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a b s t r a c t

Resilience of multi-agent systems (MAS) reflects their capability to maintain normal operation, at a
prescribed level in the presence of unintended faults. In this paper, we investigate resilient control ofMAS
under faults on sensors and actuators. We propose four resilient state feedback based leader–follower
tracking protocols. For the case of sensor faults, we develop an adaptive compensation protocol and anH∞

control protocol. For the case of simultaneous sensor and actuator faults, we further propose an enhanced
adaptive compensation protocol and an enhancedH∞ control protocol. We show the duality between the
adaptive compensation protocols and the H∞ control protocols. For adaptive compensation protocols,
faults on sensors and actuators are rejected by using local adaptive sensor and actuator compensators,
respectively. Moreover, by employing a static output-feedback design technique, we propose H∞ control
protocols that guarantee bounded L2 gains of certain errors in terms of the L2 norms of fault signals.
This further allows us to prove resilience even if sensor faults are unbounded. Finally, simulation studies
validate the effectiveness of the proposed protocols.

© 2018 Published by Elsevier Ltd.

1. Introduction

The last decade haswitnessed significant development of coop-
erative control techniques for interconnectedmulti-agent systems
(MAS) (see Olfati-Saber, Fax, and Murray (2007), Ren, Beard, and
Atkins (2007), Ren and Cao (2010) and Lewis, Zhang, Hengster-
Movric, and Das (2013) for surveys). Therein, a distributed con-
troller is designed for each agent locally, based on information only
about that agent and its neighbors. The benefits of such distributed
architectures over standard centralized controllers include greater
efficiency, flexibility, and scalability to larger networks. Hence,
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distributed controllers have emerged in many engineering appli-
cations including power systems (Bidram, Lewis, & Davoudi, 2014;
Robbins & Hadjicostis, 2013), robotic networks (Bullo, Cortes, &
Martinez, 2009; Qu, 2009; Ren & Beard, 2008), and sensor net-
works (Cortés, Martınez, Karatas, & Bullo, 2004; Ogren, Fiorelli,
& Leonard, 2004). Since the distributed information flow lacks a
centralized feedback mechanism, the activity of each agent cannot
be effectively monitored and verified. This makes distributed pro-
tocols particularly susceptible to adverse faults that are injected to
the sensors and/or actuators of agent, and can propagate through
the network. Therefore, it remains a challenge to provide resilience
for the distributed control of MAS.

To address the resilient MAS problem, several attack detection
and isolation approaches have been proposed in the
literature (see Fawzi, Tabuada, and Diggavi (2014), LeBlanc, Zhang,
Sundaram, and Koutsoukos (2012, 2013), Mo, Chabukswar, and
Sinopoli (2014), Pasqualetti, Bicchi, and Bullo (2012), Pasqualetti,
Dörfler, and Bullo (2013), Xu and Zhu (2015), Zeng and Chow
(2014), Zhu and Başar (2015), Zhu and Martínez (2013) and Zeng,
Zhang, and Chow (2015)). Despite good performances, these ap-
proaches usuallymake specific assumptions on the graph topology
and/or the fraction of misbehaving agents.
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Such limiting assumptions are removed for a network of ho-
mogeneous systems in De La Torre, Yucelen, and Peterson (2014),
where a local state emulator adaptively mitigates actuator faults.
In addition, adaptive backstepping control approaches have been
used to handle the actuator faults (Chen, Xie, Lewis, Xie, & Davoudi,
2018; Wang &Wen, 2011; Wang, Wen & Guo, 2016). Later, results
are reported to achieve an infinite-actuator fault control (Wang,
Wen & Lin, 2017), a finite-time control (Wang, Song, Krstic &Wen,
2016), event-triggered input control (Xing, Wen, Liu, Su, & Cai,
2017), multi-vehicle system (Liu, Ma, Lewis, & Wan, 2018) and in-
put quantization control (Li & Yang, 2016;Wang,Wen, Lin &Wang,
2017). Assuming the disturbances and actuator faults unknown
and bounded, a decentralized adaptive fault-tolerant control is
given in Xie and Yang (2017). Note that majority of existing adap-
tive resilient protocols focus on actuator faults. In the presence
of sensor faults, measured states will no longer be the same as
actual states, rendering the above-mentioned adaptive controls
impractical. Remedies are provided through adaptive stabilization
control (Yucelen, Haddad, & Feron, 2016) and adaptive leaderless
control (Arabi, Yucelen, & Haddad, 2016). They, however, restrict
the sensor fault types to certain bounded faults and/or types with
known structures. More importantly, simultaneous sensor and
actuator faults are not addressed in a unified platform.

This paper aims to design resilient distributed protocols subject
to both sensor and actuator faults. We design four resilient leader–
follower tracking control protocols, which can be separated into
two main categories — adaptive control and H∞ control. The
salient contributions of this paper are stated as follows.

• For the caseswhere there are only sensor faults,wedesign two
resilient protocols, namely an adaptive compensation protocol and
anH∞ control protocol, that are in some sense dual to one another.
In comparison to the adaptive control of Theorem 1, it is seen that
Assumption 3 required inH∞ control isweaker than Assumption 2.

