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Background: The demand for software is increasing every day in various fields. Software developers put
more effort to develop and test the quality of the software and verify its reliability before it is released.
High-quality software modules were developed to allow others to reuse the components. Purpose: This
paper provides information to researchers in the software quality prediction field based on machine
learning algorithms. Methodology: Most of the machine learning techniques and the relevant software
metrics used in many high-quality papers published between 2010 and the end of 2021 have been anal-
ysed. Findings: Machine learning techniques are the most suitable for predicting software quality. Most
of the researchers’ interest was to predict the reliability of software. The detailed analysis enables
researchers to choose the best way to plan their research and to make a good contribution in the field
of software quality prediction.
Copyright � 2022 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ence on Innovative Technology for Sustainable Development.
1. Introduction

In recent years, artificial intelligence has entered into various
fields of life. In the field of manufacturing industries instead of
human beings, many robots are engaged. These robots are
equipped with brains which got trained with machine learning
algorithms (ML). The relationship between artificial intelligence
(AI) and software engineering (SE) is getting closer day by day,
although the gap between the integration of these two fields is still
large compared to the relationship between AI and other sciences.
Machine learning algorithms have recently started playing a major
role in the software industry as well as in the life of software devel-
opers. These Software developers have sought to develop ML based
software that help them to complete their tasks efficiently [1].
There are models to partially generate the code or estimate the
cost, effort, and quality of the required software. Many researches
have proven the ability of machine learning techniques to provide
information and take measures that will speed up the process of
developing software and sustain its efficiency. Not only at the level
of processes, but at the level of the project as a whole, including the
calculation of efforts, resources and financial issues as well as the
time required for release [2].
2. Literature survey and background

Software quality is the main criterion for its evaluation. It does
not mean the quality of the services it provides, but rather its qual-
ity in providing these services. The quality verification process is
considered as one of the most important processes before the soft-
ware release [3]. Software quality can be defined as the perfor-
mance of the software within a specific work environment,
taking into account the effort, time and cost required to maintain
it when a failure occurs. There are two types or perspectives of
quality assessment. The first is internal quality and the second is
an external quality. Internal quality represents the quality of the
software product and includes the quality of work during the soft-
ware development lifecycle (SDLC), starting from the requirements
specification stage to the design stage. The design stage includes
building correct UML diagrams that reflect all possible scenarios.
Then in the implementation stage writing the quality code is
essential so that the code should be correct, free of vulnerabilities,
and avoid excessive consumption of resources. Finally, the mainte-
nance stage of SDLC requires a periodic effort to keep the software
performing its work under changing conditions at the same level of
efficiency. About external quality, it begins after the deployment
stage, so that the performance of the software is measured based
on several metrics these determine the functional efficiency of its
performance in providing its services, such as the number of errors
.
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that occur and number of maintenance times required periodically
[4].
3. Methodology

Software quality can be described from a practical perspective
by a set of attributes. Each of these attributes determines one
aspect of software quality. These attributes are reliability, function-
ality, efficiency, maintainability, portability, and usability. Fig. 1
shows software quality model according to ISO/IEC 9126 standard.
These attributes can be measured based on three different types of
metrics, process metrics, project metrics, and product metrics.
These metrics represent the state of the software from its early
stages till after its deployment for several years. In this work, the
capabilities of machine learning algorithms to predict software
quality will be discussed, as well as the metrics and techniques
that can be relied upon. The papers studied were selected based
on their close relevance to the topic and their recentness, as all
the papers studied are between 2010 and 2021. This section pre-
sents first the different types of metrics used in measuring quality,
which represent the inputs of machine learning models. Then the
prediction mechanisms and techniques for each of the previously
mentioned quality attributes are discussed.
3.1. Software metrics types

