{base} = 100 \text{ MVA} \\ V_{base} = 15 \text{ kV at bu} \\ = 345 \text{ kV at b} \end{array}$	ises 1, 3 puses 2, 4, 5
TABLE 7.4	Bus-to-Bus	Equivalent Positive-Sequence Series Reactar (per unit)
SYMMETRICAL IORT CIRCUITS program	2-4 2-5 4-5	0.1 0.05 0.025
TABLE 7.5	Bus-to-Bus	Leakage Reactance—X (per unit)
nsformer data for YMMETRICAL ORT CIRCUITS program	1–5 3–4	0.02 0.01