• For simultaneous sensor and actuator faults, we also design
an adaptive compensation protocol and an H∞ control protocol.
An additional actuator disturbance compensator must be added
for the adaptive control protocol. On the other hand, for the H∞

control protocol, the actuator fault is not adaptively compensated
but modeled as a part of system disturbances.

• Even though the adversity of the sensor fault is physically
different from that of the actuator fault, our results show that both
faults can be handled within the same adaptive framework where
the fault is rejected by a local compensator (see Theorems 1 and 3).

• Compared with our adaptive protocols, H∞ protocols here
(see Theorems 2 and 4) allow unbounded faults on sensors. More-
over, the use of the static output-feedback design technique in H∞

control protocols allows us to bound the L2 gains of the control
errors in terms of the L2 norms of the fault signals.

The rest of this paper is organized as follows. In Section 2, we
provide notation and preliminaries, and define two types of fault
control problems for the resilient design. In Section 3, we present
two resilient solutions to the first problem based on adaptive
compensation control and H∞ control. In Section 4, we provide
two additional protocols to the second problem, and extend the
results in Section 3 to amore general casewith simultaneous faults
on both sensors and actuators. In Section 5, simulation studies
validate the effectiveness of the proposed protocols. In Section 6,
we conclude the results.

2. Preliminaries and problem formulation

In this section, we introduce notations and formulate the sensor
and actuator fault problems for leader–follower tracking control.

2.1. Preliminaries

The symbol ⊗ denotes the Kronecker product. [xij] is a matrix
with xij an entry in the ith row and jth column. diag{xi} is a diagonal
matrix with a vector xi on the main diagonal. X > 0 denotes that a
matrix X is positive-definite. For λi ∈ C and X ∈ Rn×n, let λi denote
an eigenvalue of X , and Re(λi)(X) denote the real part of λi with
i = 1, 2, . . . , n. δmin(X) and δmax(X) are minimum and maximum
singular values of X , respectively. ∥ · ∥ denotes the norm.

Consider a class of directed graphs described as G = (V, E,A),
where V = {v1, v2, . . . , vN} denotes a set of nodes, E ⊂ V × V
denotes a set of edges, andA = [aij] ∈ RN×N denotes an adjacency
matrix. The information flow in the graph G is denoted by a weight
aij and an edge (vj, vi) satisfying aij > 0 if (vj, vi) ∈ E , otherwise
aij = 0. Here, we assume that no repeated edges or no self-loops
are allowed in G. Define Ni = {j|(vj, vi) ∈ E} as a set of neighbors
of node i, and H = diag{hi} ∈ RN×N as an in-degree matrix with
hi =

∑
j∈Ni

aij. Hence, the Laplacian matrix is given as L = H − A.
A direct path from node i to node j is captured by a sequence of
successive edges satisfying {(vi, vk), (vk, vl), . . . , (vm, vj)}. A graph
is said to have a spanning tree, if there exists a directed path
from a node to every other node. If the leader node is a neighbor
of node i, then an edge (v0, vi) exists with a positive weighting
gain gi. Considering N followers in the graph, one has a pinning
matrix G = diag{gi} ∈ RN×N . Throughout this paper, the following
standard assumption of the graph topology in distributed control
of MAS holds.

Assumption 1. The directed graph G contains a spanning treewith
the leader as its root.

2.2. Problem formulation

Consider a group of N agents with identical dynamics

ẋi = Axi + Būi, yi = x̄i, (1)

where xi ∈ Rn is the system state, ūi ∈ Rm is the system input,
and yi ∈ Rp is the measured output for i = 1, 2, . . . ,N . For
convenience, we omit the time argument t throughout the paper.
If necessary, however, we explicitly write the time argument t .
(A, B) is assumed to be stabilizable. Even though full state feedback
is assumed throughout this paper, only the corrupted states, not
the actual ones, are available for the resilient control design. The
dynamics of the leader agent is given by

ẋ0 = Ax0, (2)

where x0 ∈ Rn is the system state. The leader agent (2) can
be considered as an exosystem or a command generator, which
generates the desired target trajectory to be followed by all N
agents (1). Note that the agents given in (1) and (2) are connected
by a distributed communication graph, and the leader agent (2) can
be observed by a small group of the agents (1).

In this paper, the system input ūi and output yi are under
unknown actuator and sensor faults, respectively. We describe the
sensor and actuator faults as

x̄i = xi + δsi , (3)

ūi = ui + δai , (4)

where δsi and δai denote unknown faults caused in the sensor and
actuator channels, respectively. That is, the actual values of xi and
δsi are unknown and one can only measure the corrupted state
x̄i. Likewise, the uncorrupted control ui cannot be applied to the
system. Only the corrupted control ūi enters the dynamics (1).
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To highlight the problems caused by sensor and actuator faults
(3), (4), consider a standard local protocol for the leader–follower
tracking (Zhang, Lewis, & Das, 2011)

ui = csKs(
∑
j∈Ni

aij(x̄j − x̄i) + gi(x0 − x̄i)), (5)

where cs and Ks are design gains. Under faults (3), (4), applying ui
(5) to MAS (1) yields ẋ = (IN ⊗ A)x − c(L + G) ⊗ BKs(x − x0) +

(IN ⊗ B)W , where x = [xT1, x
T
2, . . . , x

T
N ]

T , x0 = IN ⊗ x0, and W =

[wT
1 , w

T
2 , . . . , w

T
N ]

T with wi = δai + csKs(
∑

j∈Ni
aij(δsi − δsj ) + giδsi ).