Software metrics are classified into three main types. Each of
these metrics types takes into account specific conditions and envi-
ronments during the software life cycle [5]. Table 1 shows the dif-
ferent types of metrics with their specific characteristics during
(SDLC). Table 2 shows the available datasets for the software qual-
ity metrics. The nature and what each type of metric represent will
be explained later.
3.1.1. Product metrics
Product metrics are classified into two main categories,

dynamic and static product metrics. Static product metrics reflect
the state of the product independently of the work environment.
They represent the measurements taken during all stages of soft-
ware development from a software point of view, which start from
the stage of requirements specification until the stage of deploy-
ment. Metrics for specifications quality represent the quality of
the stage of collecting requirements. These should be characterized
by completeness, understandability, achievability, verifiability,
understandability, and precision [6]. While metrics for design qual-
ity represent the quality of the design stage, including architectural
metrics, component metrics, and user interface metrics. Finally,
metrics for coding quality include code complexity, size and cohe-
sion coupling, etc. The dynamic product metrics represent the state
of the product in operation within a specific environment, includ-
ing the ability to detect failures, the execution time required to
perform the tasks, and the required resources.
Fig. 1. ISO/IEC 9126 soft

4715
3.1.2. Process metrics
These metrics represent the measurements taken during all

stages of software development from a developer team point of
view. These include efficiency, productivity, time-duration in locat-
ing and removing defects, cycle time, lead time, throughput and
error rate, etc. These metrics assess the condition of each process
and are greatly influenced by both other types. One of the most
important examples is that the number of possible errors is
affected by the quality of the code, which is a product metric, as
well as affected by the programmer’s experience or number of
developers which is a project metric.

3.1.3. Project metrics
These metrics represent the measurements taken during all

stages of software development from a project manager’s point
of view. These help the project manager to verify that the project
is progressing according to the required timeline. Provides infor-
mation that helps make better decisions when deviations from
the established plan occur. Often these metrics are represented
by effort, time, and cost, which can be changed several times
within the project work plan as needed. Understanding them helps
reduce cost, time, effort, and potential risks.

3.2. Software quality prediction models

Learning falls under the so-called science of artificial intelli-
gence, which depends on various algorithms according to their
function and method of work. Some of these algorithms are used
to learn with supervision, with Semi-supervision, or un-
supervision. In this section, all the distinguished technologies that
are believed to have made a good contribution in this field will be
reviewed.

3.2.1. Software quality prediction models-based machine learning
Machine learning algorithms are a group of algorithms that rely

on learning based on prior knowledge to predict and present out-
put values. Most of these algorithms depend on equations and sta-
tistical models to represent learning, and then through these
models, it is possible to extract knowledge and predict new knowl-
edge. What interests us in this research is to shed light on the
mechanisms of software quality prediction using machine learn-
ing. Machine learning algorithms can predict software quality, as
done in Research [7], where researchers evaluated the performance
of eight machine learning techniques to predict software reliability
and maintainability. Reliability is expressed as the number of
defects in the software, while maintainability is seen as the num-
ber of changes required in the system, whether adding, deleting,
or modifying. In the aforementioned research, models were evalu-
ated random forest (RF), Naïve Bayes (NB), J48, Bayesian networks
(BN), K-nearest neighborhood (KNN), PART, support vector
machine (SVM), and artificial neural networks (ANN). The
researchers in [7] relied on Object-Oriented Programming metrics
(OO metrics) which are extracted from the PROMISE Dataset. PRO-
ware quality model.



Table 1
Software attribute and metrics during SDLC.

Product Process Project

Internal External Internal External Internal External

Requirements Size, reuse, complexity &
redundancy

Understandability,
achievability, completeness &
functionality

Time & effort Cost
required

Communication level Productivity

Specifications Size, reuse, modularity,
redundancy & precision

Understandability,
achievability,
completeness,
independently &
comprehensibility

Time, effort &
number of
requirements
changes

Cost
required

Experience Productivity,
usability

Design Size, reuse, modularity,
coupling, cohesion &
simplicity

Comprehensibility, suitability,
quality & functionality

Time, effort &
number of
specifications
changes

Cost
required

Experience Usability &
comprehensibility

Code Size, reuse, modularity,
coupling,
cohesion, control flow &
complexity

Reliability, usability,
reusability, security,
maintainability & compatibility

Time, effort &
number of design
changes

Cost
required

Team developers
experience & number of
developers

Usability &
reliability

Test Size, coverage level &
methods

Completeness, clearness &
testability

Time, effort &
number of code
changes

Cost
required

Number of testers Reliability

Maintenance Time to maintain Compatibility, clearness &
testability

Time to detect
failure

Cost
required

Technical expert & number
of experts

Reliability

Table 2
Dataset available used for software quality predication.

Dataset name Dataset source Dataset purpose Number of
records

Link

JM1 NASA Defect prediction 10,885 http://promise.site.uottawa.ca/serepository/datasets/jm1.arff
KC! NASA Defect prediction 2109 http://promise.site.uottawa.ca/serepository/datasets/kc1.arff
Cocomo v1 &

81
Jairus Hihn, JPL, NASA, Manager
SQIP

Cost estimation 125 http://promise.site.uottawa.ca/

serepository/datasets/cocomonasa_v1.arff

http://promise.site.uottawa.ca/

serepository/datasets/cocomo81.arff
SF110 Corpus SourceForge Testability prediction 24,000 https://www.evosuite.org/experimental-data/sf110/
Antlr4 Oracle Defect/Maintainability

prediction
2506 https://www.kaggle.com/akshays12/antlr4

CM1 NASA Defect prediction 498 https://data.nasa.gov/
Github Github MS Defect/Maintainability

prediction
18 TB https://ghtorrent.org/
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MISE dataset includes several projects written in different pro-
gramming languages. These metrics are related to the nature of
the code such as length of code (LOC), cyclomatic complexity
(CC), lack of cohesion (LOCM), weighted method per class
(WMC), and the number of children (NOC). The results of the
research showed that the best algorithm is RF, whether to predict
reliability or maintainability. In [8], a comprehensive experiment
was introduced by Medeiros et al showing the impact of selecting
the most appropriate software metrics on accuracy in detecting
vulnerable code. It also relied on object-oriented software metrics
extracted from software projects written by C++ (Apache HTTPd,
Firefox, Mozilla, Linux Kernel, Glibc, and Xen). In [8], researchers
used statistical-based filtering to determine the most useful met-
rics for detecting vulnerable code. Correlation between metrics
was calculated using Pearson and Spearman correlation coeffi-
cients to identify irrelevant metrics. In the end, the researchers
applied all possible subsets of metrics to the classifiers such as
RF, DT, SVM linear, SVM radial. Each of the SVM linear and DT clas-
sifiers provided the best results in most cases. Software quality
prediction research is not limited to the use of pure models, but
some research presented hybrid models that combine optimization
algorithms and machine learning models. Bouktif et al presented in
[9] a new approach based on integrating decision trees (DT) algo-
4716
rithmwith genetic algorithm (GA). They relied on product and pro-
cess metrics such as the effort and time required to build the code
parts as well as OO metrics. The main objective of combining the
GA with DT is to derive the model that presents the least number
of errors for all dataset samples. In [10] Okutan et al used the soft-
ware metrics found in PROMISE dataset. They also suggested two
other metrics: the number of developers (NOD) and lack coupling
quality (LOCQ). The result showed that the number of developers
and the level of software quality has a positive correlation.
3.2.2. Software quality prediction models-based deep learning
Machine learning contains a subset of algorithms called deep

learning algorithms, where learning algorithms are classified
according to their working mechanism as well as their architec-
ture. Deep learning algorithms are based mainly on ANN, which
works similarly to the human brain. Where Learning can be super-
vised, unsupervised or semi-supervised. What distinguishes these
algorithms is their ability to give high accuracy when the appropri-
ate amount of data is available. Also, these algorithms do not need
the stage of extracting features before training, as they can extract
the distinctive features from the raw input samples. This is not
considered important when dealing with software metrics, which
are essentially extracted features by themselves. Therefore, the
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Table 3
Summary of the papers for software quality prediction using machine learning models.

Ref Required
prediction

Dataset used language/
Metrics

Proposed approach / remarks

[7] Reliability &
Maintainability

PROMISE C, C++,
Java

Several models have been evaluated such as J48, RF, NB, Bayesian network, PART, KNN, SVM
and ANN. RF model has provided the best result with AUC = 0.8 for defect and maintenance
prediction.