It is shown in Yucelen et al. (2016) and Arabi et al. (2016) that
under faults δsi and δai , the leader–follower tracking is generally not
attained, and xi may even be unbounded. In this paper, we show
how to achieve leader–follower tracking if δsi and δai are not zero,
or even unbounded.

To evaluate the protocol to be given in this paper, we give the
following stability definition.

Definition 1 (Definition 4.6, Khalil (2002)). The signal z(t) is said to
be uniformly ultimately bounded (UUB) with the ultimate bound
b, if given positive constants b and c , for every a ∈ (0, c), there
exists T (a, b), independent of t0, such that ∥z(t0)∥ ≤ a ⇒ ∥z(t)∥ ≤

b, ∀t ≥ t0 + T .

Two types of fault control problems for the state synchroniza-
tion of MAS are defined as follows.

Problem1.Under the sensor fault (3), the leader–follower tracking
problem is to design distributed control protocols ui for all the
agents (1) in G, such that the error µi = xi − x0 is UUB.

Problem 2. Under the sensor fault (3) and actuator fault (4), the
leader–follower tracking problem is to design distributed control
protocols ui for all the agents (1) in G, such that the errorµi is UUB.

3. Control protocols to address sensor faults

In this section, we consider the leader–follower tracking prob-
lem under the sensor fault only (3) (see Problem 1). This means
that the actuator fault (4) satisfies δai = 0 such that ūi = ui
holds for all the agents (1). Two control methods, an adaptive
compensation protocol and an H∞ control protocol, are given to
handle the sensor fault problem. It will be shown that fault model
assumption required in H∞ control (Assumption 3) is weaker than
the one required in adaptive control (Assumption 2).

3.1. Adaptive control design for sensor fault compensation

In this subsection, we propose an adaptive disturbance com-
pensator to deal with sensor faults. This protocol is given as

ui = − Kx̂i, (6)
˙̂xi =F ( ˜̄xi − ri) + (A − BK )x̂i − d̂si , (7)

ṙi =Ari + cFo(
∑
j∈Ni

aij(rj − ri) + gi(x0 − ri)), (8)

˙̂dsi =PT
s4x̂i + PT

s2(x̄i − ri) − asd̂si , (9)

where ˜̄xi = x̄i − x̂i; c and as are positive constants; ri denotes a
distributed leader observer; controller gain K , observer gains F , Fo,
and compensator gains Ps2, Ps4 are to be determined later; and d̂si =

[d̂si1
T
, d̂si2

T
, . . . , d̂sin

T
]
T denotes a local sensor fault compensator to

estimate dsi = [dsi1
T , dsi2

T , . . . , dsin
T
]
T with dsi = Fδsi .

Remark 1. Here, we stress that it has been a difficult problem to
handle sensor faults by using adaptive control techniques. Adap-
tive controlworks based on the assumption that the error variables
in the closed-loop system should be accessible for the control
design. However, when the sensor fault δsi is involved, the actual
state xi is corrupted as shown in (3). Only the corrupted x̄i can be
measured. Hence, adaptive control cannot be applied in a straight-
forward manner. To address this issue, we propose the adaptive
compensation protocol that contains two local adaptive laws (7)
and (9). As seen in Theorem 1, this protocol solves Problem 1.

Assumption 2. The sensor fault δsi in (3) is bounded, and its
derivative δ̇si is bounded.

It should be noted that Assumption 2 covers various types of
faults in practice. It is a weak assumption compared to those in the
existing literature (Arabi et al., 2016), where not only the fault is
assumed bounded, but also its upper and lower bounds must be
known.

Define a global observer gain matrix as

A0 = IN ⊗ A − c(L + G) ⊗ Fo. (10)

Let the design matrices Q = Q T
∈ Rn×n, R = RT

∈ Rm×m,
Qo = Q T

o ∈ Rn×n, and Ro = RT
o ∈ Rp×p be positive-definite. Let

σi = ri − x0. Design the controller gain K as

K = R−1BTP, (11)

where P > 0 is the unique solution of the control algebraic Riccati
equation (ARE)

0 = ATP + PA + Q − PBR−1BTP . (12)

Let the observer gains F and Fo be designed as

F = Fo = PoR−1
o , (13)

where Po > 0 is the unique solution of the observer ARE = APo +

PoAT
+ Qo − PoR−1

o Po. Select

c ≥
1

2mini∈V{Re(λi(L + G))}
. (14)

The following is our main result in this subsection.