[8] Reliability Apache HTTPd, Firefox, Mozilla,
Linux Kernel, Glibc and Xen

C++ Studied the impact of selecting the most appropriate metrics on accuracy in detecting
vulnerable code, SVM Radial, Extreme Boosting, Decision Tree, Random Forest, SVM Linear,
and have evaluated. best accuracy gained from SVM and DT.

[9] Reliability Nasa Dataset C, C++,
Java

Genetic algorithm is developed to combine decision tree model in order to derive a
composite” model that performs accurately.

[10] Reliability PROMISE C, C++,
Java

They suggested two new metrics: number of developers (NOD) and lack coupling quality
(LOCQ). The result showed a positive correlation between the number of developers and the
level of software quality.

[14] Reliability Private dataset C++ To make a software quality estimation system The authors used case-based reasoning (CBR)
based on Euclidean distance and Manhattan distance.

[15] Reliability PROMISE C, C++,
Java

The objective is to compare the performance of an ensemble model with baseline model.
showed the effect of number of base predictors in the ensemble on the prediction
performance of the algorithms.

[16] Reliability Nasa Dataset C, C++,
Java

In this work, customized WHICH framework with AUC out-performs all other methods
(manualUP, manualDown, naive bayes, micro-20, Ripper)

[17] Reliability Apache POI Java Statistical approach vs six ML approaches have been evaluated to predict fault detection
model. Random. RF and bagging out-performed the other models

[18] Reliability MIS (private dataset) NA Introduced new software prediction model using Bayesian model-based on finite Dirichlet
mixture models.

[19] Maintainability UIMS, QUES Classical
Ada

Showed superiority of Probabilistic Neural Network (PNN) with Gaussian activation function,
Group Method of Data Handling (GMDH) and Genetic Algorithms (GA) to predict
maintainability.

[20] Reusability Private dataset NA Proposed a hybrid algorithm that combines the capabilities of K-means and decision trees to
predict reusability.

[21] Maintainability Eclipse Mylyn Code Java A mini-study used the relationship between only four software criteria to predict
maintainability using fuzzy inference

[22] Reliability Nasa Dataset C,C++,
Java

Bayesian Network approach used to predict software quality the results obtained from the
proposed model 80%.

[23] Reusability Private dataset NA In this study the authors proposed SVMmodel to measure and estimate the reusability in the
software using regularity metric, Halstead software, reuse frequency metric, coupling metric
and Mccabe’s cyclometric complexity.

[24] Reliability Nasa Dataset C,C++,
Java

The paper discussed the idea of do different classifiers find the same defects? The results
prove that each classifier will detect a unique subset of defects. classifier ensembles with
decision-making provide the best performance.

[25] Maintainability UIMS, QUES Classical
Ada

In this work, five learning models (RGF, MLR, GRNN, KNN and GBA) were built and evaluated
based on features selection techniques (Pearson’s Correlation, Backward Elimination and
Lasso Regularization)

[26] Reusability Eclipse Java Weka software was used to make a software quality prediction based on class-level and
method-level. The gained accuracy 98.64

[27] Maintainability UIMS, QUES Classical
Ada

Nineteen regression model evaluated to predict software maintainability. the result revealed
that Quadratic SVM provided the best performance.

[28] Maintainability PROMISE C,C++,
Java

SVM with different kernels have been used for predicting maintainability. Several methods of
selecting features are discussed in this research.

[29] Maintainability QUES Classical
Ada

Here individual machine learning models were compared with ensemble models to predict
software maintainability. bagging ensemble based KNN was the best.

[30] Reliability &
Reusability

Private dataset OO
Metrics

Proposed KNN model for defect prediction, and reusability. accuracy of is 82%,93% for
reusability is 82% and defect prediction respectively.
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benefit of using neural networks in most quality prediction models
is their ability to select the best features. Jha et al presented in [11]
a proposal to use the long short-term memory (LSTM) network to
predict software maintainability based on a dataset containing 299
software projects. The performance of the proposed model outper-
formed the performance of five other models are quantile regres-
sion forest, ridge regression, DT, SVM, and PCA. An advanced
neural network-integrated with hybrid cuckoo search (HCS) algo-
rithm has been developed by Sheoran et al in [12]. Where HCS is
used to solve optimization problems. In this work [12], the test
cases generated by the software were relied upon. The process of
updating the weights in the advanced network depended on HCS.
This method provided a highly effective prediction of software
quality, both in terms of reliability and maintainability.
4717
3.2.3. Software quality prediction models-based transfer learning
Pre-trained models with little training and customization can