Theorem 1. Suppose that the graph G and the sensor fault δsi in
(3) satisfy Assumptions 1 and 2, respectively. Let the controller design
follow (11)–(14). Then, Problem 1 for the leader–follower tracking is
solved by the adaptive protocol (6)–(9). Moreover, limt→∞ σi(t) = 0
at the rate of exponential convergence, and (dsi − d̂si ) is UUB. □

Proof. Considering N agents in the graph G, we define the follow-
ing variables to facilitate the analysis. Let µ = [µT

1, µ
T
2, . . . , µ

T
N ]

T ,

η = [ηT
1 , η

T
2 , . . . , η

T
N ]

T , θ = [µT , ηT
]
T , σ = [σ T

1 , σ T
2 , . . . , σ T

N ]
T ,

r = [rT1 , rT2 , . . . , rTN ]
T , and ρ = [ρT

1 , ρT
2 , . . . , ρT

N ]
T , where ηi = x̂i

and ρi = [µT
i , η

T
i ]

T . Hence, µ̇ = (IN ⊗ A)µ − (IN ⊗ BK )η and
η̇ = (IN ⊗ (A−BK − F ))η + (IN ⊗ F )µ+ (IN ⊗ F )δs − (IN ⊗ F )σ − d̂s.
We have

θ̇ = Asθ −

[ 0
(IN ⊗ F )σ

]
+

[ 0
ds − d̂s

]
, (15)

whereAs = [asij]with as11 = IN⊗A, as12 = −IN⊗BK , as21 = IN⊗F ,
and as22 = IN ⊗ (A − BK − F ). Therefore, from Zhang et al. (2011),
if K satisfies (11) and F satisfies (13), then both A − BK and A − F
are Hurwitz so that As is Hurwitz.

At this stage, we have finished the stability analysis for the first
term at the right hand side of (15). Next, we focus on the stability
analysis for (IN ⊗ F )σ . From (2), (8) and (10), one has σ̇ = A0σ .

Hossein
Highlight

Hossein
Highlight

Hossein
Highlight



22 C. Chen, F.L. Lewis, S. Xie et al. / Automatica 102 (2019) 19–26

Similar to the analysis for As, it is equivalent to the condition that
A−cλi(L+G)Fo is Hurwitz. Since Fo satisfies (13) and c satisfies (14),
it is shown that A0 is Hurwitz such that PA0A0 + A0

TPA0 = −QA0 ,
where PA0 > 0 and QA0 > 0. Differentiating VA0 = σ TPA0σ with
the respect to time t yields V̇A0 = −σ TQA0σ . Considering that
QA0 > 0, we have σ TQA0σ ≥ δmin(QA0 )σ

Tσ . Thus, one has V̇A0 ≤

−αVA0 , where α =
δmin(QA0 )
δmax(PA0 )

and the solution must satisfy ∥σ∥
2

≤

VA0 (0)
δmin(PA0 )

e−αt , which implies that ri − x0 exponentially decays to
zero. Inwhat follows,wewill showoverall systemstability analysis
of (15). Because of the previous analysis of As, given any matrix
Qs > 0, there exists Ps = [psij] > 0 with ps11 = Ps1, ps12 = Ps2,
ps21 = Ps3, and ps22 = Ps4, such that PsA0

s + A0
s
TPs = −Qs,

where A0
s = [as0ij] with as011 = A, as012 = −BK , as021 = F , and

as022 = A − BK − F is defined as a part of As. Define a Lyapunov
function candidate as V =

∑N
i=1 ρT

i Psρi+ d̃s
T
d̃s, where d̃s = ds− d̂s.

Differentiating V with the respect to time t yields

V̇ = −

N∑
i=1

ρT
i Qsρi − 2

N∑
i=1

d̃si
T
PT
s2δ

s
i + 2

N∑
i=1

d̃si
TPT

s2σi

− 2
N∑
i=1

ρT
i Ps

[ 0
Fσi

]
+ 2asd̃s

T
d̂s + 2d̃s

T
ḋs, (16)

where (9) and (15) are employed. Considering 2asd̃s
T
d̂s ≤ −asd̃s

T
d̃s

+ asdsTds, −2d̃si
T
PT
s2δ

s
i ≤

as
4N d̃

s
i
T
d̃si +

4N
as
(PT

s2δ
s
i )

TPT
s2δ

s
i , and 2d̃s

T
ḋs ≤

1
4asd̃

sT d̃s + 4 1
as
ḋs

T
ḋs, one changes (16) as

V̇ ≤ −

N∑
i=1

ρT
i (Qs − ∥Ps∥2

∥F∥
2
∥σi∥

2)ρi

− (
1
2
as − ∥Ps2∥2

∥σi∥
2)d̃s

T
d̃s + b0, (17)

where b0 = 2N +
∑N

i=1
4N
as

∥PT
s2δ

s
i ∥

2
+

1
as
dsTds +

4
as
ḋs

T
ḋs.

To finish the remaining analysis, we define β1 = ∥Ps∥2
∥F∥

2
VA0 (0)

δmin(PA0 )
and β2 = ∥Ps2∥2 VA0 (0)

δmin(PA0 )
. Note that β1, β2, and b0 are all

bounded. Let a constant b̄0 be the upper bound of b0 and a constant
ϑ satisfy 0 < ϑ < δmin(Qs). With above definitions, (17) yields

V̇ ≤ −

N∑
i=1

ρT
i (δmin(Qs) − β1e−αt )ρi

− (
1
2
as − β2e−αt )d̃s

T
d̃s + b̄0. (18)

In addition, there exists T1 > 0 such that for all t ≥ T1, one has q1 ≡

δmin(Qs) − ϑ1 ≤ δmin(Qs) − β1e−αt . Similarly, there exists T2 > 0
such that for all t ≥ T2, one has q2 ≡

1
2as − ϑ2 ≤

1
2as − β2e−αt .