be used to predict new knowledge. These models, which are called
transfer learning models, are characterized by their need for a
small time to train on a relatively large amount of data compared
to the large time required to train models built from scratch. In
[13] researchers proposed a transfer learning model based on the
Naïve Bayes algorithm to select the features. This model provided
better accuracy and speed of execution compared to the CC and
NN-filter methods.
4. Survey results and trends analysis

The results of the survey provided expected perceptions about
the nature of the ongoing research in recent years. Table 3 provides
a comprehensive overview of the data and techniques used in the
studied research that rely on machine learning models. Table 4



Table 4
Summary of the papers for software quality prediction using deep learning models.

Ref Required
prediction

Dataset used language/
Metrics

Proposed approach / remarks

[11] Maintainability 299 open-source
projects

OO Metric Proposed LSTM neural network model was compared with five models which are DT, SVM, RR, QRF,
PCA, and the proposed model performed better for predicting software maintainability.

[12] Reliability &
Maintainability

Test cases generated
dataset

NA An advanced neural network integrated with HCS algorithm has been developed. The process of
updating the weights in the advanced network used HCS. This method provided a highly effective
prediction of software quality, both in terms of reliability and maintainability.

[31] Reliability PROMISE , AR
dataset, Nasa dataset

C, C++,
Java

Proposed hybrid model combining salp swarm algorithm (SSA) and backpropagation neural network
for software fault prediction modeling.

[32] Reliability PROMISE C, C++,
Java

New 36 conceptual coupling-based metrics suite was introduced. These new metrics have been tested
on classifiers, including neural networks, and performed well.

[33] Reliability MIS & NASA Java Deep learning model was proposed to predict the number of defects. This model outperformed the SVR,
FSVR and DTR models in terms of performance.

[34] Maintainability Abdera, Ivy & Rave Java The authors introduce an optimized extreme learning machine which is neural network with single
hidden layer to predict software maintainability for three different datasets.

[35] Reusability COMETS Java In this study, code classes were categorized into three levels of reusability. SOM is based on a
Competitive Learning rule used to predict reusability.

[36] Maintainability UIMS & QUES Classical
Ada

functional link artificial neural networks-based Hybrid models have been applied to predict
maintainability. The results showed the importance of the process of features reduction, and the best
results were by using hybrid network models with genetic algorithm.

[37] Reusability Haskell packages Haskell The Authors introduce MOGA-NN which is neural network trained by GA and RBF-NN with KNN to
predict reuse estimate of three packages

[38] Maintainability UIMS & QUES Classical
Ada

Ten software standards are adopted to build a fuzzy logic neural network model. Features reduction
techniques such as PCA and RSA were used to select the best Metrics a from the ten criteria.

[39] Reusability SourceForge Java They used three types of metrics (Cohesion, Complexity and coupling metrics). then these metrics after
processed it used to train several ML model. the best model was AGA-ANN which based on Genetic
algorithm and ANN.

[40] Reliability Nasa Dataset C,C++, Java For software defect prediction three cost-sensitive boosting algorithms are studied to boost neural
networks.

[41] Reliability Javabean software Java Nelder–Mead approach with ant algorithm and ELM as hybrid model (ACO-NM) used to predict quality.
Where ACO–NM used to update ELM weights.

[42] Reliability Nasa Dataset C,C++, Java The authors proposed text mining model to classify each defect report into risk levels that based on an
existed classification done by RBF neural network

Table 5
Summary of the papers for software quality prediction using transfer learning models.

Ref Required
prediction

Dataset used language/
Metrics

Proposed approach / remarks

[13] Reliability PROMISE C,aC++,
Java

A transfer learning model based on the NB algorithm is proposed and the goal is to build a fast and
efficient model for software quality prediction. This model provided better accuracy and speed of
execution compared to the CC and NN-filter methods

[43] Reliability PROMISE C,aC++,
Java

Feature based transfer learning model proposed. A comparison was made between the accuracy of
models NB, J48 and oneR, it was found that there was an improvement in performance when using the
proposed model.

[44] Reliability PROMISE C,aC++,
Java

The main idea in this work is visualize the code as images and then the features are extracted using self-
attention mechanism. Finally, these images were provided to the transfer learning model to detect the
defect in the code

[45] Maintainability Linux, MySQL,
HTTPD, and AXIS

C,aC++ Framework proposed used TrAdaBoost transfer learning model to predict cross-project bug. The results
showed the proposed model improve the accuracy to predict cross-project bug type.

[46] Reliability Nasa Dataset C,aC++,
Java

They proposed a new model TCANN based on Transfer learning the aim is to solve three common
problems during bug detection. The problems are noise data, transfer learning among crossproject and
imbalance data.

[47] Reliability ReLink & AEEEM C,aC++ They proposed an extended transfer component analysis model (TCA + ) to gained high cross-project
accuracy prediction. The main idea is selection the most appropriate normalization options for each
cross-project pair.

Table 6
Summary of reviewed articles vs learning types used.

Models\Attribute Reliability Maintainability Reusability

Machine learning models [7,8,9,10,14,15,16,17,18,22,24,30] [7,19,21,25,27,28,29] [20,23,26,30]
Deep learning models [12,31,32,33,40,41,42] [11,12,34,36,38] [35,37,39]
Transfer learning models [13,43,44,45,46,47] [45]
Other models [48,49,50] [49]
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provides a comprehensive overview of the data and techniques
used in the studied research that rely on deep learning models.

Table 5 shows the summary of the papers for software quality
prediction using transfer learning models. Table 6 shows the sum-
4718
mary of reviewed articles vs learning types used. Most of the
research focused on predicting the defects in the software. Fig. 2
(a) shows the number of articles conducted to predict specific soft-
ware attributes. Fig. 2 (b) shows the percentage of articles con-



Fig. 2. (a) Number of articles intended to predict each attribute; (b) Percentage of articles intended to predict each software attributes.

Fig. 3. (a) Number of articles used each technique; (b) Percentage of articles used each technique.
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ducted to predict each software attribute. On the other hand, Fig. 3
(a) shows the number of articles conducted using different learning
techniques. Fig. 3 (b) shows the percentage of articles conducted
using the different learning techniques.
5. Conclusion and future works

The tasks of verifying and predicting the quality of the software
need expert developers. Quality assurance can only be done after
obtaining experience that helps in predicting possible error spots
or defects. We find that artificial intelligence algorithms in general
and machine learning, in particular, played their required role after
quickly gaining experience through training on previously defec-
tive software. There is still a need to develop more comprehensive
models to verify all quality specifications of the software. This
work made a contribution that helps researchers in the future to
see and choose the right way to determine their priorities and
activities when working in the field of automated software quality
prediction. In future works, a comparison can be made between
the capabilities of each of the machine learning techniques. This
requires finding a unified approach for making a fair and accurate
comparison, as data type, software metrics, selected features, eval-
uation criteria, and techniques are different between research.
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[24] D. Bowes, T. Hall, J. Petrić, Software defect prediction: do different classifiers
find the same defects?, Software Qual J. 26 (2017) 525–552, https://doi.org/
10.1007/s11219-016-9353-3.

[25] K. Lakra, A. Chug, Development of efficient and optimal models for software
maintainability prediction using feature selection techniques, IEEE (2021)
798–803, https://doi.org/10.1109/INDIACom51348.2021.00143.

[26] Negi P, Umesh Kumar Tiwari. Machine learning algorithm for assessing
reusability in component based software development. EasyChair Preprint;
2020.

[27] S. Gupta, A. Chug, Assessing Cross-Project Technique for Software
Maintainability Prediction, Procedia Comput. Sci. 167 (2020) 656–665,
https://doi.org/10.1016/j.procs.2020.03.332.

[28] L. Kumar, M. Kumar, S.Ku Rath, Maintainability prediction of web service using
support vector machine with various kernel methods, Int. J. Syst. Assurance
Eng. Manage. 8 (2016) 205–222, https://doi.org/10.1007/s13198-016-0415-5.