Thus, (18) is changed to V̇ (t) ≤ −q1ρTρ − q2d̃s
T
d̃s + b̄0, t ≥ t1,

where t1 = max{T1, T2}. Now, integrate V̇ (t) with time to yield

V (t) ≤ (V (t1) −
b̄0
a0

)e−a0t +
b̄0
a0

, t ≥ t1, (19)

where a0 = min{
q1

δmax(Ps)
, q2}. Note that a0 is a positive constant.

From (19), it reveals that all the signals in V (t) includingµ are UUB.
Moreover, from (19), we have ∥µ(t)∥2

≤ 2(V (t1) −
b̄0
a0
)e−a0t + 2 b̄0

a0

for t ≥ t1, which implies that limt→∞ ∥µ(t)∥2
≤ 2 b̄0

a0
. Hence, the

proof is completed. ■

Note that the matrix As in (15) is fully decoupled, and its design
gains are locally determined by each agent. This is different from
the corresponding matrix Aθ in Section 5.C of Zhang et al. (2011),
whose protocol is designed based on the distributed information.

The proposed decoupled matrix As helps construct the adaptive
control mechanism and compensate the sensor fault. Compared
to Zhang et al. (2011), extra terms (IN ⊗ F )σ and ds − d̂s are
generated as shown in (15).

3.2. H∞ Control Design for Sensor Fault Compensation

In the previous subsection, the leader–follower tracking was
achieved under Assumption 2, where both sensor fault δsi in (3) and
its derivative δ̇si are assumed bounded. In general, the sensor faults
may be added based on the agents’ states, and thus the bounded-
ness of sensor faults cannot be ensured. As a result, the protocol
in the previous subsection may not work in some applications. To
remove the bounded Assumption 2 on sensor faults, anH∞ control
scheme is designed in this subsection.

Before the control design, we give the following definition and
lemma about static output-feedback control design. More details
can be found in Gadewadikar, Lewis, and Abu-Khalaf (2006).

Definition 2. Define a linear time-invariant system as ẋ = Āx +

B̄u+D̄d, y = C̄x, where u, y, and d denote the system input, output,
and disturbance, respectively. Define a performance output w as
∥w∥

2
= xT Q̄ x + uT R̄u for Q̄ ≥ 0 and R̄ > 0. The system L2 gain is

said to be bounded or attenuated by γ if the L2 norms of w and d
satisfy:

∫
∞

0 ∥w∥
2dt∫

∞

0 ∥d∥2dt
=

∫
∞

0 (xT Q̄ x+uT R̄u)dt∫
∞

0 (dT d)dt
≤ γ 2.

Lemma 1 (Gadewadikar et al., 2006). Assume that (Ā,
√
Q̄ ) is de-

tectable with Q̄ ≥ 0. Then, the system considered in Definition 2 is
output-feedback stabilizable with L2 gain bounded by γ , if and only if
(1) there exist matrices K̄ , M, and P̄ such that

K̄ C̄ =R̄−1(B̄T P̄ + M), (20)

P̄ Ā + ĀT P̄ + Q̄ + γ −2P̄ D̄D̄T P̄ + MT R̄−1M

= P̄ B̄R̄−1B̄T P̄, (21)

and (2) (Ā, B̄) is stabilizable and (Ā, C̄) is detectable. □

A key quantity in rejecting sensor faults is the error

ei = x̄i − x̂i − δ̂si , (22)

where x̂i is an estimate of the uncorrupted state xi, and δ̂si is an
estimate of the sensor fault δsi . Note that ei can be measured.
Propose now an H∞ control protocol to reject sensor faults as

ui = cK ϵ̂i, (23)

ϵ̂i =

∑
j∈Ni

aij(x̂j − x̂i) + gi(x0 − x̂i), (24)

˙̂xi = Ax̂i + cBK ϵ̂i + wi, (25)

wi = (F1 + F2)ei, (26)
˙̂
δsi = −F1ei, (27)

where the controller gain K and observer gains F1 and F2 are
determined later. Let the estimation error for the sensor fault be
δ̃si = δsi − δ̂si .

Assumption 3. The derivative δ̇si of the sensor fault in (3) is
bounded.

Define a global controller gain matrix as

Ac = IN ⊗ A − c(L + G) ⊗ BK . (28)

The following is our main result in this subsection.
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Theorem 2. Suppose that the graph G satisfies Assumption 1, the
sensor fault satisfies Assumption 3, and A is nonsingular. Let K and c
be designed as (11) and (14). Suppose F1 and F2 are chosen such that
K̄ = [F T

2 , −F T
1 ]

T follows (20) and (21) in Lemma 1. Then, Problem 1
for the leader–follower tracking under the sensor fault (3) is solved
by the H∞ control protocol (23)–(27). Moreover, the L2 gains of the
errors ei and δ̃si are bounded in terms of the L2 norms of disturbances
di = [δ̇si

T
, δ̇si

T
]
T . □

Proof. Define d = [dT1, d
T
2, . . . , d

T
N ]