[29] H. Alsolai, M. Roper, D. Nassar, Predicting software maintainability in object-
oriented systems using ensemble techniques, in: International Conference on
Software Maintenance (ICSM), 2018, pp. 716–721, https://doi.org/10.1109/
ICSME.2018.00088.

[30] H. Sinha, R.K. Behera, Supervised machine learning approach to predict
qualitative software product, Evol. Intel. 14 (2020), https://doi.org/10.1007/
s12065-020-00434-4.
4720
[31] S. Kassaymeh, S. Abdullah, M.A. Al-Betar, M. Alweshah, Salp swarm optimizer
for modeling the software fault prediction problem, J. King Saud Univ. Comput.
Inf. Sci. (2021), https://doi.org/10.1016/j.jksuci.2021.01.015.

[32] D.-L. Miholca, G. Czibula, V. Tomescu, COMET: A conceptual coupling based
metrics suite for software defect prediction, Procedia Comput. Sci. 176 (2020)
31–40, https://doi.org/10.1016/j.procs.2020.08.004.

[33] L. Qiao, X. Li, Q. Umer, P. Guo, Deep learning based software defect prediction,
Neurocomputing 385 (2020) 100–110, https://doi.org/10.1016/j.
neucom.2019.11.067.

[34] S. Gupta, A. Chug, An optimized extreme learning machine algorithm for
improving software maintainability prediction, International Conference on
Confluence The Next Generation Information Technology Summit (2021) 829–
836, https://doi.org/10.1109/Confluence51648.2021.9377196.

[35] A. Hudaib, A. Huneiti, I. Othman, Software Reusability Classification and
Predication Using Self-Organizing Map (SOM), Communications and Network
08 (2016) 179–192, https://doi.org/10.4236/cn.2016.83018.

[36] L. Kumar, S.Ku Rath, Hybrid functional link artificial neural network approach
for predicting maintainability of object-oriented software, J. Syst. Softw. 121
(2016) 170–190, https://doi.org/10.1016/j.jss.2016.01.003.

[37] D. Manjhi, A. Chaturvedi, Reuse estimate and interval prediction using MOGA-
NN and RBF-NN in the functional paradigm, Sci. Comput. Program. 208 (2021),
https://doi.org/10.1016/j.scico.2021.102643.

[38] L. Kumar, S.K. Rath, Software maintainability prediction using hybrid neural
network and fuzzy logic approach with parallel computing concept, Int. J. Syst.
Assurance Eng. Manage. 8 (2017) 1487–1502, https://doi.org/10.1007/s13198-
017-0618-4.

[39] N. Padhy, R.P. Singh, S.C. Satapathy, Cost-effective and fault-resilient
reusability prediction model by using adaptive genetic algorithm based
neural network for web-of-service applications, Cluster Comput. 22 (2018)
14559–14581, https://doi.org/10.1007/s10586-018-2359-9.

[40] J. Zheng, Cost-sensitive boosting neural networks for software defect
prediction, Expert Syst. Appl. 37 (2010) 4537–4543, https://doi.org/10.1016/
j.eswa.2010.12.056.

[41] K. Sheoran, P. Tomar, R. Mishra, A novel quality prediction model for
component based software system using ACO–NM optimized extreme
learning machine, Cogn. Neurodyn. 14 (2020), https://doi.org/10.1007/
s11571-020-09585-7.

[42] [42] Jindal R, Malhotra R, Jain A. Software defect prediction using neural
networks, Proceedings of 3rd International Conference on Reliability, Infocom
Technologies and Optimization 2014, p. 1–6. 10.1109/ICRITO.2014.7014673 .

[43] Qing H, Biwen L, Beijun S, Xia Y. Cross-project software defect prediction using
feature-based transfer learning, International Conference Proceeding Series,
Wuhan, China: Association for Computing Machinery; 2015, p. 74-82.
10.1145/2875913.2875944.

[44] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, et al., Software visualization and
deep transfer learning for effective software defect prediction, International
Conference on Software Engineering (2020) 578–589, https://doi.org/10.1145/
3377811.3380389.