T , ζ̂i = x̂i − x0, e = [eT1, e
T
2, . . . ,

eTN ]
T , ζ̂ = [ζ̂ T

1 , ζ̂ T
2 , . . . , ζ̂ T

N ]
T , and δ̃s = [δ̃s1

T
, δ̃s2

T
, . . . , δ̃sN

T
]
T . From

(1), (25), and (27), differentiating ei in (22) with respect to time t
yields ėi = (A − F2)ei − Aδ̃si + δ̇si . From (27), it is thus shown that

[ėi,
˙̃
δsi ]

T
= AF1[ei, δ̃si ]

T
+ di. (29)

where AF1 = [af 1ij ] with af 111 = A − F2, af 112 = −A, af 121 = F1,
and af 122 = 0 and di = [δ̇si , δ̇

s
i ]

T . In the following, we will show
the stabilization of (29) can be achieved by appropriately designing
F1 and F2. To do this, we transform (29) to the following output-
feedback control system

ẋT ≜ ĀxT + B̄uT + D̄di, yT ≜ C̄xT , (30)

where Ā = [A, −A; 0, 0], B̄ = D̄ = [IN , 0; 0, IN ], and C̄ = [IN , 0].
Moreover, define the controller uT (30) as uT = −K̄ yT , where
K̄ = [K T

1 , K T
2 ]

T . Straightforward analysis shows that if we choose
K1 = F2 and K2 = −F1, then (30) is equivalent to (29). At this stage,
we focus on finding appropriate design matrices for K̄ by using the
static output-feedback control technique. From the structures of Ā
and B̄, it is obtained that the pair (Ā, B̄) is stabilizable. Note that
the pair (Ā, C̄) is detectable since A is nonsingular. Moreover, we
select Q̄ = I2n such that (Ā,

√
Q̄ ) is detectable. From Lemma 1, if

one has matrices K̄ ,M and P̄ satisfy (20) and (21), then the system
described by (30) is guaranteed output-feedback stabilizable. As a
result, AF1 = Ā− B̄K̄ C̄ is Hurwitz, and the L2 gain of (30) is bounded
in terms of the L2 norm of di.

With AF1 Hurwitz, given any matrix QF1 > 0, there exists a ma-
trix PF1 > 0 such that PT

F1AF1 + AF1PF1 = −QF1. In order to analyze
(29), we choose VF1 = θ T

F (IN ⊗PF1)θF , where θF = [eT , δ̃sT ]T . Taking
the derivative of VF1 yields V̇F1 = −θ T

F (IN ⊗ QF1)θF + 2θ T
F (IN ⊗

PF1)d ≤ −δmin(QF1)∥InNθF∥
2

+ 2∥θF∥∥IN ⊗ PF1∥∥d∥, where the
boundedness of θF is obtained.

To finish the proof, we will show the leader–follower tracking
under the proposed control. From (25), the derivative of ζ̂i yields
˙̂
ζ = (IN ⊗ (F1 + F2))e+ Ac ζ̂ . Selecting K and c as (11) and (14), one
has that Ac in (28) is Hurwitz. This means that given any matrix
Qc > 0, there exists a matrix Pc > 0 such that PT

c Ac + AcPc = −Qc .
Let Vζ̂ = ζ̂ TPc ζ̂ . Taking the derivative of Vζ̂ with respect to time t
yields V̇ζ̂ = −ζ̂ TQc ζ̂ + 2ζ̂ T (IN ⊗ (F1 + F2))e, where e is bounded
for any time because of the boundedness of θF . This leads that ζ̂i
is bounded. Then, the proposed H∞ control protocol ensures that
all the agents converge to the neighborhood of the leader in the
presence of sensor faults. This completes the proof. ■

Remark 2. The design protocols of Theorems 1 and 2 are in some
sense dual. Theorem 1 relies on a local design for the feedback gain
K , and a global design for the observer gain F0 in A0 of (10). On
the other hand, Theorem 2 relies on a local design for the observer
gains F1 and F2, and a global design for the controller gain K in Ac
of (28).

4. Control protocols to address sensor and actuator faults

In this section, we consider a more general case, where both
the sensor fault (3) and actuator fault (4) are involved. We propose
two control methods, including an adaptive compensation control
scheme and an H∞ control scheme.

4.1. Adaptive control design for sensor and actuator fault Compensa-
tion

In this subsection, we introduce an adaptive compensation
scheme to handle sensor and actuator faults. To facilitate the anal-
ysis, we make the following assumption.

Assumption 4. The actuator fault δai in (4) and its derivative δ̇ai ,
are bounded. Moreover, the sensor fault δsi in (3) and its derivative
δ̇si , are bounded.

The control scheme is given as follows

ui =cK ϵ̂i, (31)

ϵ̂i =

∑
j∈Ni

aij(x̂j − x̂i) + gi(x0 − x̂i), (32)

˙̂xi =Ax̂i + cBK ϵ̂i + wi + d̂ai , (33)

wi =(F1 + F2)ei, (34)
˙̂
δsi = − F1ei, (35)
˙̂dai =PT

F21ei − PT
F23δ̂

s
i − aad̂ai , (36)

where x̂i denotes a distributed uncorrupted state observer; aa is
a positive constant; control gains K , c , observer gains F1, F2, and
compensator gains PF21, PF23 are designed later; and d̂ai denotes an
actuator fault compensator to estimate dai with dai = Bδai .