[45] X. Du, Z. Zhou, B. Yin, G. Xiao, Cross-project bug type prediction based on
transfer learning, Software Qual. J. 28 (2019) 39–57, https://doi.org/10.1007/
s11219-019-09467-0.

[46] Cao Q, Sun Q, Cao Q, Tan H. Software defect prediction via transfer learning
based neural network, 2015, p. 1–10. 10.1109/ICRSE.2015.7366475.

[47] [47] Nam J, Pan SJ, Kim S. Transfer defect learning. International Conference on
Software Engineering, 2013. First International Conference on Reliability
Systems Engineering p. 382–91. 10.1109/ICSE.2013.6606584.

[48] A. Amin, L. Grunske, A. Colman, An approach to software reliability prediction
based on time series modeling, J. Syst. Softw. 86 (2013) 1923–1932, https://
doi.org/10.1016/j.jss.2013.03.045.

[49] B. Singh, Kannojia S. Prasad, A Model for Software Product Quality Prediction, J.
Softw. Eng. Appl. 05 (2012) 395–401, https://doi.org/10.4236/jsea.2012.56046.

[50] Y. Shi, M. Li, S. Arndt, C. Smidts, Metric-based software reliability prediction
approach and its application, Empirical Softw. Eng. 22 (2016) 1579–1633,
https://doi.org/10.1007/s10664-016-9425-9.

https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1109/access.2019.2913349
https://doi.org/10.1109/access.2019.2913349
https://doi.org/10.1016/j.procs.2016.07.365
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.5120/9354-3687
https://doi.org/10.1016/j.jestch.2019.10.005
https://doi.org/10.1016/j.jestch.2019.10.005
https://doi.org/10.1007/s10515-010-0069-5
https://doi.org/10.1007/s10515-010-0069-5
https://doi.org/10.3745/jips.2012.8.2.241
https://doi.org/10.1109/IS.2008.4670508
https://doi.org/10.5281/zenodo.1074887
https://doi.org/10.35335/mantik
https://doi.org/10.1145/1988997.1989017
https://doi.org/10.1145/1988997.1989017
http://www.csjournals.com/IJITKM/PDF%205-1/Article_41.pdf
http://www.csjournals.com/IJITKM/PDF%205-1/Article_41.pdf
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1109/INDIACom51348.2021.00143
https://doi.org/10.1016/j.procs.2020.03.332
https://doi.org/10.1007/s13198-016-0415-5
https://doi.org/10.1109/ICSME.2018.00088
https://doi.org/10.1109/ICSME.2018.00088
https://doi.org/10.1007/s12065-020-00434-4
https://doi.org/10.1007/s12065-020-00434-4
https://doi.org/10.1016/j.jksuci.2021.01.015
https://doi.org/10.1016/j.procs.2020.08.004
https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.1109/Confluence51648.2021.9377196
https://doi.org/10.4236/cn.2016.83018
https://doi.org/10.1016/j.jss.2016.01.003
https://doi.org/10.1016/j.scico.2021.102643
https://doi.org/10.1007/s13198-017-0618-4
https://doi.org/10.1007/s13198-017-0618-4
https://doi.org/10.1007/s10586-018-2359-9
https://doi.org/10.1016/j.eswa.2010.12.056
https://doi.org/10.1016/j.eswa.2010.12.056
https://doi.org/10.1007/s11571-020-09585-7
https://doi.org/10.1007/s11571-020-09585-7
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.1007/s11219-019-09467-0
https://doi.org/10.1007/s11219-019-09467-0
https://doi.org/10.1016/j.jss.2013.03.045
https://doi.org/10.1016/j.jss.2013.03.045
https://doi.org/10.4236/jsea.2012.56046
https://doi.org/10.1007/s10664-016-9425-9

	Software quality prediction using machine learning
	1 Introduction
	2 Literature survey and background
	3 Methodology
	3.1 Software metrics types
	3.1.1 Product metrics
	3.1.2 Process metrics
	3.1.3 Project metrics

	3.2 Software quality prediction models
	3.2.1 Software quality prediction models-based machine learning
	3.2.2 Software quality prediction models-based deep learning
	3.2.3 Software quality prediction models-based transfer learning


	4 Survey results and trends analysis
	5 Conclusion and future works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