Theorem 3. Suppose that the graph G satisfies Assumption 1,
the sensor and actuator faults satisfy Assumption 4, and A in (1) is
nonsingular. Design K as (11), F1 and F2 as K̄ = [F T

1 , −F T
2 ]

T satisfying
Lemma 1 with Ā, B̄, C̄ given in (30). Then, Problem 2 for the leader–
follower tracking under the sensor fault (3) and actuator fault (4)
is solved by the adaptive protocol (31)–(36). Moreover, (dai − d̂ai ) is
UUB. □

Proof. Differentiating the error ei (22) with the respect to time t
yields ėi = (A− F2)ei − Aδ̃i − d̂ai + Bδai +δ̇si , where (3), (4), (33), and

(35) are employed. Thus, it is shown that
[ ėi

˙̃
δsi

]
= AF1

[ ei
δ̃si

]
+[

Bδai − d̂ai
0

]
+ di, where AF1 and di are defined in (29).

Similar to analyses in (30), we can design F1 and F2 to satisfy
(20) and (21) such that AF1 is Hurwitz. Therefore, given any matrix

QF2 > 0, there exists PT
F2 = PF2 ≡

[ PF21 PF22
PF23 PF24

]
> 0 such

that the following constraint holds PF2AF1+AT
F1PF2 = −QF2. Define

V =
∑N

i=1 ϱT
i PF2ϱi + d̃a

T
d̃a, where ϱi = [eTi , δ̃

s
i
T
]
T and d̃a = da − d̂a.

Differentiating V with the respect to time t yields

V̇ = −

N∑
i=1

ϱT
i QF2ϱi + 2

N∑
i=1

δsi
TPF23d̃ai + 2aad̃a

T
d̂a

+2
N∑
i=1

ϱT
i PF2di + 2d̃a

T
ḋa. (37)

The rest of the proof is similar to that of Theorem 1. Thus, the
leader–follower tracking is reacheddespite the sensor and actuator
faults, and Problem 2 is solved. ■

4.2. H∞ Control Design for Sensor and Actuator Fault Compensation

To remove the requirements on sensor and actuator faults in
Assumption 4, we propose an H∞ control protocol in this subsec-
tion.
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The H∞ control scheme to reject sensor and actuator faults is
given as follows

ui = cK ϵ̂i, (38)

ϵ̂i =

∑
j∈Ni

aij(x̂j − x̂i) + gi(x0 − x̂i), (39)

˙̂xi = Ax̂i + cBK ϵ̂i + wi, (40)

wi = (F1 + F2)ei, (41)
˙̂
δsi = −F1ei, (42)

where x̂i is an uncorrupted state observer.

Assumption 5. The derivative δ̇si of the sensor fault in (3) is
bounded. The actuator fault δai in (4) is bounded.

Theorem 4. Suppose that the graph G satisfies Assumption 1, the
sensor and actuator faults satisfy Assumption 5, and A in (1) is non-
singular. Design K as (11) and (12), and F1 and F2 as K̄ = [F T

2 , −F T
1 ]

T

satisfying (20) and (21). Then, Problem 2 for the leader–follower
tracking under the sensor fault (3) and actuator fault (4) is solved
by an H∞ control protocol (38)–(42). Moreover, the L2 gains of the
errors ei and δ̃si are bounded in terms of the L2 norms of disturbances
di = [δ̇si

T , (Bδai )
T
]
T . □

Proof. The stability of the overall system is decided by two decou-

pled subsystems, namely, [ėT , ˙̃
δsT ]T =

[ IN ⊗ (A − F2) −IN ⊗ A
IN ⊗ F1 0

]
[ e

δ̃s

]
+

[
δ̇s + (IN ⊗ B)δa

δ̇s

]
, and ˙̂

ζ = (IN ⊗ (F1 + F2))e + Ac ζ̂ . The

rest of the proof is similar to that of Theorem 2. Thus, the leader–
follower tracking is reached in the presence of sensor and actuator
faults by the H∞ control protocol (38)–(42). ■

Remark 3. The proposed control protocols in Theorems 3 and
4 address simultaneous sensor and actuator faults in a unified
platform, which is a generalized case of the results in Theorems 1
and 2.Moreover, Theorems 1 and 3mainly use the adaptive control
technique to handle faults, while Theorems 2 and 4 use the H∞

control technique. These two different control techniques require
complementary assumptions on the system modeling, including
the fault model and system dynamics. Specifically, in our adaptive
control based protocols, the fault and its derivative are required to
be bounded. The requirement of a bounded sensor fault is relaxed
in our H∞ control protocols at the expense of limiting the system
dynamics A to be nonsingular. The complementarities between
adaptive control and H∞ control can be further found in their
different control design philosophies. Adaptive controls concern
online adaptive law design, while H∞ controls concern off-line
matrix design.

5. Simulation studies

In this section, we present simulations to demonstrate the
resilience of the proposed protocols against faults on sensors and
actuators. Note that a variety of phenomena in industrial systems
can be described by a mass–spring system, such as the movement
of deformable objects and vibration in mechanical devices (Lewis
et al., 2013). Hence, we use a group of mass–spring systems as a
test bed. Specifically, the simulated MAS has four followers and a
leader subject to a directed graph, G, given in Fig. 1. Each follower
in the graph is a two-mass–spring system, modeled as (1), where
A = [aij] with a12 = a34 = 1, a21 =

−(k1+k2)
m1

, a23 = −a41 =

−a43 =
k2
m1

and otherwise zeros and B = [0, 1
m1

, 0, 0]T . Here,
m1 and m2 are masses, k1 and k2 are spring constants, ui is the

Fig. 1. Graph G used for the leader–follower tracking.

Fig. 2. Leader–follower tracking performance: y0,1, yi,1 .

Fig. 3. Leader–follower tracking performance: y0,2, yi,2 .

input applied on mass 1, and xi = [yi,1, ẏi,1, yi,2, ẏi,2]T with yi,1
and yi,2 being the displacements of the two masses and ẏi,1 and
ẏi,2 being the velocities. The leader is unforced and has the same
parameters as the follower does. For the simulation, we choose
k1 = 3N/m, k2 = 2N/m, m1 = 1.1 kg, and m2 = 0.9 kg. The
simulation objective tomake displacements of the twomasses, yi,1
and yi,2, synchronize to that of the leader y0,1 and y0,2, respectively,
i.e. limt→∞(yi,1 − y0,1) = 0 and limt→∞(yi,2 − y0,2) = 0.

In what follows, we implement the control protocols by follow-
ing Theorems 3 and 4. The implementation of Theorems 1 and 2
is a simplified case of Theorems 3 and 4 and thus is omitted due
to the limited space. Let us first verify Theorem 3. The sensor
fault δsi in (3) and actuator fault δai in (4) are considered as δsi =

δai = [0.5 sin(t), 0.5 sin(t), 0.5 sin(t), 0.5 sin(t)]T . It is clear that
δsi , δ̇si , δai , and δ̇ai are bounded. This satisfies the condition of the
sensor and actuator faults required in Theorem 3. The controller
gain in (11) is designed as K = [0.7885, 1.6537, −0.4718, 0.7075]
by solving control ARE (12). Select the coupling gain c = 15 to
satisfy (14). Design QF2 as an identity matrix. The initial values of
updating parameters x̂(0), δ̂si (0), and d̂a(0) in (33), (35), and (36)
are set to zero. The initial states of the leader and followers are
randomly chosen. After applying the adaptive control protocol in
Theorem 3, we plot agents’ trajectories in Figs. 2 and 3. It is shown
that the resilience is guaranteed in the sense that all the followers
converge to the leader in the presence of unknown sensor and
actuator faults.

Now, we are in a position to verify our result in Theorem 4,
where the bounded sensor faults in the previous simulation are
now relaxed to be unbounded. To this end, we consider the sensor
fault in (3) and the actuator fault in (4) as δsi = [0.2t, 0, 0, 0]T
and δai = [0.1 sin(t), 0.1 sin(t), 0.1 sin(t), 0.1 sin(t)]T . The matrix
A is nonsingular, which meets the design condition required in
Theorem 4. The controller gains K and c in (23) are the same as
the ones in the previous simulation. Moreover, the initial values
of system states are randomly set, while updating parameters are
initially set to be zero. The trajectories of all agents are presented in
Figs. 4 and 5. It reveals that the resilient control ofMASwith sensor
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Fig. 4. Leader–follower tracking performance: y0,1, yi,1 .

Fig. 5. Leader–follower tracking performance: y0,2, yi,2 .

Fig. 6. Performance index.

Fig. 7. Performance index.

and actuator faults iswell achieved after applying the proposedH∞

control protocol in Theorem 4.
In addition, a performance index is defined as Index =

∑4
i=1

(|yi,1 − y0,1| + |yi,2 − y0,2|), which denotes the sum of absolute
displacement errors between the leader and followers. Here, we
use the results in Figs. 2–5 and calculate the corresponding per-
formance indexes in Figs. 6 and 7. Moreover, the standard control
(5) from (Zhang et al., 2011) is applied to the mass–spring system,
where the system parameters including the initial system states
and faults are the same as those in the previous simulations. For the
comparison, the performance indexes in presence of the standard
control (5) are also plotted in Figs. 6 and 7. It is clear that the pro-
posedmethods provide better resiliency for the synchronization of
two-mass–spring systems,when compared to the standard control
(5).

6. Conclusion

This paper investigates the resilient design problem for MAS,
and achieves the leader–follower tracking in the presence of sen-
sor and actuator faults by using adaptive compensation controls
and H∞ controls. To achieve adaptive compensation control, we
provide the resilience by employing a local sensor/actuator fault

compensator. Moreover, H∞ controls are proposed by using static
output-feedback design technique, which allows us to extend sen-
sor faults to unbounded cases, and, thus, to further improve the
resilience. Finally, the effectiveness of the proposed protocols has
been validated by simulation studies. It is an important research
topic to extend our results in the context of insecure inter-agent
communications. Moreover, how to relax the assumption of the
nonsingular system dynamics A is also a challenging task. We will
consider such problems in the future.
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